• Login
    View Item 
    •   MINDS@UW Home
    • MINDS@UW Madison
    • College of Letters and Science, University of Wisconsin–Madison
    • Department of Computer Sciences, UW-Madison
    • CS Technical Reports
    • View Item
    •   MINDS@UW Home
    • MINDS@UW Madison
    • College of Letters and Science, University of Wisconsin–Madison
    • Department of Computer Sciences, UW-Madison
    • CS Technical Reports
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Dragging: Density-Ratio Bagging

    Thumbnail
    File(s)
    tech report (265.1Kb)
    Date
    2013-06-06
    Author
    Zhu, Xiaojin
    Tan, Yimin
    Metadata
    Show full item record
    Abstract
    We propose density-ratio bagging (dragging), a semi-supervised extension of bootstrap aggregation (bagging) method. Additional unlabeled training data are used to calculate the weight on each labeled training point by a density-ratio estimator. The weight is then used to construct a weighted labeled empirical distribution, from which bags of bootstrap samples are drawn. Asymptotically, dragging is proved to be no worse than bagging and requires no semi-supervised learning assumptions other than $iid$-ness. We show that compared to bagging, the dragging predictor achieves less asymptotic variance, which leads to a smaller MSE. We conduct real experiments on several regression and classification tasks. The performance of dragging, bagging, semi-supervised learning with density-ratio estimator, and basic supervised learning is compared and discussed.
    Subject
    bagging
    density ratio
    semi-supervised learning
    Permanent Link
    http://digital.library.wisc.edu/1793/65831
    Type
    Technical Report
    Citation
    TR1795
    Part of
    • CS Technical Reports

    Contact Us | Send Feedback
     

     

    Browse

    All of MINDS@UWCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Contact Us | Send Feedback