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A newly developed self-consistent formulation of the polymer reference interaction site model
~PRISM! theory is used to predict the structure of binary polymer blends. Theoretical radial
distribution functions are compared to those obtained from hybrid Monte Carlo simulations of
mixtures of Lennard-Jones chains. A multiple time step method is implemented to increase the
efficiency of the simulations. We examine both the cases of atomic and molecular closures and
consider both conventional and self-consistent PRISM. We find that, overall, theoretical distribution
functions are in good agreement with simulation. ©1995 American Institute of Physics.
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I. INTRODUCTION

It is generally accepted that local molecular structu
plays a crucial role in determining the thermodynamic pro
erties of pure simple liquids and their mixtures. Accordingl
the theory of simple liquids has received a great deal
attention over the last three decades.1,2 More recently, some
of the methods originally developed for such liquids hav
been applied to polymers, which had traditionally been stu
ied by invoking lattice representations of the system. Com
puter simulations of polymeric fluids have also received i
creasing amounts of attention in recent years, and the fo
of such calculations has gradually shifted from studies on
lattice to a continuum.

The integral-equation formulation of Schweizer an
Curro ~PRISM! has permitted calculation of the structure o
pure homopolymers3–5and blends.6–8Unfortunately, the pre-
dictions of such a theory have only been compared to sim
lations of pure polymers. We note, however, that Stevens
et al.9 and de Pablo10 have very recently conducted limited
simulations of polymer blends in attempts to examin
PRISM’s accuracy for mixtures. The PRISM theory of Sch
weizer and Curro requires information about the intram
lecular structure of the molecules. Originally, such inform
tion was obtained either by resorting to other theories
polymers or directly from molecular simulations. A new sel
consistent formulation, however, has allowed complete fir
principles predictions of the structure of pur
homopolymers.11 Part of the purpose of this work is to ex-
amine the accuracy of self-consistent PRISM for blends
comparing theoretical distribution functions to those o
tained from molecular simulations.

In this paper we apply a new multiple time step hybri
Monte Carlo method to determine the exact structure
freely jointed Lennard-Jones chains over a wide range of
parameters, compositions, and chain lengths. We present
on the efficiency of the proposed simulation method. W
apply the original PRISM theory as well as its fully self
consistent formulation to calculate the intra- and interm
lecular structure of pure polymers and binary polym
blends. Our work is different and complements that
Stevensonet al.9 in several respects. First, these authors e
ploy a somewhat different molecular model. Second, the
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authors address the validity of PRISM when a simulated in
tramolecular structure is employed. Third, they limit their
calculations to purely repulsive blends. In contrast, we ex
amine the accuracy of a self-consistent theory and addres
the effects of attractive forces on the structure of binary poly-
mer blends using both atomic and molecular closures.

II. MOLECULAR MODEL

The polymers studied in this work consist of fully flex-
ible chains of Lennard-Jones sites. Adjacent sites on th
chains are connected by finitely extensible nonlinear elasti
~FENE! ~Ref. 12! connectors. The FENE potential-energy
function describing the interactions between ‘‘covalently’’
bonded beads is given by

Ucov~r !52
1

2
HQ0

2 lnS 12
r 2

Q0
2D 1ULJ~r !, ~1!

whereH is a force constant,Q0 is the maximum extensibility
of the springs, andULJ(r ) is the Lennard-Jones potential
given by

ULJ~r !54eF S s

r D
1/2

2S s

r D
6G . ~2!

Each interaction site is characterized by three sets o
Lennard-Jones parameters: one for covalently bonded inte
action sites, one for interactions between beads that are n
chemically bonded, and one for cross-interactions betwee
different species. For this study we usedH5100 and
Q051.5. These values lead to an average bond length o
approximately 0.9s ~wheres is the Lennard-Jones size pa-
rameter!. In other words, the chains can be viewed as a col
lection of slightly overlapping soft spheres of diameters. All
beads on a chain interact with each other and with those o
other chains through a Lennard-Jones potential energy func
tion @Eq. ~2!#. The total potential energy of a polymer melt
having a total number of beads equal toN is given by

U~r 3N!5 (
i , j $nonbonded%

Ui j
LJ~r i j !1 (

k,l $bonded%
@Ukl

LJ~r kl!

1Ukl
FENE~r kl!#. ~3!
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8248 D. G. Gromov and J. J. de Pablo: Structure of binary polymer blends
This model is simple and yet flexible enough to allow us
study blends having different degrees of dissimilarity. W
analyze primarily two different types of dissimilarity; a
‘‘energy’’ dissimilarity, using the relations

e11Þe22Þe125Ae11e22 , ~4!

s115s225s12, ~5!

and a ‘‘size’’ dissimilarity, described by

e115e225e12, ~6!

s11Þs22Þs125
s111s22

2
. ~7!

