
IEEE TRANSACTIUNS ON COMPUTERS, VOL. 39, NO. 1, JANUARY 1990 63

Design and Analysis of a Gracefully Degrading
Interleaved Memory System

Abstract- A hardware mechanism has been proposed to re-
configure an interleaved memory system. The reconfiguration
scheme is such that, at any instant, all fault-free memory banks
in the memory system can be utilized in an interleaved manner.
The design of the hardware that enables the reconfiguration is
discussed. The reconfiguration scheme proposed in this paper
is analyzed for a number of distinct benchmark programs. It is
shown that memory system performance degrades gracefully as
the number of faulty banks increases if the memory system uses
the proposed reconfiguration scheme.

Index Terms- Fault-tolerant memory, graceful degradation,
interleaved memory, memory bandwidth, trace-driven simula-
tion.

I . INTRODUCTION

A computer system that consists of a processing unit I" (CPU) connected to a memory system, the rate at which
the CPU can process information is limited by the rate at
which the information can be transmitted between the CPU
and the memory. This is the well-known von Neumann bot-
tleneck. Consequently, a decrease in the bandwidth of a mem-
ory system will directly affect the performance of the overall
computer system.

There are two main approaches to attain a memory sys-
tem with a high bandwidth. The first involves the use of a
high-speed buffer or cache memory (an excellent survey can
be found in [14]) and the second involves the use of several
memory banks or modules connected in an interleaved fash-
ion [5], [6]. Although the use of cache memories has become
widespread, their utility is limited by their size. While cache
memories are very effective for instructions and scalar data
items [141, [151, they have not proven to be effective for nu-
meric processing machines that utilize large data structures
(such as arrays). For such systems, in order to achieve a high-
bandwidth memory system, one is forced to use interleaved
banks of memory. Of course, the best effect is achieved by

Manuscript received June 5, 1987; revised February 12, 1988 and De-
cember 16, 1988. This work was supported in part by the National Science
Foundation under Grants DCR-8509194 and CCR-8706722, Air Force Grant
AFOSR 84-0052 and NSF Grant MIT88-05586.

K. C. Cheung is with the Digital Equipment Corporation, Hong Kong.
G. S. Sohi and K. K . Saluja are with the University of Wisconsin, Madison,

D. K. Pradhan is with the Department of Electrical and Computer Engi-

IEEE Log Number 8931926.

WI 53706.

neering, University of Massachusetts, Amherst.

using a cache memory for instructions and scalar data and an
interleaved memory for noncacheable data.

In an interleaved memory system that consists of N inde-
pendent memory banks (or modules), by associating address
latches and data latches with each bank, N different memory
accesses can be overlapped. In this C-access method [5] , the
memory system can accept a stream of memory requests from
the processor and service each request, one at a time, thereby
increasing the available bandwidth of the memory system to
N times the bandwidth of a single bank. A processing system
that utilizes a cache memory for instructions and a C-access
interleaved memory system for data is shown in Fig. 1.'

The bandwidth of interleaved memories has been studied
extensively using analytical and simulation techniques [11, [2],
[12], [16]. Apart from the referencing behavior of programs,
the main factor that influences the bandwidth of interleaved
memory banks is the manner in which the addresses are dis-
tributed among the banks, i.e., the memory organization [12].
Generally the number of banks N that are used to build an in-
terleaved memory is a power of 2, i.e., N = 2'? where q
is an integer. In such a system, q bits of the address suffice
to select a bank and the remaining bits are used to select a
word within a bank. If the q bits are the high-order bits of
the address space, the scheme is a high-order interleaving
scheme whereas a lo w-order interleaving scheme results if
the low-order q bits are used to select the bank.

We should mention that an interleaving scheme is not re-
stricted to using only a power of 2 number of banks. Inter-
leaving schemes that utilize a prime number of memory banks
have been investigated [8] and implemented [7]. However, the
utility of such a scheme for high-performance machines is lim-
ited because of the complex logic that is needed to determine
the appropriate banklword from a given address.

In a high-order interleaved memory system, consecutive
memory addresses in the linear address space lie in the same
bank. Therefore, if the memory is referenced sequentially,
consecutive memory references access the same bank and
no increase in bandwidth is obtained. In a low-order inter-
leaved memory system, consecutive addresses lie in different
banks. Thus, if the memory is accessed sequentially, consec-
utive references will access different banks thereby increasing
the bandwidth of the memory. Since the memory referencing

Throughout this paper the C-access configuration of the memory banks
is assumed for the interleaved memory.

0018-9340/90/0100-OO63$O1 .00 0 1990 IEEE

IEEE TRANSACTIONS ON COMPUTERS, VOL. 39, NO. I . JANUARY 1990

Virtual to Physical
Translation

Insmction Address

Data Address

Bank Select Bank-Word Select

Main Memory Banks
Fig. 1. A processor with an interleaved memory system.

pattern for most programs is generally sequential (because
of sequential instructions and array structures with a constant
stride of unity), a low-order interleaved memory system gen-
erally has a higher bandwidth than a high-order interleaved
memory system.

