• Login
    View Item 
    •   MINDS@UW Home
    • MINDS@UW Milwaukee
    • UW Milwaukee Electronic Theses and Dissertations
    • View Item
    •   MINDS@UW Home
    • MINDS@UW Milwaukee
    • UW Milwaukee Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Constructing Orthogonal Arrays on Non-abelian Groups

    Thumbnail
    File(s)
    Main File (110.8Kb)
    Date
    2013-08-01
    Author
    McComack, Margaret Ann
    Department
    Mathematics
    Advisor(s)
    Jay H. Beder
    Metadata
    Show full item record
    Abstract
    For an orthogonal array (or fractional factorial design) on k factors, Xu and Wu (2001) define the array's generalized wordlength pattern (A1, ..., Ak), by relating a cyclic group to each factor. They prove the property that the array has strength t if and only if A1 = ... = At = 0. In their 2012 paper, Beder and Beder show that this result is independent of the group structure used. Non-abelian groups can be used if the assumption is made that the groups Gi are chosen so that the counting function O of the array is a class function on G. The aim of this thesis is to construct examples of orthogonal arrays on G = G1 x ... x Gk, where G is non-abelian, having two properties: given strength, and counting function O that is constant on the conjugacy classes of G.
    Permanent Link
    http://digital.library.wisc.edu/1793/92525
    Type
    thesis
    Part of
    • UW Milwaukee Electronic Theses and Dissertations

    Contact Us | Send Feedback
     

     

    Browse

    All of MINDS@UWCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Contact Us | Send Feedback