Show simple item record

dc.contributor.authorWolberg, William
dc.contributor.authorStreet, W. Nick
dc.contributor.authorMangasarian, Olvi
dc.description.abstractTwo medical applications of linear programming are described in this paper. Specifically, linear programming-based machine learning techniques are used to increase the accuracy of objectivity of breast cancer diagnosis and prognosis. The first application to breast cancer diagnosis utilizes characteristics of individual cells, obtained from a minimally invasive fine needle aspirate, to discriminate benign from malignant breast lumps. This allows an accurate diagnosis without the need for a surgical biopsy. The diagnostic system in current operation at University of Wisconsin Hospitals was trained on samples from 569 patients and has had 100% chronological correctness in diagnosing 131 subsequent patients. The second application, recently put into clinical practice, is a method that constructs a surface that predicts when breast cancer is likely to recur in patients what have had their cancers excised. This gives the physician and the patient better information with which to plan treatment, and may eliminate the need for a prognostic surgical procedure. The novel feature of the predictive approach is the ability to handle cases for predictive approach is the ability to handle cases for which cancer has not recurred (censored data) as well as cases for which cancer has recurred at a specific time. The prognostic system has an expected error of 13.9 to 18.3 months, which is better than prognosis correctness by other available techniques.en
dc.subjectlinear programmingen
dc.subjectbreast canceren
dc.titleBreast Cancer Diagnosis and Prognosis via Linear Programmingen
dc.typeTechnical Reporten

Files in this item


This item appears in the following Collection(s)

  • Math Prog Technical Reports
    Math Prog Technical Reports Archive for the Department of Computer Sciences at the University of Wisconsin-Madison

Show simple item record