• Login
    View Item 
    •   MINDS@UW Home
    • MINDS@UW Madison
    • College of Engineering, University of Wisconsin--Madison
    • Department of Electrical and Computer Engineering
    • Theses--Electrical Engineering
    • View Item
    •   MINDS@UW Home
    • MINDS@UW Madison
    • College of Engineering, University of Wisconsin--Madison
    • Department of Electrical and Computer Engineering
    • Theses--Electrical Engineering
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Microwave beamforming for non-invasive patient-specific hyperthermia treatment of pediatric brain cancer

    Thumbnail
    File(s)
    Matthew Burfeindt ECE Thesis (918.7Kb)
    Date
    2011-05-15
    Author
    Burfeindt, Matthew
    Advisor(s)
    Hagness, Susan
    Metadata
    Show full item record
    Abstract
    We present a numerical study of an array-based microwave beamforming approach for non-invasive hyperthermia treatment of pediatric brain tumors. The transmit beamformer is designed to achieve localized heating?that is,to achieve constructive interference and selective absorption of the transmitted electromagnetic waves at the desired focus location in the brain while achieving destructive interference elsewhere. The design process takes into account patient-specific and target-specific propagation characteristics at 1 GHz. We evaluate the effectiveness of the beamforming approach using finite-difference time-domain simulations of two MRI-derived child head models from the Virtual Family (IT?IS Foundation). Microwave power deposition and the resulting steady-state thermal distribution are calculated for each of several randomly chosen focus locations. We also explore the robustness of the design to mismatch between the assumed and actual dielectric properties of the patient. Lastly, we demonstrate the ability of the beamformer to suppress hot spots caused by pockets of cerebrospinal fluid (CSF) in the brain. Our results show that microwave beamforming has the potential to create localized heating zones in the head models for focus locations that are not surrounded by large amounts of CSF. These promising results suggest that the technique warrants further investigation and development.
    Permanent Link
    http://digital.library.wisc.edu/1793/53715
    Part of
    • Theses--Electrical Engineering

    Contact Us | Send Feedback
     

     

    Browse

    All of MINDS@UWCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Contact Us | Send Feedback