• Login
    View Item 
    •   MINDS@UW Home
    • MINDS@UW Madison
    • College of Letters and Science, University of Wisconsin–Madison
    • Department of Computer Sciences, UW-Madison
    • CS Technical Reports
    • View Item
    •   MINDS@UW Home
    • MINDS@UW Madison
    • College of Letters and Science, University of Wisconsin–Madison
    • Department of Computer Sciences, UW-Madison
    • CS Technical Reports
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Document Recovery from Bag-of-Word Indices

    Thumbnail
    File(s)
    TR1645.pdf (318.6Kb)
    Date
    2008
    Author
    Fillmore, Nathanael
    Goldberg, Andrew B.
    Zhu, Xiaojin
    Publisher
    University of Wisconsin-Madison Department of Computer Sciences
    Metadata
    Show full item record
    Abstract
    Motivated by computer privacy issues, we present the novel problem of document recovery from an index: given only a document's bag-of-words (BOW) vector or other type of index, reconstruct the original ordered document. We investigate a variety of index types, including count-based BOW vectors, stopwords-removed count BOW vectors, indicator BOW vectors, and bigram count vectors. We formulate the problem as hypothesis rescoring using A* search with the Google Web 1T 5-gram corpus. Our experiments on five domains indicate that if original documents are short, the documents can be recovered with high accuracy.
    Permanent Link
    http://digital.library.wisc.edu/1793/60654
    Type
    Technical Report
    Citation
    TR1645
    Part of
    • CS Technical Reports

    Contact Us | Send Feedback
     

     

    Browse

    All of MINDS@UWCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Contact Us | Send Feedback