III. SIMULATION METHOD

Both molecular dynamics~MD! and Monte Carlo~MC!
methods are commonly used for simulation of polymeric m
terials. However, computer simulations of dense polym
systems are notoriously difficult due to the lack of free v
ume at high densities and due to the limitations imposed
the chain connectivity. Much of the recent progress in
area of computer simulation of polymers can be attributed
the development of novel, polymer-specific simulation M
techniques.13–17These specific methods take into account
chain connectivity when new, trial configurations are p
posed. For example, in acontinuum configurational bias
~CCB! method13 a chain is cut at a random point and is th
regrown, site by site, into its original length. This method h
been shown to be superior to more conventional Monte C
techniques.13,14We believe that, for the case of intermedia
chain lengths and low density, the CCB method is hig
effective. Unfortunately, the efficiency of CCB method d
creases drastically with chain length. For an exhaustive
view of modern polymer simulation techniques, the reade
referred to Ref. 18. In this work we have therefore chosen
simulate dense polymer melts using a hybrid Monte Ca
method described below. For single chains in a mean fi
however, we use CCB methods.

A. Multiple time step molecular dynamics method

Multiple time step variants of the molecular dynami
method are typically considerably faster than conventio
MD. They are particularly efficient for systems that exhib
two or more very different time scales. The physical id
behind them is that the force acting on an interaction siti ,
Fi , can be divided into a ‘‘fast’’ part~e.g., due to vibrationa
degrees of freedom! and a ‘‘slow’’ part~e.g., due to Lennard
Jones interactions between unbonded interaction sites!. The
use of different time steps for integration of slow and fa
degrees of freedom has been suggested by various aut
speedup factors as high as 20–30 have been reported i
literature.19,20 Recently, a newreversible reference system
propagator algorithm ~RESPA! has been proposed.21 The
main feature of RESPA that makes it attractive for our o
work resides in its time reversibility. This property is cruci
for using the algorithm in conjunction with hybrid Mont
Carlo methods. The details of the proposed multiple ti
step molecular dynamics method as applied to polymers
given in Appendix A.
J. Chem. Phys., Vol. 103,Downloaded¬16¬Apr¬2007¬to¬128.104.198.190.¬Redistribution¬subjec
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Some important concerns when doing MD simulations
are the accuracy and stability of the algorithm. For many-
body nonlinear systems, any two classical trajectories which
are initially very close to each other will eventually diverge
exponentially with time from one another according to their
Lyapunov exponents.22 Any small error associated with the
finite-difference method will therefore cause a calculated tra
jectory to diverge from the true classical trajectory with
which it is initially coincident.23 In other words, due to the
discretization in time, MD is subject to errors and instabili-
ties set by the time step size and by the length of the simu
lation. Hybrid methods avoid these shortcomings of MD
simulations.

B. Hybrid Monte Carlo method

Conventional Monte Carlo calculations are generally
carried out by means of single-particle updates only. Updat
ing more than one particle at a time typically results in a
prohibitively low average acceptance probability. This im-
plies large relaxation times and high autocorrelations. On th
other hand, MD simulations require global moves. As men-
tioned above, however, the MD scheme is prone to error
and instabilities due to finite time step sizes.

The hybrid Monte Carlo~HMC! algorithm proposed by
Duaneet al.24 combines the ease of calculation of trajecto-
ries ~for all particles! of molecular dynamics methods but, as
any Monte Carlo scheme, it is exact. The algorithm is unlike
conventional MC methods because it involves global update
of positions for all interaction sites followed by an accept/
reject decision for the whole configuration. It is also unlike
any normal MD scheme because there are no discretizatio
errors; in principle, the time step sizedt in HMC can be
large while keeping the method exact. The properties o
HMC in the context of condensed-matter systems have bee
studied by Mehliget al.25 One global move in configura-
tional space consists of integrating the system through phas
space for a fixed timet using some arbitrary time discretiza-
tion scheme for Hamilton’s equations. After a global move, a
system that originally had coordinatesr and momentap ~r ,p
denote the coordinates and momenta of all interaction sites i
the system! has new trial coordinatesrnewand momentapnew.
Since the system is moved deterministically through phas
space, the conditional probability for suggesting configura-
tion rnew starting atr depends solely on the momenta at the
beginning of the global move. These initial momenta are
drawn at random from a Maxwellian distribution of veloci-
ties at temperatureT beforeeveryattempted HMC move.

It can be shown25 that HMC leads to a canonical prob-
ability distribution f NVT~G! provided that the MD part is
time-reversible and phase-space volume preserving; the a
ceptance probability for global movesP is given by

P5minF1, expS 2
dH

kT D G , ~8!

where H is the full Hamiltonian of the system and
dH5H trial2Hold is the difference in the Hamiltonian be-
tween trial and original configurations. We note again tha
neither f NVT~G! nor any ensemble averages depend on the
No. 18, 8 November 1995t¬to¬AIP¬license¬or¬copyright,¬see¬http://jcp.aip.org/jcp/copyright.jsp
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8249D. G. Gromov and J. J. de Pablo: Structure of binary polymer blends
size of the time stepdt. However, the average acceptanc
probability ^P& depends on the average discretization err
^dH& and therefore depends ondt. For large systems and
small time step sizes it can be shown that

^P&5erfcS 12 A^dH&
kT D ~9!

provides a good approximation for the average accepta
probability.26 Using a given discretization scheme for Hami
ton’s equations, one is left with two parameters to be varie
the step sizedt and the number of integration stepsNMD per
MC cycle. In the limitNMD→`, the HMC algorithm corre-
sponds to integrating Hamilton’s equations. The finiteNMD
version of HMC corresponds to performingNMD molecular
dynamics moves before accepting or rejecting the result
configuration and randomly refreshing the velocities from
Maxwellian distribution. The time step sizedt and the num-
ber of MD stepsNMD must be tuned to optimize the perfor
mance of the algorithm. For the polymer systems studi
here, the MD time step sizes can be three times as large
those required for conventional MD at the same temperat
and density.