A low-order interleaving scheme has a major drawback- it
is not modular, i.e., a failure in a single bank affects the entire
address space [111. If no precautions are taken to handle such
a situation, the bandwidth of the memory and consequently
the performance of the processor could be degraded to an
intolerable extent.

In this paper, we study the organization of interleaved mem-
ories such that faults in the memory system degrade the per-
formance in a graceful manner. We restrict our study to an
interleaved memory system that starts out with 24 memory
banks and uses a low-order interleaving scheme. The ideas
presented in this paper can easily be extended to other inter-
leaved memory schemes.

Section I1 briefly describes the motivation and design ob-
jectives of the memory system. In Section 111, a new recon-
figuration scheme is presented. Section IV presents the de-
sign of the hardware needed to implement the reconfiguration
scheme proposed in Section 111. The reconfiguration scheme
is evaluated using trace-driven simulation for a number of
benchmarks in Section V. A final section presents concluding
remarks.

11. FAULTS IN INTERLEAVED MEMORIES
Consider a memory that consists of one or more groups of

interleaved banks in the memory system. A group consists of
2' banks (where r is an integer) that are fully interleaved using
low-order interleaving. Thus, the banks within a group can be
selected using an r-bit bank selection address field. Different
groups can have a different number of banks in them. For
example, group G I may consist of four banks while group G2

may have only one bank. If the total number of banks in the
memory system is 2k where k is an integer, then there is only
one group.

A conventional interleaved memory consists of a single
group of 24 banks. If each bank contains 2P words, the to-
tal addressable main memory of the system is 2" (where
n = p + q) words. Using a standard low-order interleaving
scheme, q bits, i.e., A,-1A4-2 . . . A 0 of the n-bit address
An-1An-z...Ao (where A, - I is the most significant bit),
are used to select the bank and the remaining p bits, i.e., bits
An-1An-2 . . .A4 are used to select a word within a bank.

In this paper, we are interested in investigating the situation
when one or more banks of memory fail. Therefore, the fault
model that we shall use in this paper is that a fault(s) results
in the loss of a complete bank(s) of memory. We assume that
a mechanism that detects the presence of a faulty bank exists.
Such a fault-detection scheme is not the subject matter of this
paper. Our main thrust is to evaluate the loss in performance
when a fault is reported and how might the memory system
be organized so that the resulting degradation in performance
is graceful.

Consider what happens when a bank is deleted from a meni-
ory system that consists of a single group of 24 banks. This
is exactly the situation when a bank fails in a standard inter-
leaved memory system. The number of banks in memory is
reduced to 24 - 1 and the total addressable physical memory
is reduced to (2Q - 1)2P words. However, since 24 - 1 is not
a power of 2 , the banks no longer form a single group and
the system loses its capacity to interleave memory requests in
the low-order interleaving manner. Without interleaving, the
bandwidth of the memory system reduces to the bandwidth
of a single bank. Such a loss in memory bandwidth can be
catastrophic to the performance of a high-speed CPU.

When a fault occurs, program execution must be halted and
the address translation mechanism informed about the faulty

CHEUNG et al.: GRACEFULLY DEGRADING INTERLEAVED MEMORY SYSTEM

bank. Correct information is recovered from a backup store
and program execution restarted (or restored from a check-
point if a recovery scheme is used). Unfortunately, if the mem-
ory system is not able to perform near its fault-free perfor-
mance level, overall processor performance will suffer. What
could we possibly do to salvage some of this lost memory
performance?

We could potentially maintain spare memory banks and,
on identifying a faulty bank, a spare bank could be switched
into its place. An organization of such a memory system is
described in [3]. A limitation of this method is that as more
banks become faulty, the system will eventually run out of
spares if the spare banks cannot be replaced. Once all the spare
banks have been exhausted, another fault-tolerance scheme
must come into play.

An alternative approach is to reconfigure the remaining
nonfaulty banks in order to salvage some of the lost per-
formance. Clearly, such an approach could also be used if
a system has spares but runs out of them eventually. The re-
maining banks have to be reconfigured so that interleaving is
possible. Before proceeding further, let us see how the pres-
ence of a faulty bank affects memory system performance.
A faulty bank degrades memory performance in two ways: 1)
the number of fault-free banks is reduced thereby reducing the
available bandwidth and 2) the amount of available physical
memory is reduced thereby increasing the page fault rate.

