Structure of binary polymer blends: Multiple time step hybrid Monte Carlo
simulations and self-consistent integral-equation theory

Dmitry G. Gromov and Juan J. de Pablo
Department of Chemical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706

(Received 31 May 1995; accepted 31 July 1995

A newly developed self-consistent formulation of the polymer reference interaction site model
(PRISM) theory is used to predict the structure of binary polymer blends. Theoretical radial
distribution functions are compared to those obtained from hybrid Monte Carlo simulations of
mixtures of Lennard-Jones chains. A multiple time step method is implemented to increase the
efficiency of the simulations. We examine both the cases of atomic and molecular closures and
consider both conventional and self-consistent PRISM. We find that, overall, theoretical distribution
functions are in good agreement with simulation. 1®95 American Institute of Physics.

I. INTRODUCTION authors address the validity of PRISM when a simulated in-
tramolecular structure is employed. Third, they limit their

It is generally accepted that local molecular structurecalculations to purely repulsive blends. In contrast, we ex-
plays a crucial role in determining the thermodynamic prop-amine the accuracy of a self-consistent theory and address
erties of pure simple liquids and their mixtures. Accordingly, the effects of attractive forces on the structure of binary poly-
the theory of simple liquids has received a great deal ofmer blends using both atomic and molecular closures.
attention over the last three decad@saviore recently, some
of the methods originally developed for such liquids have
been applied to polymers, which had traditionally been stud-

. ) . : . Il. MOLECULAR MODEL
ied by invoking lattice representations of the system. Com- OLECU ©

puter simulations of polymeric fluids have also received in-  The polymers studied in this work consist of fully flex-
creasing amounts of attention in recent years, and the focygle chains of Lennard-Jones sites. Adjacent sites on the
of such calculations has gradually shifted from studies on @&hains are connected by finitely extensible nonlinear elastic
lattice to a continuum. (FENE) (Ref. 12 connectors. The FENE potential-energy

The integral-equation formulation of Schweizer andfunction describing the interactions between “covalently”
Curro (PRISM) has permitted calculation of the structure of honded beads is given by

pure homopolymers®and blend$-8 Unfortunately, the pre- )

+UY(r), (1)
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dictions of such a theory have only been compared to simu- usV(r)=— 1 HQ2 In
lations of pure polymers. We note, however, that Stevenson 2 0
e_t al? a_nd de Pabt have very rec_:ently conducted Iimite_d whereH is a force constan), is the maximum extensibility
simulations of polymer blends in attempts to examine ¢ 1 springs, andJ'(r) is the Lennard-Jones potential
PRISM’s accuracy for mixtures. The PRISM theory of SCh'given by
weizer and Curro requires information about the intramo- U
lecular structure of the molecules. Originally, such informa- A 6
tion was obtained either by resorting to other theories of r r/ |
polymers or directly from molecular simulations. A new self- . . o .
consistent formulation, however, has allowed complete ﬁrSt_Egr?rr:arlgt?gi(;“so;arszaliﬁegrs?hoe:::itoer”ég\(/jalieaxtl;ht:(e)?] dzztisntg:
rincipl rediction f th ructur f r e . " }
Eomcop §|S me? ﬁdp(;[r? o? theo urt oese jft ::ﬁ;uviork?s topeux-e action sites, one for interactions between beads that are not
nopoly ’ PUTP! chemically bonded, and one for cross-interactions between
amine the accuracy of self-consistent PRISM for blends b%ifferent species. For this study we usédi—100 and
comparing theoretical distribution functions to those ob-Q —15 Tﬁese vlalues lead to a)r/1 average t:ond length of
tained from molecular simulations. 0 . .
. . . . approximately 0.8 (whereo is the Lennard-Jones size pa-
In this paper we apply a new multiple time step hybrid ail)rgete} In o%/her w(ords the chains can be viewed as apcol-
Monte Carlo method to determine the exact structure of .~ 7" " . - :
- . . ction of slightly overlapping soft spheres of diameteAll
freely jointed Lennard-Jones chains over a wide range of L% ads on a?:ha)i/n intera?cr')[ V\?ith eacFr)l other and with those on
rameter mpositions, and chain lengths. We presen . .
gﬁ ?heeteeffisc;igﬁc pc())? tﬂc:es, ?o dogez sirenugI;tison r?]gtESde tVS:oﬁ\er chains through a Lennard-Jones potential energy func-
ency prop ) "¢ tion [Eg. (2)]. The total potential energy of a polymer melt
apply the original PRISM theory as well as its fully self- having a total number of beads equalNds given by

consistent formulation to calculate the intra- and intermo-
lecular structure of pure polymers and binary polymer aN ; L
blends. Our work is different and complements that of U(r ):i j{nmEbondeﬁUii(rij)+kl{%de¢ [Uii (i)
Stevensoret al® in several respects. First, these authors em- ' FEN '

