The astrophysical r-process: what we are learning from gravitational waves, dwarf galaxies, and stellar archaeology
Abstract
Understanding the origin of the elements is one of the major challenges of modern astrophysics. The rapid neutron-capture process, or r-process, is one of the fundamental ways that stars produce the elements listed along the bottom two-thirds of the periodic table, but key aspects of the r-process are still poorly understood. I will describe three major advances in the last few years that have succeeded in confirming neutron star mergers as an important site of the r-process. These include the detection of freshly produced r-process material powering the kilonova associated with the merger of neutron stars detected via gravitational waves (GW170817), the detection of a dwarf galaxy where most of the stars are highly enhanced in r-process elements (Reticulum II), and advances in deriving abundances of previously-undetected r-process elements (Se, Te, Pt) in ultraviolet and optical spectra of metal-poor stars in the Milky Way halo field. I will describe future prospects that connect these three research directions and future rare isotope accelerators to associate specific physics with specific sites of the r-process. Finally, I will highlight the major impact of Jim Lawler's atomic spectroscopy group at Wisconsin in enabling these advances.
Permanent Link
http://digital.library.wisc.edu/1793/78301Type
Presentation