• Login
    View Item 
    •   MINDS@UW Home
    • MINDS@UW Milwaukee
    • UW Milwaukee Electronic Theses and Dissertations
    • View Item
    •   MINDS@UW Home
    • MINDS@UW Milwaukee
    • UW Milwaukee Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Deep Learning Applications in Medical Image and Shape Analysis

    Thumbnail
    File(s)
    Main File (1.915Mb)
    Date
    2019-05-01
    Author
    YANG, JINGTAO
    Department
    Computer Science
    Advisor(s)
    Zeyun Yu
    Metadata
    Show full item record
    Abstract
    Deep learning is one of the most rapidly growing fields in computer and data science in the past few years. It has been widely used for feature extraction and recognition in various applications. The training process as a black-box utilizes deep neural networks, whose parameters are adjusted by minimizing the difference between the predicted feedback and labeled data (so-called training dataset). The trained model is then applied to unknown inputs to predict the results that mimic human's decision-making. This technology has found tremendous success in many fields involving data analysis such as images, shapes, texts, audio and video signals and so on. In medical applications, images have been regularly used by physicians for diagnosis of diseases, making treatment plans, and tracking progress of patient treatment. One of the most challenging and common problems in image processing is segmentation of features of interest, so-called feature extraction. To this end, we aim to develop a deep learning framework in the current thesis to extract regions of interest in wound images. In addition, we investigate deep learning approaches for segmentation of 3D surface shapes as a potential tool for surface analysis in our future work. Experiments are presented and discussed for both 2D image and 3D shape analysis using deep learning networks.
    Subject
    deep learning
    teeth segmentation
    wound segmentation
    Permanent Link
    http://digital.library.wisc.edu/1793/92055
    Type
    thesis
    Part of
    • UW Milwaukee Electronic Theses and Dissertations

    Contact Us | Send Feedback
     

     

    Browse

    All of MINDS@UWCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Contact Us | Send Feedback