• Login
    View Item 
    •   MINDS@UW Home
    • MINDS@UW Milwaukee
    • UW Milwaukee Electronic Theses and Dissertations
    • View Item
    •   MINDS@UW Home
    • MINDS@UW Milwaukee
    • UW Milwaukee Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Extraction and Classification of Drug-Drug Interaction from Biomedical Text Using a Two-Stage Classifier

    Thumbnail
    File(s)
    Main File (2.164Mb)
    Date
    2013-12-01
    Author
    Rastegar-Mojarad, Majid
    Department
    Engineering
    Advisor(s)
    Rashmi Prasad
    Metadata
    Show full item record
    Abstract
    One of the critical causes of medical errors is Drug-Drug interaction (DDI), which occurs when one drug increases or decreases the effect of another drug. We propose a machine learning system to extract and classify drug-drug interactions from the biomedical literature, using the annotated corpus from the DDIExtraction-2013 shared task challenge. Our approach applies a two-stage classifier to handle the highly unbalanced class distribution in the corpus. The first stage is designed for binary classification of drug pairs as interacting or non-interacting, and the second stage for further classification of interacting pairs into one of four interacting types: advise, effect, mechanism, and int. To find the set of best features for classification, we explored many features, including stemmed words, bigrams, part of speech tags, verb lists, parse tree information, mutual information, and similarity measures, among others. As the system faced two different classification tasks, binary and multi-class, we also explored various classifiers in each stage. Our results show that the best performing classifier in both stages was Support Vector Machines, and the best performing features were 1000 top informative words and part of speech tags between two main drugs. We obtained an F-Measure of 0.64, showing a 12% improvement over our submitted system to the DDIExtraction 2013 competition.
    Subject
    Biomedical Text
    Classification
    Drug-Drug Interaction
    Natural Language Processing
    Permanent Link
    http://digital.library.wisc.edu/1793/93048
    Type
    thesis
    Part of
    • UW Milwaukee Electronic Theses and Dissertations

    Contact Us | Send Feedback
     

     

    Browse

    All of MINDS@UWCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Contact Us | Send Feedback