Several publications devoted to the application of HM
for dense polymer melts and long single chains have a
peared recently.27–29 The algorithm has been shown to pro
vide an interesting alternative to more conventional metho
for simulation of polymers. A novel generalized-coordina
HMC was suggested by Forrest and Suter30 and was shown
to be 1.5 times faster than molecular dynamics. The hyb
method has also been successfully used for simulation
systems with rapidly varying intermolecular interactions.31

Note that at low to intermediate density it is more advant
geous to use CCB algorithms. Also note that recent exte
sions of the CCB scheme have permitted simulation of lo
chain molecules at high packing fractions.15 Such extensions,
however, are relatively new and have not been implemen
in this work.

We would also like to stress that in spite of its MD
component, HMC remains a Monte Carlo method with all o
the advantages of the latter. For example, it can be exten
for simulation of open systems.32 It is also straightforward to
maintain a constant pressure or a constant temperature. It
also be used in combination with other MC techniques
optimize the performance of the simulation; as explained
the results section, for our work we combine HMC an
‘‘molecule exchange’’ moves to increase efficiency.

We carried out multiple time step hybrid MC simulation
on binary blends of 200 chains of various length. Three co
positions of 50, 5, and 1 molar percent~100, 10, and 2 chains
of component 1! were used in this work. Three differen
types of blends were studied: purely repulsive blends and f
Lennard-Jones blends with the parameters listed in Table
The intermolecular potential was truncated and shifted a
distance proportional to the Lennard-Jones size parametes,
to ensure that the potential is exactly zero at the cutoff. T
systems simulated here are summarized in Table II. Runs
at least 2000–2400 hybrid MC cycles of 100 multiple tim
step MD integrations were used in all cases; the first 50
800 MC cycles of each simulation were used for equilibr
J. Chem. Phys., Vol. 103, NDownloaded¬16¬Apr¬2007¬to¬128.104.198.190.¬Redistribution¬subjec
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tion. Depending on the density, reduced time steps of 0.00
0.011 were employed. Also 5 molecule exchange moves~to
be described later! were attempted after each hybrid cycle fo
the blends with equal size components.

IV. POLYMER BLEND PRISM

In this section we describe briefly the PRISM equation
for polymer blends. Note that these equations are genera
applicable; there are no restrictions to the degree of dissim
larity between the two components neither in terms of the
chemical structure nor in terms of their chain length. For
binary blend there are three independent total correlati
functions $h11(r ),h12(r ),h22(r )%, three independent direct
correlation functions $c11(r ),c12(r ),c22(r )%, two-
intramolecular structure factors$v1(r ),v2(r )%, and three in-
dependent PRISM equations. Using this notation, a gene
PRISM equation for a multicomponent polymer mixture in
Fourier space can be written as6

r̃M r̃M8ĥMM8~k!5 r̃Mv̂M~k!F ĉMM8~k!r̃M8v̂M8~k!

1(
M9

ĉMM9~k!r̃M8r̃M9ĥM8M9~k!G ,
~10!

where r̃M is the monomer site density of speciesM . The
intramolecular structure factor of speciesM ,v̂M(k), is de-
fined in terms of intramolecular distribution functions be
tween sitesa andb [ v̂M

ab(k)] according to

v̂M~k!5
1

N (
a,b

v̂M
ab~k!. ~11!

TABLE I. Different types of Lennard-Jones site–site potentials used.

Parameters Type 1 Type 2 Type 3

Reduced cutoff~relative tosi j ! 2.5 2.5 A6 2
Potential shift~relative toei j ! 0.016 316 8 0.016 316 8 1.0

s11 1.0 1.0 1.0
e11 1.0 1.0 1.0
s12 1.0 1.075 1.15
e12 1.224 744 9 1.224 744 9 1.0
s22 1.0 1.15 1.3
e22 1.5 1.5 1.0

TABLE II. Different types of polymer blends used.

Chain length r T* Molar fraction of component 1 Potential

10-mer 0.3 4 0.01 Type 3
0.6 4 0.01 Type 3

20-mer 0.6 4 0.01 Type 3
0.6 4 0.05 Type 3
0.8 4 0.5 Type 1
0.8 4 0.5 Type 2

50-mer 0.8 4 0.5 Type 1
o. 18, 8 November 1995t¬to¬AIP¬license¬or¬copyright,¬see¬http://jcp.aip.org/jcp/copyright.jsp
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8250 D. G. Gromov and J. J. de Pablo: Structure of binary polymer blends
Given the intramolecular structure factorsv̂1(k) and v̂2(k)
and some approximate closure relations, the PRISM eq
tions ~10! can be solved iteratively for total and direct corre
lation functions.