ploy a somewhat different molecular model. Second, these +Uy qra)l. ©)
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This model is simple and yet flexible enough to allow us to ~ Some important concerns when doing MD simulations
study blends having different degrees of dissimilarity. Weare the accuracy and stability of the algorithm. For many-
analyze primarily two different types of dissimilarity; an body nonlinear systems, any two classical trajectories which
“energy” dissimilarity, using the relations are initially very close to each other will eventually diverge
exponentially with time from one another according to their
€117 €227 €127 V11622, ) Lyzpunov ezponent%z. Any small error associated v%ith the
011=022= 012, (5) finite-difference method will therefore cause a calculated tra-
jectory to diverge from the true classical trajectory with
which it is initially coincident®® In other words, due to the
€11=€2p= €12, (6)  discretization in time, MD is subject to errors and instabili-
ties set by the time step size and by the length of the simu-
_ (7) lation. Hybrid methods avoid these shortcomings of MD
2 simulations.

and a “size” dissimilarity, described by

01110y
O11F 0 F 01 p=——F5——

Ill. SIMULATION METHOD

) B. Hybrid Monte Carlo method
Both molecular dynamicéMD) and Monte CarldMC)

methods are commonly used for simulation of polymeric ma- ~ Conventional Monte Carlo calculations are generally
terials. However, computer simulations of dense polymefarried out by means of single-particle updates only. Updat-
systems are notoriously difficult due to the lack of free vol-ing more than one particle at a time typically results in a
ume at high densities and due to the limitations imposed byrohibitively low average acceptance probability. This im-
the chain connectivity. Much of the recent progress in thePlies large relaxation times and high autocorrelations. On the
area of computer simulation of polymers can be attributed t@ther hand, MD simulations require global moves. As men-
the development of novel, polymer-specific simulation Mctioned above, however, the MD scheme is prone to errors
techniques®~1"These specific methods take into account the2nd instabilities due to finite time step sizes.
chain connectivity when new, trial configurations are pro- ~ The hybrid Monte CarldHMC) algorithm proposed by
posed. For example, in aontinuum configurational bias Duaneet al?* combines the ease of calculation of trajecto-
(CCB) method? a chain is cut at a random point and is then fies (for all particles of molecular dynamics methods but, as
regrown, site by site, into its original length. This method hasany Monte Carlo scheme, it is exact. The algorithm is unlike
been shown to be superior to more conventional Monte Carl§onventional MC methods because it involves global updates
techniques®!*We believe that, for the case of intermediate Of positions for all interaction sites followed by an accept/
chain lengths and low density, the CCB method is highlyreject decision for the whole configuration. It is also unlike
effective. Unfortunately, the efficiency of CCB method de-any normal MD scheme because there are no discretization
creases drastically with chain length. For an exhaustive re€ors; in principle, the time step siz# in HMC can be
view of modern polymer simulation techniques, the reader i$arge while keeping the method exact. The properties of
referred to Ref. 18. In this work we have therefore chosen t¢1MC in the context of condensed-matter systems have been
simulate dense polymer melts using a hybrid Monte Carlgstudied by Mehliget al?® One global move in configura-
method described below. For single chains in a mean fieldional space consists of integrating the system through phase
however, we use CCB methods. space for a fixed timeé using some arbitrary time discretiza-
tion scheme for Hamilton’s equations. After a global move, a
system that originally had coordinatessnd momenta (r,p
Multiple time step variants of the molecular dynamics denote the coordinates and momenta of all interaction sites in
method are typically considerably faster than conventionathe systemhas new trial coordinate$®" and momenta"®".
MD. They are particularly efficient for systems that exhibit Since the system is moved deterministically through phase
two or more very different time scales. The physical ideaspace, the conditional probability for suggesting configura-
behind them is that the force acting on an interactionisite tion r"*" starting atr depends solely on the momenta at the
F,, can be divided into a “fast” parte.g., due to vibrational beginning of the global move. These initial momenta are
degrees of freedojrand a “slow” part(e.g., due to Lennard- drawn at random from a Maxwellian distribution of veloci-
Jones interactions between unbonded interaction)sitéee  ties at temperatur@ beforeeveryattempted HMC move.
use of different time steps for integration of slow and fast It can be showf? that HMC leads to a canonical prob-
degrees of freedom has been suggested by various authogdility distribution fy,(I') provided that the MD part is
speedup factors as high as 20—-30 have been reported in tige-reversible and phase-space volume preserving; the ac-
literature'®?° Recently, a neweversible reference system ceptance probability for global movésis given by
propagator algorithm (RESPA has peen prqposéﬂi.The SH
main feature of RESPA that makes it attractive for our own P=min 1, ex;{ KT
work resides in its time reversibility. This property is crucial
for using the algorithm in conjunction with hybrid Monte where H is the full Hamiltonian of the system and
Carlo methods. The details of the proposed multiple times7z=.77"2— 7°9 is the difference in the Hamiltonian be-
step molecular dynamics method as applied to polymers arsveen trial and original configurations. We note again that
given in Appendix A. neither f\,(I') nor any ensemble averages depend on the

