Show simple item record

dc.contributor.authorChristou, Ioannis
dc.contributor.authorMeyer, Robert R.
dc.contributor.authorYackel, Jonathan
dc.description.abstractFor certain classes of problems defined over two-dimensional domains with grid structure, optimization problems involving the assignment of grid cells to processors present a nonlinear network model for the problem of partitioning tasks among processors so as to minimize interprocessor communication. Minimizing interprocessor communication in this context is show to be equivalent to tiling the domain so as to minimize total tile perimeter, where each tile corresponds to the collection of tasks assigned to some processor. A tight lower bound on the perimeter of a tile as a function of its area is developed. We then show how to generate minimum perimeter tiles. By using assignments corresponding to near-rectangular minimum-perimeter tiles, closed form solutions are developed for certain classes of domains. We conclude with computational results with parallel high-level genetic algorithms that have produced good (and sometimes provably optimal) solutions for very large perimeter minimization problems.en
dc.titleMinimum-Perimeter Domain Assignmenten
dc.typeTechnical Reporten

Files in this item


This item appears in the following Collection(s)

  • Math Prog Technical Reports
    Math Prog Technical Reports Archive for the Department of Computer Sciences at the University of Wisconsin-Madison

Show simple item record