In the past, PRISM equations for pure homopolymers
blends have been solved by invoking Flory’s ideali
hypothesis33 to determinev̂M(k). We believe, however, tha
the intermolecular structure of a polymer blend could be
timately coupled to the intramolecular structure of its com
ponents. In other words, for polymer blends the problem
self-consistent determination of intra- and intermolecu
structure could become important and should be addres
In this paper we use the self-consistent PRISM formulati
of Grayce and Schweizer.11

A. Self-consistent PRISM

The self-consistent formulation of PRISM relies on th
development of a self-consistentsolvation potential. A sol-
vation potential reduces the many-body problem of calcul
ing the conformation of a flexible molecule in solution t
that of calculating the conformation of a single molecule
an external field. This approach was originally proposed
Chandler and Pratt,34 who introduced an interaction-site so
vation potential such that the conformational behavior o
single solute molecule in its own internal potential plus th
solvation potential was approximately the same as the c
formational behavior of the same molecule in solution~ex-
periencing full many-molecule interactions!. The self-
consistent solvation potential is a function of the avera
structural and thermodynamic properties of the solvent, a
therefore depends on density, temperature, composition,
the average conformation of the solvent molecules. In g
eral, the solvation potential is a function of the positions
all N sites on a solute molecule. Just as for the poten
energy, it is assumed that this multidimensional function c
be represented by a sum of functions of only one variable
intersite separation. In this pairwise-additive approximati
the full solvation potentialWN is given by

WN' (
g,l

N

W2
gl~ urg2rlu!. ~12!

For homopolymers, further simplifications can be made35 by
setting allW2

gl~urg2rlu! equal. In other words, the total po
tential energy of a single chain under the influence of
environment can be written as a sum over all pair intera
tions between the sites on the bare chainU2

gl(r ) plus the
external potentialW2

gl(r ),

UN
self~r 3N!5 (

g,l

N

@U2
gl~r !1W2

gl~r !#. ~13!

Several approximate solvation potentials have been propo
in the literature. In this work we use the Percus–Yevick~PY!
formulation of Grayce and Schweizer11 and we merely
implement it for blends. This solvation potential has be
used in a study of conformation of nonpolar linea
polymers35 and has been shown to capture qualitative tren
in the size of macromolecules in a pure polymer melt.
generalize the idea of a solvation potential to the case
J. Chem. Phys., Vol. 103,Downloaded¬16¬Apr¬2007¬to¬128.104.198.190.¬Redistribution¬subjec
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multicomponent polymer blends, the matrices of correlation
functions and intramolecular structure factors are defined ac
cording to

ĤMM8~k![r̃M r̃M8ĥMM8~k!,

V̂MM8~k![r̃Mv̂M~k!dMM8 , ~14!

ĈMM8~k![ ĉMM8~k!.

For anm-component blend we define am3m matrix of
partial structure factors,

Ŝ~k!5V̂~k!1Ĥ~k!. ~15!

In terms of Ŝ(k), the solvation potential for component
M ,W(M )(r ), takes the form

2
1

kT
W~M !~r !5 lnF11 (

M9M-
E CMM9~ ur2r 8u!

3SM9M-~ ur 82r 9u!CM-M~r 9!dr 8dr 9G .
~16!

We use the solvation potential~16! to solve polymer
blend PRISM equations self-consistently. We will come back
to the actual numerical implementation later.

B. Closure approximations

In order to solve the PRISM equations an approximate
closure must be provided. For simple atomic liquids a num-
ber of closures are available;2,36 for simple liquids the
Percus–Yevick closure is perhaps the most widely used. A
atomic PY closure relates the direct correlation functions
cMM8(r ) to the corresponding total correlation function
hMM8(r ) via

cMM8~r !5@hMM8~r !11#F12exp
uMM8~r !

kT G , ~17!

where uMM8(r ) is the intersite potential. Until recently,
PRISM calculations employed a literal application of atomic
closures to site–site correlation functions. Such closure
have been found37 to yield good structural results for hard
chains at high densities. Recently, however, it has bee
argued43 that when combined with atomic-like closure ap-
proximations, PRISM is qualitatively inconsistent with clas-
sical mean-field predictions and experimental data of the mo
lecular weight dependence of the critical solution
temperature of binary polymer blends. Molecular
closures41,42 apparently correct some of the deficiencies of
the theory; these closures predict a linear dependence of th
critical temperature on the degree of polymerization, in
agreement with classical mean field theory and lattice
simulations.33,43

To the best of our knowledge, molecular closures have
only been implemented for site–site potentials consisting o
a hard core part and a slowly varying attractive part. A ten-
tative generalization to continuous potentials has also bee
outlined41 although not implemented. The idea is as follows.
For a given potentialuMM8(r ), a formal division of the po-
No. 18, 8 November 1995t¬to¬AIP¬license¬or¬copyright,¬see¬http://jcp.aip.org/jcp/copyright.jsp
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8251D. G. Gromov and J. J. de Pablo: Structure of binary polymer blends
tential is introduced at a characteristic division pointr MM8
* .

For a homopolymer blend the potential energy is theref
written as

uMM8~r ![UMM8~r !Q~r MM8
* 2r !

1VMM8~r !Q~r2r MM8
* !, ~18!

whereQ is the Heaviside step function, andr MM8
* can be

chosen in a variety of ways, as it is done in perturbat
theories for liquids;2 we use a Barker–Henderson divisio
for the intersite potential. The molecular closure approxim
tion becomes

cMM8~r !5@hMM8~r !11#F12exp
UMM8~r !

kT G ,
r,r MM8

* , ~19!

vM* cMM8*vM8~r !5vM* @cMM8
~ref!