A. Multiple time step molecular dynamics method

} : ®
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size of the time stept. However, the average acceptanceTABLE I. Different types of Lennard-Jones site—site potentials used.
probability (P) depends on the average discretization error

(877) and therefore depends aft. For large systems and Parameters Type 1 Type2  Type3
small time step sizes it can be shown that Reduced cutoffrelative togy)) 2.5 25 82
, Potential shift(relative toe;;) 0.016 316 8 0.016 316 8 1.0
1 [e7) - 1.0 1.0 1.0
(P)=erfc 5 KT ©) en 1.0 1.0 1.0
o1 1.0 1.075 1.15
provides a good approximation for the average acceptance €12 12247449  1.2247449 10
probability?® Using a given discretization scheme for Hamil- T2 1(5) 125 ig
€) . . .

ton’s equations, one is left with two parameters to be varied:
the step sizeéSt and the number of integration steNg,; per
MC cycle. In the limitNyp—0, the HMC algorithm corre-
sponds to integrating Hamilton’s equations. The fitgy
version of HMC corresponds to performimd,,, molecular

tion. Depending on the density, reduced time steps of 0.006—

dynamics moves before accepting or rejecting the resulting-011 were employed. Also 5 molecule exchange mdies

configuration and randomly refreshing the velocities from a € descnbed_la@were a}ttempted after each hybrid cycle for

Maxwellian distribution. The time step siz# and the num- the blends with equal size components.

ber of MD stepa\,,p must be tuned to optimize the perfor-

mance of the algorithm. For the polymer systems studied

here, the MD time step sizes can be three times as large 44 POLYMER BLEND PRISM

those required for conventional MD at the same temperature | this section we describe briefly the PRISM equations

and density. o for polymer blends. Note that these equations are generally
Several publications devoted to the application of HMCgppjicaple; there are no restrictions to the degree of dissimi-

for dense polymgg melts and long single chains have appyity petween the two components neither in terms of their

peared recentf§’~*The algorithm has been shown to pro- chemjcal structure nor in terms of their chain length. For a

vide an interesting alternative to more conventional methodginary plend there are three independent total correlation

for simulation of polymers. A novel ge”eral'zed'coord'”atefunctions{hll(r),hlz(r),hzz(r)}, three independent direct

HMC was suggested by Forrest and Stftend was shown  cqprejation  functions {C14(r),C10(r),Con(r)},  two-

to be 1.5 times faster than molecular dynamics. The hybridyramolecular structure factofss;(r),w,(r)}, and three in-

method has also been successfully used for simulation Qfependent PRISM equations. Using this notation, a general
systems with rapidly varying intermolecular interactidhs. PRISM equation for a multicomponent polymer mixture in
Note that at low to intermediate density it is more advantafq rier space can be written®as

geous to use CCB algorithms. Also note that recent exten-
sions of the CCB scheme have permitted simulation of lon ~ o~ 7 ~ A A ~ A
chain molecules at high packing fpractio’ﬁ§uch extensions, ° PP (K) =P du (k)| Cnar (K)o G (k)
however, are relatively new and have not been implemented
in this work. A ~ o~ or
We would also like to stress that in spite of its MD +§‘, Cam (K)o prbimaar (k) .
component, HMC remains a Monte Carlo method with all of
the advantages of the latter. For example, it can be extended (10
for simulation of open systeniét is also straightforward to  where pu is the monomer site density of specibbk The
maintain a constant pressure or a constant temperature. It cémtramolecular structure factor of specibs, ay(k), is de-
also be used in combination with other MC techniques tdfined in terms of intramolecular distribution functions be-
optimize the performance of the simulation; as explained irntween sitese and 8 [ @£ (k)] according to
the results section, for our work we combine HMC and 1
“molecule exchange” moves to increase efficiency. aonk)== >, P (k). (11)
We carried out multiple time step hybrid MC simulations N &3
on binary blends of 200 chains of various length. Three com-
positions of 50, 5, and 1 molar percét00, 10, and 2 chains
of component 1 were used in this work. Three different tagLE 11. Different types of polymer blends used.
types of blends were studied: purely repulsive blends and fult
Lennard-Jones blends with the parameters listed in Table £hainlength  p  T*  Molar fraction of component 1 Potential

The intermolecular potential was truncated and shifted at a 1g_per 03 4 0.01 Type 3
distance proportional to the Lennard-Jones size parameter 06 4 0.01 Type 3
to ensure that the potential is exactly zero at the cutoff. The 20-mer 06 4 0.01 Type 3
systems simulated here are summarized in Table Il. Runs of 06 4 0.05 Type 3
at least 2000—2400 hybrid MC cycles of 100 multiple time 8:2 j 8:2 %Ez ;
step MD integrations were used in all cases; the first 500— g5q_per 08 4 05 Type 1

