• Login
    View Item 
    •   MINDS@UW Home
    • MINDS@UW Milwaukee
    • UW Milwaukee Electronic Theses and Dissertations
    • View Item
    •   MINDS@UW Home
    • MINDS@UW Milwaukee
    • UW Milwaukee Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Analysis of Music Genre Clustering Algorithms

    Thumbnail
    File(s)
    Main File (152.9Kb)
    Date
    2021-08-01
    Author
    Stern, Samuel Walter
    Department
    Computer Science
    Advisor(s)
    Susan McRoy
    Metadata
    Show full item record
    Abstract
    Classification and clustering of music genres has become an increasingly prevalent focusin recent years, prompting a push for research into relevant algorithms. The most successful algorithms have typically applied the Naive Bayes or k-Nearest Neighbors algorithms, or used Neural Networks to perform classification. This thesis seeks to investigate the use of unsupervised clustering algorithms such as K-Means or Hierarchical clustering, and establish their usefulness in comparison to or conjunction with established methods.
    Subject
    Algorithms
    Classification
    Clustering
    Music
    Permanent Link
    http://digital.library.wisc.edu/1793/92824
    Type
    thesis
    Part of
    • UW Milwaukee Electronic Theses and Dissertations

    Contact Us | Send Feedback
     

     

    Browse

    All of MINDS@UWCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Contact Us | Send Feedback