1DcMM8#*vM8~r !,

r.r MM8
* , ~20!

where* denotes a convolution,cMM8
(ref) (r ) is the direct corre-

lation function of the reference fluid with only continuou
repulsive interactionsUMM8(r ), and DcMM8(r ) is an ap-
proximate atomic site–site closure relation for the attract
branch of the potentialVMM8(r ). We propose to relax the
existence of a hard-core condition and apply a PY-st
‘‘soft’’ molecular closure to an arbitrary continuous potent
by setting

DcMM8~r !5@hMM8
~ref!

~r !11#F12exp
VMM8~r !

kT G ,
0,r,`, ~21!

wherehMM8
(ref) (r ) is the direct correlation function of the re

erence fluid with only continuous repulsive interactio
UMM8(r ).

Equation~21!, together with Eqs.~19! and ~20!, define
the new molecular PY closure approximation for a contin
ous potential.

C. Numerical implementation of self-consistent
PRISM

The PRISM equation for polymer blends~10! relates the
elements of the site–site total correlation functions matrix
those of the site–site direct correlation functions matrix a
the matrix elements of the intramolecular structure fact
matrix defined by Eq.~14! ~via a set of nonlinear integra
equations!. Given the matrix of intramolecular structure fa
tors V̂(k) and a closure relation, this equation can be solv
to obtainĈ(k) andĤ(k). Intramolecular structure factors fo
each component are determined implicitly by the interm
lecular structure of the melt through the the solvation pot
tial ~16!. The determination of the structure of a chain int
acting through the full self-consistent pairwise decompo
potentialUN

self(r 3N) ~13! is a complex many-body problem
and several approaches have been proposed in the past
solution.
J. Chem. Phys., Vol. 103, NDownloaded¬16¬Apr¬2007¬to¬128.104.198.190.¬Redistribution¬subjec
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Schweizer and co-workers44 used a semiflexible chain
model as a reference system to implement an optimized p
turbation theory for the intramolecular structure factor of ho
mopolymer chains. A variational approach to the conform
tion of flexible chains in solution has also been
implemented45 and, more recently, a generating functiona
method35 has been proposed. However, all of these metho
introduce additional approximations into the theory. Alterna
tively, the conformational behavior of a chain immersed in
solvation potential can be deduced from a single-cha
Monte Carlo simulation.46 The accuracy of the simulation
route is limited only by the amount of cpu time one wishes t
spend on the calculation. For reasons discussed in the sec
on computer simulation, we employ the continuum configu
rational bias~CCB! technique13,14 to calculate the intramo-
lecular structure factors of each component of a blend; CC
Monte Carlo simulations are therefore conducted for a cha
in its internal potential plus the self-consistent solvation po
tential induced by the environment.

The actual procedure is implemented as follows: Firs
we make an initial guess for the intramolecular structure fa
tor matrixV̂(k) and solve PRISM equations for the intermo
lecular structure of the blend. We use Eq.~16! to obtain an
initial guess for the solvation potentials of each compone
W(M )(r ); a CCB simulation is then conducted for a singl
chain of each component in these potentials to arrive at n
values forV̂(k). Additional details on the calculations using
the new molecular PY-style closure for an arbitrary continu
ous potential are given in Appendix B.

V. RESULTS AND DISCUSSION

A. HMC simulation results

As already pointed out, it is difficult to obtain accurate
structural information for dense polymers using convention
simulation techniques. For polymer blends we also confro
the problem of obtaining the correct compositional distribu
tion. Due to the high molecular weight and the chain stru
ture, the mobility of a polymer molecule is extremely smal
thus preventing us from efficiently sampling possible inte
chain rearrangements in a reasonable amount of cpu tim
One of the goals of this work was the development of a
efficient simulation code for simulating dense polymers. B
the efficiency of the simulation algorithm we imply its ability
to eliminate correlations between successive configuratio
As an indicator of such efficiency, we consider the decay
the bond vector autocorrelation function, defined by

Cbb~ t !5 K l~0!• l~ t !

u l~0!uu l~ t !u L , ~22!

wherel(t) is the orientation of a bond vector at timet. The
brackets denote an average over all bonds in the system
over many successive configurations of the system. Th
function provides a measure of segmental mobility and fo
lows the overall rotation of bonds on a chain. In the melt, th
probability distribution of any given bond vector should b
isotropic; any efficient algorithm should therefore be capab
of erasing the ‘‘memory’’ of the bond orientation in as few
computational steps as possible. Two configurations that a
o. 18, 8 November 1995t¬to¬AIP¬license¬or¬copyright,¬see¬http://jcp.aip.org/jcp/copyright.jsp
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8252 D. G. Gromov and J. J. de Pablo: Structure of binary polymer blends
separated by cpu timet in the sequence are only truly inde
pendent ifCbb(t)'0. AchievingCbb(t)→0 for smallt is one
of the main challenges facing a molecular simulation alg
rithm.