800 MC cycles of each simulation were used for equilibra
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Given the intramolecular structure factabg(k) and ,(k) multicomponent polymer blends, the matrices of correlation
and some approximate closure relations, the PRISM equdunctions and intramolecular structure factors are defined ac-
tions (10) can be solved iteratively for total and direct corre- cording to
lation functions. ~ e

In the past, PRISM equations for pure homopolymers or  Hvm(K)=pmom b (k),
blends have been solved by invoking Flory's ideality ¢ . (kK)=pyau(K)Sum:, (14)
hypothesi® to determinei,, (k). We believe, however, that .
the intermolecular structure of a polymer blend could be in-  Cyw/(K)=Cyw (k).
timately coupled to the intramolecular structure of its COM-Eor an m-component blend we define mxm matrix of
ponents. In other words, for polymer blends the problem Otpartial structure factors,
self-consistent determination of intra- and intermolecular

structure could become important and should be addressed. S(k)=Q(k)+H(k). (15
In this paper we use the self-consistent PRISM formulatior) , terms of é(k) the solvation potential for component
of Grayce and Schweizét. M, WM(1) takes the form
; 1

A. Self-consistent I.DRISM | | = W(M)(r):m 1+ Z,,, CMW(|r—r’|)

The self-consistent formulation of PRISM relies on the MM
development of a self-consistesplvation potential A sol-
vation potential reduces the many-body problem of calculat- X Symmm (|1 =1")Cpmp(r")dr'dr” |
ing the conformation of a flexible molecule in solution to
that of calculating the conformation of a single molecule in (16)

an external field. This approach was originally proposed by Wi h vati tentidle) t | |
Chandler and Pratf, who introduced an interaction-site sol- € use e sovation poten _'M ) 1o SO ve polymer
blend PRISM equations self-consistently. We will come back

vation potential such that the conformational behavior of a o i
single solute molecule in its own internal potential plus thisto the actual numerical implementation later.

solvation potential was approximately the same as the con-

formational behavior of the same molecule in solutie®- B, Closure approximations

periencing full many-molecule interactions The self- _ )
consistent solvation potential is a function of the average N order to solve the PRISM equations an approximate
structural and thermodynamic properties of the solvent, an§/osuré must be provided. For sﬁlmple atomic liquids a num-
therefore depends on density, temperature, composition, argf! ©f closures are availabte? for simple liquids the
the average conformation of the solvent molecules. In genP€rcus—Yevick closure is perhaps the most widely used. An
eral, the solvation potential is a function of the positions ofatomic PY closure relates the direct correlation functions
all N sites on a solute molecule. Just as for the potentiafmm’(r) to the corresponding total correlation function
energy, it is assumed that this multidimensional function carf'mm’(F) via

be represented by a sum of functions of only one variable— Up (1)
intersite separation. In this pairwise-additive approximation ~ Cwm’ (1) =[hmu/(r)+1]j1—exp— =—|, 17
the full solvation potentiaWy, is given by
N where uy/(r) is the intersite potential. Until recently,
- NI PRISM calculations employed a literal application of atomic
Wi Z‘A WE(Iry=nal). (12) closures to site—site correlation functions. Such closures

For h | further simolificati be & have been fourid to yield good structural results for hard
or homopolymers, further simplifications can be mddsy chains at high densities. Recently, however, it has been

i A — - . . T
tset?_nlg allwg (|er ) e‘ﬂ”a'h"f‘ Othzr wct)rr]dsz tfrlle total pfo_t argued® that when combined with atomic-like closure ap-
ential energy ot a single chain under the intiuence o ISproximations, PRISM is qualitatively inconsistent with clas-
environment can be written as a sum over all pair interac

. . ) sical mean-field predictions and experimental data of the mo-
tions between 'the S{'tes on the bare chH@T\(r) plus the lecular weight dependence of the critical solution
external potentiaW}*(r),

temperature of binary polymer blends. Molecular
N closure$!*? apparently correct some of the deficiencies of
UR(r3N) = [UP(r) +W3Nn)]. (13)  the theory; these closures predict a linear dependence of the
[ critical temperature on the degree of polymerization, in
Several approximate solvation potentials have been proposedjreement with classical mean field theory and lattice
in the literature. In this work we use the Percus—Yeviek)  simulations®>43
formulation of Grayce and SchweiZtrand we merely To the best of our knowledge, molecular closures have
implement it for blends. This solvation potential has beenonly been implemented for site—site potentials consisting of
used in a study of conformation of nonpolar lineara hard core part and a slowly varying attractive part. A ten-
polymers® and has been shown to capture qualitative trendsative generalization to continuous potentials has also been
in the size of macromolecules in a pure polymer melt. Tooutlined" although not implemented. The idea is as follows.
generalize the idea of a solvation potential to the case dfor a given potentialiy ' (r), a formal division of the po-
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tential is introduced at a characteristic division paif, - Schweizer and co-worké¥sused a semiflexible chain
For a homopolymer blend the potential energy is thereforénodel as a reference system to implement an optimized per-
written as turbation theory for the intramolecular structure factor of ho-
N mopolymer chains. A variational approach to the conforma-
Upam (1) =Unm (1) O (ryy, =) tion of flexible chains in solution has also been

