• Login
    View Item 
    •   MINDS@UW Home
    • MINDS@UW Madison
    • College of Engineering, University of Wisconsin--Madison
    • Research Centers--College of Engineering
    • Solar Energy Laboratory
    • Solar Energy Laboratory MS and Ph.D Theses
    • View Item
    •   MINDS@UW Home
    • MINDS@UW Madison
    • College of Engineering, University of Wisconsin--Madison
    • Research Centers--College of Engineering
    • Solar Energy Laboratory
    • Solar Energy Laboratory MS and Ph.D Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Numerical Model of an Active Magnetic Regenerator Refrigeration System

    Thumbnail
    File(s)
    engelbrecht05.pdf (2.433Mb)
    Date
    2005
    Author
    Engelbrecht, Kurt
    Publisher
    University of Wisconsin-Madison
    Metadata
    Show full item record
    Abstract
    Active magnetic regenerator refrigeration (AMRR) systems are an environmentally attractive space cooling and refrigeration alternative that do not use a fluorocarbon working fluid. Two recent developments have made AMRRs appear possible to implement in the near-term. A rotary regenerator bed utilizing practical and affordable permanent magnets has been demonstrated to achieve acceptable COP. Concurrently, families of magnetocaloric material alloys with adjustable Curie temperatures have been developed. Using these materials it is possible to construct a layered regenerator bed that can achieve a high magnetocaloric effect across its entire operating range, resulting in an improved COP. There is currently no tool capable of predicting the performance of a layered AMRR. This project provides a numerical model that predicts the practical limits of these systems for use in space conditioning and refrigeration applications. The model treats the regenerator bed as a one dimensional matrix of magnetic material with a spatial variation in Curie temperature and therefore magnetic properties. The matrix is subjected to a spatially and temporally varying magnetic field and fluid mass flow. The variation of these forcing functions is based on the implementation of a rotating, multiple bed configuration. The numerical model is solved using a fully implicit (in time and space) discretization of the governing energy equations. The nonlinear aspects of the governing equations (e.g., fluid and magnetic property variations) are handled using a relaxation technique. The model is used to optimize AMRR applications by varying model inputs such as matrix material, fluid mass flow rate, working fluid, reservoir temperatures, and the variation of the Curie temperature across the bed. The preliminary model has been verified qualitatively using simple cycle parameters and constant property materials and quantitatively by comparing the results with prior solutions to the regenerator governing equations in the limits of constant properties and no magnetocaloric effect. A second goal of this project is to create a cost estimate for a future project that will design, build, and test a prototype AMRR to be used to verify the numerical model.
    Subject
    Thesis (M.S.)--University of Wisconsin--Madison, 2005.
    Dissertations Academic Mechanical Engineering.
    University of Wisconsin--Madison. College of Engineering.
    Permanent Link
    http://digital.library.wisc.edu/1793/7596
    Description
    Under the supervision of Professors Gregory F. Nellis and Sanford A. Klein.
    Citation
    Engelbrecht, K. (2005). A Numerical Model of an Active Magnetic Regenerator Refrigeration System. Master's Thesis, University of Wisconsin-Madison.
    Part of
    • Solar Energy Laboratory MS and Ph.D Theses

    Contact Us | Send Feedback
     

     

    Browse

    All of MINDS@UWCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Contact Us | Send Feedback