Two parameters can be used to maximize the efficien
of the HMC algorithm. First, one can use different numbe
of MD time steps per MC cycle. It turns out that this param
eter dramatically affects the performance of the method. F
ure 1 shows the results for the bond autocorrelation functi
Cbb(t) in a melt of 10-mers for two different values ofNMD
along with those for molecular dynamics calculations. It
clear that using largeNMD favors a faster rate of correlations
decay. However, increasingNMD leads to more expensive
HMC moves; we believe thatNMD;100 is about the opti-
mum choice for HMC simulations of chains of intermediat
length. For largeNMD the HMC method is very similar to the
MD method. As shown in Fig. 1, forNMD5100 the perfor-
mances of HMC and MD are comparable.

Further comments are needed on Fig. 1. One of the r
sons why we consider HMC to be superior for our work
that it allows for the use of large time steps in the MD part
the algorithm while keeping the temperature consta
through the MC acceptance criterion. We prefer to use HM
in conjunction with multiple time scales because at this po
we are still uncertain as to the time steps that can be used
multiple time step MD without introducing errors into the
results; HMC is just a safer and equally efficient method, t
temperature and the pressure are easy to control, and
possible to combine it with several other Monte Carlo tec
niques to push the performance even further. We have,
example, implemented identity interchange moves to spe
convergence. In these moves, a chain of speciesM and a
chain of speciesM 8, chosen at random, exchange identitie
thereby circumventing some of the diffusional limitations en
countered in conventional MD.

We also considered the possibility of using HMC fo

FIG. 1. Bond vector correlation function~22! for a system of Lennard-Jones
10-mers. Site number densityr50.6, reduced temperatureT*54, reduced
MD time stepdt50.01. The solid line corresponds to 100 MD steps per M
cycle, the dashed line corresponds to 10 MD steps per MC cycle, and
dot–dashed line corresponds to a multiple time step MD simulation w
dt50.006.
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simulations of a single chain in an external potential. The
efficiency of these simulations is of great importance since
they are used in the self-consistent formulation of PRISM.
We have performed efficiency tests on single chains of 100
and 200 segments. Figure 2 shows results forCbb(t) for a
100-mer using HMC and CCB methods. Clearly, CCB is
superior to HMC by several orders of magnitude. The same
is also true for 200-mers. This makes the CCB technique a
valuable tool for single chain simulations in external poten-
tials; we take advantage of its performance in our self-
consistent PRISM calculations.

B. PRISM results

The polymer RISM equation~10! has been solved with
the standard atomic-like PY closure for purely repulsive
blends~Type 3, see Table I!; for attractive chains of type 1
and type 2, the new molecular PY closure for continuous
potentials has also been applied.

We employed two different approaches to determine the
intramolecular structure of the components of a blend. In the
first, the intramolecular structureV̂(k) was obtained directly
from many-chain HMC simulations, and inserted as an input
into Eq. ~10!. In this case, the results provide an unambigu-
ous test of the ability of PRISM to capture the local structure
of a blend. Such tests have been carried out for various type
of blends, compositions, and site number densitiesr.

We begin by comparing the cross total correlation func-
tion h12(r ), predicted by PRISM from simulated intramo-
lecular structure factorsvi(r ) for a binary blend of repulsive
10-mers of type 3 to our results of HMC simulations@Fig.
3~a!#. The calculations have been carried out at an interme
diate site number density ofr50.3 ~r5Nsites/V! and a very
low molar fraction ~x150.01! of the component with a
smaller segment size. The segment size of the second com
ponent was 33% larger than that of the first component. Fig-
ure 3~b! shows the results for total correlation functions for
the same blend of repulsive 10-mers at a much higher site

the
th

FIG. 2. Bond vector correlation function~22! for a single chain of length
100. The solid line shows results of a CCB simulation, and the dashed line
shows results of a HMC simulation with 100 MD steps per MC cycle and
dt50.01.
o. 18, 8 November 1995t¬to¬AIP¬license¬or¬copyright,¬see¬http://jcp.aip.org/jcp/copyright.jsp
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8253D. G. Gromov and J. J. de Pablo: Structure of binary polymer blends
number density@r50.6; onlyh12(r ) andh22(r ) are shown#.
Note that the local structure of the blend is captured almo
quantitatively by the theory. Having shown the accuracy
the formalism for repulsive 10-mers at infinite dilution, w
turn our attention to longer repulsive chains and slight
higher concentrations of the small-segment component. F
ure 4~a! showsh12(r ) andh22(r ) for a blend of 20-mers of
type 3 atr50.6 andx150.01. Again the results are encour
aging. Note that the curves on Figs. 3~b! and 4~a! look very
similar but the correlation hole effect is more pronounced
the case of 20-mers. From Fig. 4~b! we also conclude that
changing the molar fraction of the first component from 0.0
to 0.05 does not change the structure of the blend appre

FIG. 3. ~a! The 1-2 total correlation function for a blend of repulsive 10
mers of type 3 at site number densityr50.3 ~see Table II!. ~b! The 1-2 and
2-2 total correlation functions for a blend of repulsive 10-mers of type 3
site number densityr50.6 ~see Table II!. The triangles show results of
simulations; the solid line was predicted by PRISM from the simulate
intramolecular distribution functionsv(r ).

