A TRNSYS Model of a Hybrid Lighting System
File(s)
Date
2003Author
Schlegel, Greg
Publisher
University of Wisconsin-Madison
Metadata
Show full item recordAbstract
During the past two years, considerable effort has been expended in developing the
TRNSYS Hybrid Lighting Model. The work has resulted in a software tool that can simulate
impacts associated with utilizing the hybrid lighting technology. All of the physical parameters
of a hybrid lighting system are included as variables within the software. By utilizing this work,
the hybrid lighting team can make design decisions based upon computer predictions of the
performance of a hybrid lighting system.
The hybrid lighting system is modeled using the transient system simulation program
TRNSYS. The TRNSYS model is implemented using interconnected components, which
include a weather generator, radiation processors, a hybrid lighting model, a building model,
building schedules, utility rate schedules, and output components. The results from the
simulation include the annual energy and monetary savings gained from the hybrid lighting
system. An economic model has been incorporated into the hybrid lighting model to calculate
the break-even capital cost of a hybrid lighting system based on the annual savings.
A narrow-band and wide-band hybrid lighting model has been developed. The wide-
band model uses direct normal solar radiation from either a TMY2 data file or the TRNSYS
weather generator. The incoming direct normal radiation is weighted by the average spectral
properties of the hybrid lighting components which include concentrator reflectance, secondary
element transmittance and reflectance, thermal photovoltaic quantum efficiency, light fiber
attenuation, and luminaire efficiency.
The narrow-band model uses TMY2 data or the TRNSYS weather generator to obtain the
magnitude of the direct normal radiation, but the direct normal spectral distribution is predicted
based on the atmospheric transmission model SMARTS. The narrow-band model predicts the
direct normal spectral radiation at five nanometer bandwidths. Next it reads the available
spectral component data, applies the component data to the solar spectral distribution, and
calculates the amount of light and electricity that is generated by the system. The outputs from
both models include the light produced by the hybrid lighting system as well as electricity
generated by the TPV.
Within TRNSYS, the light output from the hybrid lighting system model is sent to the
building model. The building is modeled using the TRNSYS type 56 multi-zone building model.
Type 56 is a FORTRAN subroutine which is designed to provide detailed thermal models of
buildings. The model consists of two windowless 2500 m2 zones. One zone uses efficient
fluorescent lighting and the other zone uses hybrid lighting with dimmable fluorescent auxiliary
lighting. Identical schedules in the two zones simulate the heating, cooling, and ventilation of a
typical mixed-use environment. Gains in the model account for the people, computers, and
lights in the building. Cooling in the building is supplied using a chiller with a constant COP of
3 and heating loads are met using an 80 % efficient natural gas furnace. Using local utility rate
schedules, energy costs can be calculated for the two zones of the building model with the
difference representing the energy savings due to the hybrid lighting system.
The hybrid lighting model calculates the break-even capital cost of a hybrid lighting
system based on the system energy savings. The break-even capital cost is defined as the initial
cost of the hybrid lighting system that will provide a life cycle savings (LCS) of zero over the
economic lifetime. At this point in the design stage, realistic component prices are not available
for determining economic parameters such as years to payback, LCS, or return on investment.
Instead the break-even capital cost was calculated to be used as a price target where the energy
savings predicted by the TRNSYS model will economically compensate for the system
components.
Simulations were performed to determine effectiveness of the hybrid lighting technology
across the United States. Hybrid lighting systems located in Tucson, AZ and Honolulu, HI
performed best with break-even capital costs of $2050 and $2800 based on a 10 year analysis
period.
Other daylighting strategies were evaluated to determine their cost competitiveness with
hybrid lighting. Photovoltaics and toplighting were both evaluated using TRNSYS models. The
break-even capital cost of the hybrid lighting system was approximately five times that of a
toplighting or photovoltaic system. Photovoltaics are not an economic alternative, but the low
cost and simple nature of toplighting makes it a very competitive alternative to hybrid lighting.
Subject
Thesis (M.S.)--University of Wisconsin--Madison, 2003.
Dissertations Academic Mechanical Engineering.
University of Wisconsin--Madison. College of Engineering.
Permanent Link
http://digital.library.wisc.edu/1793/7630Description
Under the supervision of Professors William Beckman and Sanford Klein; 158pp.
Citation
Schlegel, G. (2003). A TRNSYS Model of a Hybrid Lighting System. Master's Thesis, University of Wisconsin-Madison.