Show simple item record

dc.contributor.advisorHiskens, Ian
dc.contributor.authorBaone, Chaitanya
dc.date.accessioned2010-05-18T21:42:53Z
dc.date.available2010-05-18T21:42:53Z
dc.date.issued2009-12-15
dc.identifier.urihttp://digital.library.wisc.edu/1793/43969
dc.description.abstractAir conditioner (A/C) motor stalling is considered as one of the main reasons for the occurrence of delayed voltage recovery events leading to voltage collapse. In recent years, the phenomenon of Fault-Induced Delayed Voltage Recovery (FIDVR) has increasingly been observed. Planning tools have been found inadequate to capture FIDVR-type events, primarily due to inaccurate modeling of A/C motor loads. A dynamic A/C motor model based on the phasor modeling approach is considered in this work. The model accurately represents the behavior of A/C motors during and after a fault. Sensitivity analysis is performed to arrive at a set of more significant model parameters. This information may be used effectively in tuning the model parameters for various types of A/C motors. The next step in the development of a load model capable of accurately capturing the dynamical behavior of loads in the system is the aggregate modeling of several A/C motors. Instead of using a simplistic method of aggregating these machines into a single equivalent machine based on their ratings, an analytical approach based on bifurcation theory is presented in this work. The method characterizes the stalling behavior of several A/C motors in the system based on the system voltage level and thus provides a way for a more refined approach to aggregate A/C motor modeling.en
dc.titleModeling and Simulation of Air Conditioner Motors and Investigation of Cascaded Stallingen
dc.typeThesisen
thesis.degree.levelMSen
thesis.degree.disciplineElectrical Engineeringen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record