FIG. 4. ~a! The 1-2 and 2-2 total correlation functions for a blend of repu
sive 20-mers of type 3; the mole fraction of component 1 is 0.01~see Table
II !. ~b! The 1-2 and 2-2 total correlation functions for a blend of repulsiv
20-mers of type 3; the mole fraction of component 1 is 0.05~see Table II!.
The triangles show simulation results; the solid line was predicted
PRISM from simulated intramolecular distribution functionsv(r ).
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bly and the accuracy of the theoretical predictions is pre-
served. As already shown by Stevensonet al.,9 we also find
that for purely repulsive blends the theory captures all the
basic features of local packing and agreement with simula-
tions is quantitative. These results are in contrast to our ear
lier calculations at somewhat lower densities.10

We now proceed to discuss results for attractive chains
We use a new molecular closure for continuous potentials to
determine the structure of attractive polymer blends. Figure
5~a! shows theoretical predictions and simulation results for
all three total correlation functions for a blend of attractive
20-mers of type 1. For this system, the site number density
wasr50.8, the reduced temperature wasT*54, and the mo-
lar fraction wasx150.5. To separate the effects of ‘‘size’’ and
‘‘energy’’ dissimilarities, the sizes of the segments were
equal for both components. In this case the theory is slightly
off around the first peak, but the overall agreement is still
satisfactory. Next, we investigate a blend under the same
conditions, but with both types of dissimilarity present. This
is the most general case. The results of such a calculation ar
shown in Fig. 5~b!; the agreement between theoretical and
simulated results is satisfactory for all three correlation func-
tions.

Encouraged by these results, we attempted simulation
of 50-mer blends under similar conditions. Since identity ex-
change moves become ineffective for chains having differen
segment sizes, we only present results for a blend of 50-mer
of type 1. Calculations have been carried out for this system
at a number site density ofr50.8, a reduced temperature
T*54, and equimolar composition. Our results@Fig. 5~c!#
indicate that the overall agreement between theory and simu
lation for long chains is still satisfactory.

In summary, we find that PRISM gives an adequate de-

t

y

FIG. 5. ~a! The 1-1, 1-2, and 2-2 total correlation functions for a blend of
attractive 20-mers of type 1~see Table II!. ~b! The 1-1, 1-2, and 2-2 total
correlation functions for a blend of attractive 20-mers of type 2~see Table
II !. ~c! The 1-1, 1-2, and 2-2 total correlation functions for a blend of
attractive 50-mers of type 1~see Table II!. The triangles show simulation
results; the solid line was predicted by PRISM from simulated intramolecu-
lar distribution functionsv(r ) with a Percus–Yevick molecular closure.
o. 18, 8 November 1995¬to¬AIP¬license¬or¬copyright,¬see¬http://jcp.aip.org/jcp/copyright.jsp
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8254 D. G. Gromov and J. J. de Pablo: Structure of binary polymer blends
scription of the structure of various binary blends. For t
case of attractive blends, however, the theory seems
slightly overestimate the role of attractive forces on the loc
structure. Also note that for the systems of attractive cha
studied in this work we did not find a significant differenc
between the results obtained with different types of closur
However, any such differences~between molecular and
atomic closures! could become noticeable at temperatur
below those investigated in this work.

Provided the average intramolecular structure of bo
components is known, PRISM provides an accurate form
ism for description of the intermolecular structure of pol
mer blends. From a practical point of view, however, th
formalism is not of immediate use because single ch
structure factors must be determined from many-chain sim
lations. This problem is circumvented by utilizing the se
consistent formulation of PRISM; we compare our se
consistent predictions for the structure of the blen
described above to results of simulations. Figures 6~a! and
6~b! show self-consistent total correlation functions togeth
with those obtained from simulation for a system of 10-me
@see also Figs. 3~a! and 3~b!#. We see that the self-consisten
results are almost identical to those obtained from simula
intramolecular structures. We do find, however, that the
ficiency of the theory around the first peak is slightly e
hanced. The same is true for the systems in Figs. 7~a!–8~c!
@these are identical to the systems in Figs. 3~a!–5~c!#.

We conclude that, for the self-consistent formulation e
ployed in this work, agreement with simulations is perha
not as good as when a simulated intramolecular structur
employed, but it is still highly satisfactory.

VI. CONCLUSIONS

A hybrid multiple time step Monte Carlo algorithm ha
been successfully used to simulate dense polymer ble
The method combines the advantages of molecular dynam

FIG. 6. ~a! The 1-2 total correlation function for a blend of repulsive 10
mers of type 3 at the site number densityr50.3 ~see Table II!. ~b! The 1-2
and 2-2 total correlation functions for a blend of repulsive 10-mers of ty
3 at the site number densityr50.6 ~see Table II!. The triangles show simu-
lation results; the solid line was predicted by self-consistent PRISM.
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and Monte Carlo techniques. A multiple time step molecula
dynamics scheme has been employed as a part of the hyb
algorithm. While the autocorrelation times for latter method
are of the same order of magnitude as in multiple time ste
MD, the hybrid algorithm is exact and can be combined wit
other MC techniques. In this work, a molecule identity inter
change move has been implemented to circumvent the diff
sional limitations of the MD method for long molecules.

The results of our simulations have been used to exam
ine the predictions of polymer RISM theory. We have studie
the structure of polymer blends of various types over a broa

e

FIG. 7. ~a! The 1-2 and 2-2 total correlation functions for a blend of repul-
sive 20-mers of type 3; the mole fraction of component 1 is 0.01~see Table
II !. ~b! The 1-2 and 2-2 total correlation functions for a blend of repulsive
20-mers of type 3; the mole fraction of component 1 is 0.05~see Table II!.
The triangles show simulation results; the solid line was predicted by se
consistent PRISM.