implemente®® and, more recently, a generating functional
method® has been proposed. However, all of these methods
where O is the Heaviside step function, anqjﬂM, can be introduce additional approximations into the theory. Alterna-
chosen in a variety of ways, as it is done in perturbatiortively, the conformational behavior of a chain immersed in a
theories for liquid$ we use a Barker—Henderson division Solvation potential can be deduced from a single-chain
for the intersite potential. The molecular closure approximaMonte Carlo simulatiof® The accuracy of the simulation
tion becomes route is limited only by the amount of cpu time one wishes to
spend on the calculation. For reasons discussed in the section
1—exp U'V'M’(r)}’ on computer simulation, we employ the continuum configu-
kT rational bias(CCB) techniqué®'*to calculate the intramo-
lecular structure factors of each component of a blend; CCB
Monte Carlo simulations are therefore conducted for a chain
wM*CMMf*wa(r)IwM*[Cf\;e,\;)ﬂLACMM/]*wa(f), in it§ iqternal potential pIu; the self-consistent solvation po-
tential induced by the environment.
r>r’,fAM,, (20) The actual procedure is implemented as follows: First,
(reh ) ) we make an initial guess for the intramolecular structure fac-
wherex denotes a convolutiorgy,,,,(r) is the direct corre-  tor matrix () (k) and solve PRISM equations for the intermo-
lation function of the reference fluid with only continuous |ecular structure of the blend. We use Ef6) to obtain an
repulsive interactionsJy,y(r), and Acyy-(r) is an ap- jnjtial guess for the solvation potentials of each component
proximate atomic site—site closure relation for the attractiqu(M)(r); a CCB simulation is then conducted for a single
branch of the potential/yy(r). We propose to relax the chain of each component in these potentials to arrive at new
existence of a hard-core condition and apply a PY-stylagjues for()(k). Additional details on the calculations using
“soft” molecular closure to an arbitrary continuous potential the new molecular PY-style closure for an arbitrary continu-

+Vun (DO =1y, (19

Cum (N =[hym/(r)+1]

r<rym: (19

by setting ous potential are given in Appendix B.
Vum: (1)
_ (ref) _ MM
Acum (N =[Ny (1] 1=exp— 7 } V. RESULTS AND DISCUSSION
0<r<om, (21 A HMC simulation results

whereh{"®? (r) is the direct correlation function of the ref- As already pointed out, it is difficult to obtain accurate
erence fluid with only continuous repulsive interactionsstructural information for dense polymers using conventional
Uy (1) simulation techniques. For polymer blends we also confront

; ; - the problem of obtaining the correct compositional distribu-
Equation(21), together with Eqs(19) and (20), define . , . ;
. (21). tog as(19 (20 tion. Due to the high molecular weight and the chain struc-

the new molecular PY closure approximation for a continu- . X
ous potential. ture, the mol_)|I|ty of a polym_e_r molecule is extreme_:ly small,
thus preventing us from efficiently sampling possible inter-
chain rearrangements in a reasonable amount of cpu time.
One of the goals of this work was the development of an
C. Numerical implementation of self-consistent efficient simulation code for simulating dense polymers. By
PRISM the efficiency of the simulation algorithm we imply its ability
The PRISM equation for polymer blen@k0) relates the to eliminate correlations between successive configurations.
elements of the site—site total correlation functions matrix toAs an indicator of such efficiency, we consider the decay of
those of the site—site direct correlation functions matrix andhe bond vector autocorrelation function, defined by
the matrix elements of the intramolecular structure factors 10)-1(t)
matrix defined by Eq(14) (via a set of nonlinear integral Cbb(t)=<—>,
equations Given the matrix of intramolecular structure fac- 1O} ict)
tors)(k) and a closure relation, this equation can be solvedvherel(t) is the orientation of a bond vector at timeThe
to obtainC(k) andH(k). Intramolecular structure factors for brackets denote an average over all bonds in the system and
each component are determined implicitly by the intermo-over many successive configurations of the system. This
lecular structure of the melt through the the solvation potenfunction provides a measure of segmental mobility and fol-
tial (16). The determination of the structure of a chain inter-lows the overall rotation of bonds on a chain. In the melt, the
acting through the full self-consistent pairwise decomposegbrobability distribution of any given bond vector should be
potentiaIUﬁ,e'f(r3N) (13) is a complex many-body problem isotropic; any efficient algorithm should therefore be capable
and several approaches have been proposed in the past fordserasing the “memory” of the bond orientation in as few
solution. computational steps as possible. Two configurations that are

