• Login
    View Item 
    •   MINDS@UW Home
    • MINDS@UW Madison
    • College of Letters and Science, University of Wisconsin–Madison
    • Department of Computer Sciences, UW-Madison
    • DMI Technical Reports
    • View Item
    •   MINDS@UW Home
    • MINDS@UW Madison
    • College of Letters and Science, University of Wisconsin–Madison
    • Department of Computer Sciences, UW-Madison
    • DMI Technical Reports
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Nonlinear Knowledge in Kernel Approximation

    Thumbnail
    File(s)
    Nonlinear Knowledge in Kernel Approximation (1.848Mb)
    Date
    2006
    Author
    Wild, Edward
    Mangasarian, Olvi
    Metadata
    Show full item record
    Abstract
    Prior knowledge over arbitrary general sets is incorporated into nonlinear kernel approximation problems in the form of linear constraints in a linear program. The key tool in this incorporation is a theorem of the alternative for convex functions that converts nonlinear prior knowledge implications into linear inequalities without the need to kernelize these implications. Effectiveness of the proposed formulation is demonstrated on two synthetic examples and an important lymph node metastasis prediction problem. All these problems exhibit marked improvements upon the introduction of prior knowledge over nonlinear kernel approximation approaches that do not utilize such knowledge.
    Subject
    nonlinear kernel approximation
    Permanent Link
    http://digital.library.wisc.edu/1793/64332
    Type
    Technical Report
    Citation
    05-05
    Part of
    • DMI Technical Reports

    Contact Us | Send Feedback
     

     

    Browse

    All of MINDS@UWCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Contact Us | Send Feedback