• Login
    View Item 
    •   MINDS@UW Home
    • MINDS@UW Madison
    • College of Engineering, University of Wisconsin--Madison
    • Research Centers--College of Engineering
    • Solar Energy Laboratory
    • Solar Energy Laboratory MS and Ph.D Theses
    • View Item
    •   MINDS@UW Home
    • MINDS@UW Madison
    • College of Engineering, University of Wisconsin--Madison
    • Research Centers--College of Engineering
    • Solar Energy Laboratory
    • Solar Energy Laboratory MS and Ph.D Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Simulation of Ground Coupled Vertical U-Tube Heat Exchangers

    Thumbnail
    File(s)
    Rottmayer thesis.pdf (228.5Kb)
    Date
    1997
    Author
    Rottmayer, Steven P.
    Publisher
    University of Wisconsin-Madison
    Metadata
    Show full item record
    Abstract
    Ground coupled heat pumps are an efficient alternative to conventional methods of conditioning homes, because instead of using the ambient air they utilize the ground as an energy source or sink. However, ground coupled heat pumps have high installation costs that makes it critical to design the system to maximize performance. Vertical u-tube heat exchangers are commonly used as the ground coupled heat exchanger, but estimating their performance is difficult because of the unique heat transfer conditions of this configuration. This thesis focuses on modeling the vertical u-tube heat exchanger. Several initial attempts to model the heat exchanger were made, and finally an explicit euler finite difference numerical technique was employed. The ground storage volume is divided axially into sections, and each section is a two dimensional cylindrical mesh representing the fluid, tubes, grout, and soil at a specific depth. The tubes are approximated by non circular sections of the mesh, and is accurate to within 8%. A local coupling factor can increase this accuracy to 3% for most systems, and comparisons with an existing model showed good agreement. The finite difference model has provided an approach that is fundamental and readily extended to more realistic conditions. It is accurate and fast enough to be useful as both a comparison to existing models and as a design tool.
    Subject
    Thesis (M.S.)--University of Wisconsin--Madison, 1997.
    Dissertations Academic Mechanical Engineering.
    University of Wisconsin--Madison. College of Engineering.
    Permanent Link
    http://digital.library.wisc.edu/1793/7759
    Description
    Under the supervision of Professors William Beckman and John Mitchell; 115pp.
    Citation
    Rottmayer, S.P. (1997). Simulation of Ground Coupled Vertical U-Tube Heat Exchangers. Master's Thesis, University of Wisconsin-Madison.
    Part of
    • Solar Energy Laboratory MS and Ph.D Theses

    Contact Us | Send Feedback
     

     

    Browse

    All of MINDS@UWCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Contact Us | Send Feedback