• Login
    View Item 
    •   MINDS@UW Home
    • MINDS@UW Madison
    • College of Letters and Science, University of Wisconsin–Madison
    • Department of Computer Sciences, UW-Madison
    • CS Technical Reports
    • View Item
    •   MINDS@UW Home
    • MINDS@UW Madison
    • College of Letters and Science, University of Wisconsin–Madison
    • Department of Computer Sciences, UW-Madison
    • CS Technical Reports
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    On Multivariate Polynomial Interpolation

    Thumbnail
    File(s)
    TR820.pdf (619.6Kb)
    Date
    1989
    Author
    Dyn, Nira
    Ron, Amos
    Publisher
    University of Wisconsin-Madison Department of Computer Sciences
    Metadata
    Show full item record
    Abstract
    A class of spaces of multivariate polynomials, closed under differentiation, is studied and corresponding classes of well posed Hermite-type interpolation problems are presented. All Hermite-type problems are limits of well posed LaGrange problems. The results are based on a duality between certain spaces of multivariate exponential-polynomials H and corresponding spaces of multivariate polynomials P, used by Dyn and Ron (1988) to establish the approximation order of the span of translates of exponential box splines. In the interpolation theory P is the space of interpolating polynomials and H characterizes the interpolation points and the interpolation conditions, both spaces being defined in terms of a set of hyperplanes in IR. This geometric approach extends the work of Chung and Yao (1977) on Lagrange interpolation, and also a subset of the Hermite-type problems considered via the Newton scheme, by several authors (see Gasca and Maetzu (1982) and references therein). For a different approach to the interpolation problem see Chui and Lai (1988). It is the systematic and unified analysis of a wide class of interpolation problems which is the main contribution of this paper to the study of multivariate polynomial interpolation.
    Permanent Link
    http://digital.library.wisc.edu/1793/59070
    Type
    Technical Report
    Citation
    TR820
    Part of
    • CS Technical Reports

    Contact Us | Send Feedback
     

     

    Browse

    All of MINDS@UWCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Contact Us | Send Feedback