(22
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FIG. 1. Bond vector correlation functid@2) for a system of Lennard-Jones FIG. 2. Bond vector correlation functiof22) for a single chain of length
10-mers. Site number densip~=0.6, reduced temperatuiie =4, reduced  100. The solid line shows results of a CCB simulation, and the dashed line
MD time stepst=0.01. The solid line corresponds to 100 MD steps per MC shows results of a HMC simulation with 100 MD steps per MC cycle and
cycle, the dashed line corresponds to 10 MD steps per MC cycle, and thét=0.01.
dot—dashed line corresponds to a multiple time step MD simulation with
5t=0.006.
simulations of a single chain in an external potential. The
efficiency of these simulations is of great importance since

separated by cpu timein the sequence are only truly inde- they are used in the self-consistent formulation of PRISM.
pendent ifCpp(t) ~0. AchievingCy(t) —0 for smallt isone  Wwe have performed efficiency tests on single chains of 100
of the main Challenges faCing a molecular simulation algO'and 200 Segments_ Figure 2 shows resu|t5696(t) for a
rithm. 100-mer using HMC and CCB methods. Clearly, CCB is

Two parameters can be used to maximize the efficiencgyperior to HMC by several orders of magnitude. The same
of the HMC algorithm. First, one can use different numbersis a|so true for 200-mers. This makes the CCB technique a
of MD time steps per MC cycle. It turns out that this param-yajyable tool for single chain simulations in external poten-
eter dramatically affects the performance of the method. Figtials; we take advantage of its performance in our self-
ure 1 shows the results for the bond autocorrelation functioRgnsistent PRISM calculations.
Cpp(t) in a melt of 10-mers for two different values by,
along with those for molecular dynamics calculations. It is
clear that using largbly,p favors a faster rate of correlations
decay. However, increasinyyp leads to more expensive The polymer RISM equatiofiL0) has been solved with
HMC moves; we believe thall,,,~100 is about the opti- the standard atomic-like PY closure for purely repulsive
mum choice for HMC simulations of chains of intermediate blends(Type 3, see Table)] for attractive chains of type 1
length. For largeN,,p the HMC method is very similar to the and type 2, the new molecular PY closure for continuous
MD method. As shown in Fig. 1, foNy, =100 the perfor- potentials has also been applied.
mances of HMC and MD are comparable. We employed two different approaches to determine the

Further comments are needed on Fig. 1. One of the redntramolecular structure of the components of a blend. In the
sons why we consider HMC to be superior for our work isfirst, the intramolecular structut@(k) was obtained directly
that it allows for the use of large time steps in the MD part offrom many-chain HMC simulations, and inserted as an input
the algorithm while keeping the temperature constaninto Eq.(10). In this case, the results provide an unambigu-
through the MC acceptance criterion. We prefer to use HMus test of the ability of PRISM to capture the local structure
in conjunction with multiple time scales because at this poinbf a blend. Such tests have been carried out for various types
we are still uncertain as to the time steps that can be used of blends, compositions, and site humber densjties
multiple time step MD without introducing errors into the We begin by comparing the cross total correlation func-
results; HMC is just a safer and equally efficient method, theion h,,(r), predicted by PRISM from simulated intramo-
temperature and the pressure are easy to control, and it iecular structure factore;(r) for a binary blend of repulsive
possible to combine it with several other Monte Carlo tech-10-mers of type 3 to our results of HMC simulatioffSg.
niques to push the performance even further. We have, fd8(a)]. The calculations have been carried out at an interme-
example, implemented identity interchange moves to speediate site number density @=0.3 (p=Ng;{V) and a very
convergence. In these moves, a chain of speMeand a low molar fraction (x;=0.01) of the component with a
chain of specie$1’, chosen at random, exchange identities,smaller segment size. The segment size of the second com-
thereby circumventing some of the diffusional limitations en-ponent was 33% larger than that of the first component. Fig-
countered in conventional MD. ure 3b) shows the results for total correlation functions for

We also considered the possibility of using HMC for the same blend of repulsive 10-mers at a much higher site

B. PRISM results
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FIG. 3. (a) The 1-2 total correlation function for a blend of repulsive 10- o,

mers of type 3 at site number densijty0.3 (see Table Il. (b) The 1-2 and ) )
2-2 total correlation functions for a blend of repulsive 10-mers of type 3 atFIG. 5. () The 1-1, 1-2, and 2-2 total correlation functions for a blend of
site number density=0.6 (see Table ). The triangles show results of attractive 20-mers of type (see Table ). (b) The 1-1, 1-2, and 2-2 total

simulations; the solid line was predicted by PRISM from the simulatedcorrelation functions for a blend of attractive 20-mers of typesee Table
intramolecular distribution functions(r). II). (c) The 1-1, 1-2, and 2-2 total correlation functions for a blend of

attractive 50-mers of type (see Table ). The triangles show simulation
results; the solid line was predicted by PRISM from simulated intramolecu-

. lar distribution functionsw(r) with a Percus—Yevick molecular closure.
number densityp=0.6; onlyh;,(r) andh,,(r) are shownh

