• Login
    View Item 
    •   MINDS@UW Home
    • MINDS@UW Milwaukee
    • UW Milwaukee Electronic Theses and Dissertations
    • View Item
    •   MINDS@UW Home
    • MINDS@UW Milwaukee
    • UW Milwaukee Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Regulatory Mechanisms in Borrelia Burgdorferi-Induced Arthritis

    Thumbnail
    File(s)
    Main File (7.716Mb)
    Date
    2016-12-01
    Author
    Hansen, Emily Siebers
    Department
    Health Sciences
    Advisor(s)
    Dean T. Nardelli
    Metadata
    Show full item record
    Abstract
    Lyme arthritis is a common symptom of Lyme borreliosis that involves inflammation of the synovial joints. Elucidating the immune events involved in Lyme arthritis is complicated by the fact that not all individuals infected with B. burgdorferi develop arthritis. Additionally, Lyme arthritis manifests in different severities between affected individuals. It is known that an inflammatory response is initiated by B. burgdorferi infection and that inflammatory T cells contribute to the development of arthritis. However, the anti-inflammatory mechanisms that regulate the pathogenic T cells’ response are not entirely understood. Here, the hypothesis that a dysregulated immune response results in an excessive inflammatory response and the development of arthritis following B. burgdorferi infection was tested. Interleukin-10 (IL-10) is involved in regulating the immune response during infection with B. burgdorferi. We demonstrate that IL-10 regulates the development of Lyme arthritis through inhibition of interleukin-17 (IL-17) production. We also demonstrate that IL-10 regulates the production of IL-17 by Borrelia-primed CD4+ cells early after interaction with Lyme spirochetes in vitro, and that infection of Borrelia-primed mice with B. burgdorferi leads to significant production of IL-17 that contributes to the development of severe arthritis. Further, we demonstrate that regulatory T (Treg) cell depletion prior to infection results in hind paw swelling and the development of arthritis along with an increased B. burgdorferi-specific antibody response in an arthritis-resistant mouse model. We further demonstrate that Treg cells inhibit paw swelling and inflammatory cytokine production during the course of B. burgdorferi infection, but may not modulate severity of arthritis in established disease. Based on our findings, this suggests that Treg cells present prior to B. burgdorferi infection results in regulation of IL-17 by IL-10, thereby inhibiting pathology. Our findings identify novel regulatory mechanisms that may be responsible for resistance to Lyme arthritis, and suggest that modulation of Treg cells may prove useful in the development of new strategies for treatment and/or prevention of Lyme arthritis.
    Permanent Link
    http://digital.library.wisc.edu/1793/91199
    Type
    dissertation
    Part of
    • UW Milwaukee Electronic Theses and Dissertations

    Contact Us | Send Feedback
     

     

    Browse

    All of MINDS@UWCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Contact Us | Send Feedback