FIG. 8. ~a! The 1-1, 1-2, and 2-2 total correlation functions for a blend o
attractive 20-mers of type 1~see Table II!. ~b! The 1-1, 1-2, and 2-2 total
correlation functions for a blend of attractive 20-mers of type 2~see Table
II !. ~c! The 1-1, 1-2, and 2-2 total correlation functions for a blend o
attractive 50-mers of type 1~see Table II!. The triangles are simulation
results; the solid line was predicted by self-consistent PRISM with
Percus–Yevick molecular closure.
o. 18, 8 November 1995t¬to¬AIP¬license¬or¬copyright,¬see¬http://jcp.aip.org/jcp/copyright.jsp
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8255D. G. Gromov and J. J. de Pablo: Structure of binary polymer blends
range of chain lengths and densities. Both purely repuls
and attractive blends have been investigated. A new mole
lar closure has been applied for attractive blends and a ne
developed self-consistent formulation of PRISM~that does
not require prior knowledge of the intramolecular structu
of the components! has been implemented. We find tha
PRISM predictions using simulated intramolecular structu
factors are in very good agreement with simulated data.
also find that the predictions of self-consistent PRISM a
almost identical to those obtained from simulated intram
lecular structure factors. We conclude that the self-consis
formulation of the theory studied in this work provides
useful formalism for studying the molecular structure
simple binary polymer blends.
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APPENDIX A: MULTIPLE TIME STEP MD
IMPLEMENTATION

We divide the force acting on each interaction sitei into
two parts: one arising from interactions with neighborin
covalently bonded sites on the same chain (Fi

strong) and an-
other one arising from to all other Lennard-Jones interactio
(Fi

weak). We introduce two time steps,dtsmall and
dtlarge5dtsmall•N, whereN is an arbitrary integer which de-
pends on the ratio of two characteristic time scales of
system. We useN510 for our work. With this division the
algorithm becomes

~1! Advance all velocities usingFi
weak only,

vi5vi10.5dtlargeFi
weak.

~2! Perform the standard velocity Verlet47 algorithm it-
erativelyN times usingFi

strongonly.
~3! Calculate newFi

weak.
~4! Complete the move using

vi5vi10.5dtlargeFi
weak.

APPENDIX B: MOLECULAR CLOSURE NUMERICAL
PROCEDURE

This appendix describes the iterative procedure that
use to solve PRISM with the new molecular closure for t
case of a continuous site–site potential.

Equations~18!–~21! define this closure approximation
We consider the case of a pure polymer, but our discuss
can be generalized to multicomponent systems in a syst
atic manner. For this case the PRISM equation is3,4

ĥ~k!5v̂~k!ĉ~k!v̂~k!1rmv̂~k!ĉ~k!ĥ~k!. ~B1!

The potential can be divided in several ways; we used
standard Barker–Henderson2 division, thus defining a refer-
ence potentialU(r ) and a perturbationV(r ).
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We first solve the PRISM equation~B1! for the reference
system having only a repulsive potentialU(r ) for the func-
tionsh~ref!(r ) andc~ref!(r ), 0,r,`. Dc(r ) is then calculated
from Eq. ~21! with VMM8(r )5V(r ) and the ‘‘outer part’’ of
convolutionv*c*v(r ) is calculated from

v* c*v~r !5v* @c~ref!~r !1Dc~r !#*v~r !,

r.r * . ~B2!

This ‘‘outer part’’ is fixed throughout further calculations. We
define an auxiliary function by

g~r !5h~r !2v* c*v~r !, 0,r,` ~B3!

with h(r ) and c(r ) being the current functions at every it-
eration loop. An initial guess forg (0)(r ) 5 h(ref)(r )
2 v* c(ref)*v(r ), ~0,r,`! is made.

Re-expressing the closure~19! in terms ofg(r ) gives

v* c*v~r !5
c~r !

12exp @U~r !/kT#
2g~r !21, r,r *

~B4!

which is not analytically solvable forc(r ). We solve~B4!
iteratively forc(r ) andv*c*v(r ) simultaneously@using the
previously calculated ‘‘outer part’’ ofv*c*v(r )# through a
Picard iteration scheme. An initial guess for the ‘‘inner part’’
of convolutionv*c*v(r ) is made,

v* c*v~r !5v* c~ref!*v~r !, r,r * . ~B5!

The convolutionv*c*v(r ) is then transformed andĉ(k)
andc(r ) are calculated. Insertingc(r ) into Eq. ~B4! we get
a new guess forv*c*v(r ) for r,r * . The iteration loop is
repeated until convergence is achieved. As a result we have
newv*c*v(r ) for 0,r,`.

This function is used to calculate a new guess forh(r )
through Eq.~B3!. This function is then inserted in Eq.~B1!
to get a new guess for the auxiliary functiong~1!(r ). This
function replacesg~0!(r ) as an input to the next iteration in
which the next approximations to the ‘‘inner part’’ of
v*c*v(r ) andc(r ) are obtained. The procedure is repeated
until g(r ) is no longer changing. As it is often the case, it is
necessary to mix successive solutions2 for the procedure to
converge.
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