Note that the local structure of the blend is captured almost
quantitatively by the theory. Having shown the accuracy of
the formalism for repulsive 10-mers at infinite dilution, we bly and the accuracy of the theoretical predictions is pre-
turn our attention to longer repulsive chains and slightlyserved. As already shown by Stevensiral.® we also find
higher concentrations of the small-segment component. Fighat for purely repulsive blends the theory captures all the
ure 4a) showsh,,(r) andh,,(r) for a blend of 20-mers of basic features of local packing and agreement with simula-
type 3 atp=0.6 andx;=0.01. Again the results are encour- tions is quantitative. These results are in contrast to our ear-
aging. Note that the curves on FiggbBand 4a) look very lier calculations at somewhat lower densitfés.
similar but the correlation hole effect is more pronounced in ~ We now proceed to discuss results for attractive chains.
the case of 20-mers. From Fig(b} we also conclude that We use a new molecular closure for continuous potentials to
changing the molar fraction of the first component from 0.01determine the structure of attractive polymer blends. Figure
to 0.05 does not change the structure of the blend appreci&a) shows theoretical predictions and simulation results for
all three total correlation functions for a blend of attractive
20-mers of type 1. For this system, the site number density
wasp=0.8, the reduced temperature Wis=4, and the mo-
o » Simulation lar fraction wasx;=0.5. To separate the effects of “size” and
PRISM. Simulated o(r) “energy” dissimilarities, the sizes of the segments were
equal for both components. In this case the theory is slightly
off around the first peak, but the overall agreement is still
satisfactory. Next, we investigate a blend under the same
conditions, but with both types of dissimilarity present. This
is the most general case. The results of such a calculation are
shown in Fig. %b); the agreement between theoretical and
simulated results is satisfactory for all three correlation func-
tions.
Encouraged by these results, we attempted simulations
f of 50-mer blends under similar conditions. Since identity ex-
O T——T1s 25 33 s change moves become ineffective for chains having different
1/, segment sizes, we only present results for a blend of 50-mers
of type 1. Calculations have been carried out for this system
FIG. 4. (a) The 1-2 and 2-2 total correlation functions for a blend of repul- at @ number site density gf=0.8, a reduced temperature
sive 20-mers of type 3; the mole fraction of component 1 is @&k Table  T* =4, and equimolar composition. Our resu[t%ig. 5(0)]

II). (b) The 1-2 and 2-2 total correlation functions for a blend of repulsive indicate that the overall agreement between theory and simu-
20-mers of type 3; the mole fraction of component 1 is Q€ Table ). . for | hai . il isf
The triangles show simulation results; the solid line was predicted by]at'on or long chains Is still satisfactory.

PRISM from simulated intramolecular distribution functionér). In summary, we find that PRISM gives an adequate de-
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& Simulation A (b) 2 Simulation
Self-consistent PRISM Self-consistent PRISM

®

3 ' I 1.0 S 1 1 L
0.5 15 2.5 35 4.5 05 15 2.5 3.5 45

/6, /G,

FIG. 6. (a) The 1-2 total correlation function for a blend of repulsive 10- FIG. 7. (& The 1-2 and 2-2 total correlation functions for a blend of repul-
mers of type 3 at the site number dengit0.3 (see Table Ii. (b) The 1-2 sive 20-mers of type 3; the mole fraction of component 1 is (@t Table
and 2-2 total correlation functions for a blend of repulsive 10-mers of typell). (b) The 1-2 and 2-2 total correlation functions for a blend of repulsive
3 at the site number densip=0.6 (see Table ). The triangles show simu-  20-mers of type 3; the mole fraction of component 1 is 0¥ Table .

lation results; the solid line was predicted by self-consistent PRISM. The triangles show simulation results; the solid line was predicted by self-
consistent PRISM.

scription of the structure of various binary blends. For theand Monte Carlo techniques. A multiple time step molecular

Cihtly overosimate he role of aacive foroes on e localMaMIcS Scheme has been employed s part of the hybrig
gntly algorithm. While the autocorrelation times for latter method

structure. Also note that for the systems of attractive chain§ire of the same order of magnitude as in multiple time step

Etutd'ed n:hthls Wolik W;t (.j'd SOt.ILng.f? agr:Tcant d]iffelzrence MD, the hybrid algorithm is exact and can be combined with
etween the resutts obtained with different types of ClosureS,y, o mc techniques. In this work, a molecule identity inter-

:t(()nvr\rl\?c\:/ecrio:l?ri)ssc;il] d dt:féigenqgegjo(?&eaebqe r;?lf:rls]la;raatzcrjeschange move has been implemented to circumvent the diffu-
. . N P sional limitations of the MD method for long molecules.
below those investigated in this work.

