• Login
    View Item 
    •   MINDS@UW Home
    • MINDS@UW Madison
    • College of Letters and Science, University of Wisconsin–Madison
    • Department of Computer Sciences, UW-Madison
    • CS Technical Reports
    • View Item
    •   MINDS@UW Home
    • MINDS@UW Madison
    • College of Letters and Science, University of Wisconsin–Madison
    • Department of Computer Sciences, UW-Madison
    • CS Technical Reports
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Novel Uses for Machine Learning and Other Computational Methods for the Design and Interpretation of Genetic Microarrays

    Thumbnail
    File(s)
    TR1612.pdf (2.137Mb)
    Date
    2007
    Author
    Molla, Michael N.
    Publisher
    University of Wisconsin-Madison Department of Computer Sciences
    Metadata
    Show full item record
    Abstract
    It is clear that high-throughput techniques, such as rapid DNA sequencing and gene chips are changing the science of genetics. Hypothesis-driven science is now strongly complemented by these newer data-driven approaches. Over the course of the past decade, DNA microarrays, also known as gene chips, have come into prominence for genetic-level analysis throughout the life sciences. Using these microarrays, a scientist is able to perform hundreds of thousands of experiments on the surface of a single one-inch-by-one-inch wafer in the space of a single afternoon, generating more data than an army of researchers could have a generation ago. This potential flood of data brings many informatic challenges in both analysis and design. It is well understood that computer science will play a crucial role in their development and application. This thesis presents novel applications of machine learning and other computational methods to central tasks in highthroughput biology. These tasks include gene-chip design, detection of genomic variation, and the interpretation of gene-expression patterns.
    Permanent Link
    http://digital.library.wisc.edu/1793/60588
    Type
    Technical Report
    Citation
    TR1612
    Part of
    • CS Technical Reports

    Contact Us | Send Feedback
     

     

    Browse

    All of MINDS@UWCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Contact Us | Send Feedback