Provided th . lecul b The results of our simulations have been used to exam-
comprc?r:/clen(tes i; Ifngv\\//(ra\raglil g‘l\t;a;::\/?é::sa;nsgggltﬁ;?ec:(orr:gﬂ_ne the predictions of polymer RISM theory. We have studied
. s ' . the structure of polymer blends of various types over a broad
ism for description of the intermolecular structure of poly-

mer blends. From a practical point of view, however, this
formalism is not of immediate use because single chain
structure factors must be determined from many-chain simu-
lations. This problem is circumvented by utilizing the self-
consistent formulation of PRISM; we compare our self-
consistent predictions for the structure of the blends
described above to results of simulations. Figuré® énd

6(b) show self-consistent total correlation functions together
with those obtained from simulation for a system of 10-mers
[see also Figs.(@) and 3b)]. We see that the self-consistent
results are almost identical to those obtained from simulated
intramolecular structures. We do find, however, that the de-
ficiency of the theory around the first peak is slightly en-
hanced. The same is true for the systems in Fig®—B(c)
[these are identical to the systems in Fig@)35(c)].

We conclude that, for the self-consistent formulation em-
ployed in this work, agreement with simulations is perhaps 0
not as good as when a simulated intramolecular structure is ' ' o,
employed, but it is still highly satisfactory.

s Simulation
Self-consistent PRISM

4.5

FIG. 8. (a) The 1-1, 1-2, and 2-2 total correlation functions for a blend of
attractive 20-mers of type (see Table . (b) The 1-1, 1-2, and 2-2 total
VI. CONCLUSIONS correlation functions for a blend of attractive 20-mers of types@e Table
A hybrid multiple time step Monte Carlo algorithm has ). (c)_ The 1-1, 1-2, and 2-2 total correlation functions for a blend of
been successfully used to simulate dense polymer blendeﬁt;tractlve 50-me_rs _of type lsee '_I'able N. The tnangles are 3|mulat|9n
sults; the solid line was predicted by self-consistent PRISM with a
The method combines the advantages of molecular dynami¢s:rcus—Yevick molecular closure.
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range of chain lengths and densities. Both purely repulsive  We first solve the PRISM equatigB1) for the reference
and attractive blends have been investigated. A new molecwsystem having only a repulsive potentid(r) for the func-

lar closure has been applied for attractive blends and a newiyonsh®"(r) andc™"(r), 0<r <c. Ac(r) is then calculated
developed self-consistent formulation of PRISMat does from Eq. (21) with V' (r)=V(r) and the “outer part” of
not require prior knowledge of the intramolecular structureconvolutionw*c* w(r) is calculated from

of the componenjshas been implemented. We find that

PRISM predictions using simulated intramolecular structure
factors are in very good agreement with simulated data. We r>r*. (B2)
also find that the predictions of self-consistent PRISM are]_his
almost identical to those obtained from simulated intramo-

lecular structure factors. We conclude that the self-consisterﬂ
formulation of the theory studied in this work provides a v(r)=h(r)—w*c*w(r), 0<r<w (B3)
useful formalism for studying the molecular structure of
simple binary polymer blends.

wxc*w(r)=w*[c(r)+Ac(r)]*w(r),

“outer part” is fixed throughout further calculations. We
efine an auxiliary function by

with h(r) andc(r) being the current functions at every it-

eration loop. An initial guess fory®(r) = h{)(r)
— w*c®Dx u(r), (0<r <) is made.
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iteratively forc(r) andw*c* w(r) simultaneouslyusing the
previously calculated “outer part” ofvxc* w(r)] through a

APPENDIX A: MULTIPLE TIME STEP MD Picard iteration scheme. An initial guess for the “inner part”
IMPLEMENTATION of convolutionw*c* w(r) is made,
We divide the force acting on each interaction siteto w*c*o(r)=w*cxw(r), r<r*. (B5)

two parts: one arising from interactions with neighboring
covalently bonded sites on the same chai"{"9 and an-
other one arising from to all other Lennard-Jones interaction
(ng)' !r}]/; introduce two time  ste ps’dtsman. and repeated until convergence is achieved. As a result we have a
dt®®*=dt®"™""N, whereN is an arbitrary integer which de- new wrc* w(r) for 0<r <o,

pends on the ratio of two characteristic time scales of the This function is used to calculate a new guessHr)

syste_m. We us&=10 for our work. With this division the through Eq.(B3). This function is then inserted in E¢B1)
algorithm becomes to get a new guess for the auxiliary functigf?(r). This
(1) Advance all velocities using*** only, function replaces/%(r) as an input to the next iteration in
Vi:Vi_i_O_SdtIargeF}Neak. which the next approxima_ltions to the “inner_ part” of
w*c* w(r) andc(r) are obtained. The procedure is repeated
(2) Perform the standard velocity Verfétalgorithm it-  until y(r) is no longer changing. As it is often the case, it is
erativelyN times usingF ™" only. necessary to mix successive solutfofar the procedure to
(3) Calculate newr!"ea, converge.
(4) Complete the move using

The convolutionw*c* w(r) is then transformed and(k)
andc(r) are calculated. Inserting(r) into Eq. (B4) we get
3 new guess fow*c* w(r) for r<r*. The iteration loop is
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