How might we organize the fault-free banks so that the per-
formance is not degraded to an intolerable extent? A simple
solution that could be used to salvage some of the lost band-
width is to reduce the number of addressable banks to the
nearest power of two, i.e., 24- ' , thereby achieving a maxi-
mum bandwidth of 24-1 words per memory cycle. While the
hardware that allows this translation and the resulting address
translation and bank selection mechanism is quite straightfor-
ward, 24-' - 1 banks of fault-free physical memory are not
addressable and therefore are unutilized (note that even such
a simple scheme requires additional hardware to implement
the reconfiguration). The resulting memory configuration with
2 4 - l banks is likely to result in a higher page fault rate than
a memory system that uses all the nonfaulty banks. Further-
more, a memory system with X (24-' < X < 24 - 1) banks
could potentially result in a higher bandwidth than a memory
system with 24-1 banks (as we shall see in Section V). There-
fore, we must use a reconfiguration scheme that uses as many
fault-free banks as possible to salvage the memory bandwidth
and, at the same time, minimize the degradation due to the
smaller memory size. Also, the hardware needed to imple-
ment the reconfiguration scheme should be simple enough so
that it does not degrade fault-free memory performance sig-
nificantly.

111. THE RECONFIGURATION SCHEME
The scheme proposed in this paper reconfigures the re-

maining banks using a combination of high-order interleaving
and low-order interleaving. Before explaining the reconfigu-
ration scheme, we distinguish between three address spaces:
1) a virtual address space that is seen by the program, 2) a
fogical address space that consists of the fault-free memory

banks (each with 2P words), and 3) a physical address space
that consists of actual addresses in the physical memory sys-
tem. Further distinction between the logical and the physical
address spaces will become clear in the remainder of this sec-
tion and in an example (Fig. 5) that we shall use in Section
IV .

Addresses in the logical and physical spaces are specified
as a bank number and an address within the bank. In the ab-
sence of faults, there is a single group of banks and the logical
and physical address spaces are the same. On occurrence of a
fault, the faulty bank is switched out and the memory recon-
figured. We assume that program execution can be restarted
(or restored if a recovery scheme is used) from the backup
memory. Addresses generated by the user program are still
complete virtual addresses: the program does not know about
the loss of a memory bank. The logical address space is re-
duced in a systematic manner. The virtual memory manage-
ment process is informed about the loss of banks and the new
logical configuration of the memory: it views the loss of a
memory bank as the loss of a few page frames (equal to one
bank) of memory. The virtual to logical translation process
makes sure that no information is placed in the unavailable
logical space and, for interleaved access to the elements of a
page, it places a page entirely within the banks of a single
group. As the program executes, pages are brought in from
the backup store into the remapped main memory. The logical
addresses are translated into physical addresses by the recon-
figuration hardware (described in Section IV) depending upon
the actual banks that have failed.

A logical address specifies a logical bank number and a
word within the logical bank. For a single faulty bank, there
are 24 - 1 nonfaulty logical banks and one faulty logical bank.
The number of faulty logical banks is the same as the number
of faulty banks. The faulty logical bank is numbered 24 - 1 and
the nonfaulty logical banks are numbered from 0 through 24 -
2. Nonfaulty logical banks are partitioned into sets. Thus, if
24 - 1 logical banks were available, they would be partitioned
into q sets. These q sets form two subsets: subset So(24- l)
consisting of a single group of 24-' logical banks and subset
Sl (2Q- l - 1) defined recursively as consisting of two subsets
S0(2qp2) and S 1 (2 4 - ~ - 1). Therefore, S0(24-') has one group
Go(24-l) that has 24-' logical banks and S1(24-' - 1) is
made up of group G10(2qP2) which has 24-2 logical banks
and the subset S1(2qP2 - 1) which has 24-' - 1 banks. This
recursive partition stops when S1 has only one logical bank.
An alternate way (suggested to us by an anonymous referee)
of looking at this partioning of logical banks into groups is
as follows. Write down the number of nonfaulty logical banks
as a binary number bq-1bq-2 . . + b, . . . bo. There is a group
with 2' banks if bit i of the binary number is 1. As we shall
see in the following paragraph, the concept of sets is useful
in understanding the logical address decoding process. An
example of the partitioning of seven logical memory banks
into groups is given in Fig. 2. With seven fault-free banks,
there are three groups Go, Glo and G I] with four, two, and
one banks, respectively.

The 2k banks within a group G I (2k) are organized for low-
order interleaving; high-order address bits are used to deter-

66 IEEE TRANSACTIONS ON COMPUTERS, VOL. 39, NO. 1 , JANUARY 1990

CPU Address

virtual to Logical
Translation

To Instruction

Address
Transliterator

Cache

I m
L--T--i I

1 1 1
Physical Memory Address Word Address Bank Select

Fig. 3. Two-level address translation with an address transliterator. Fig. 4. The address transliterator.

mine the group. If there is only one group (for example, in
the fault-free case), no group selection needs to be done. The
low-order q bits of the address select the logical bank and the
high-order p bits of the address select the word within the
logical bank. With one fault, the number of groups becomes
q with the number of logical banks 24 - 1 and q bits suffice
to uniquely identify 24 - 1 nonfaulty logical banks and one
faulty logical bank. An address is decoded as follows: the most
significant bit of the address, An- l , is used to select either
subset SO(^^-'), i.e., group Go(24-') or subset Sl(24-I - 1).
If group Go(24-l) is selected, then bits 4 - 2 . . .A0 are used
to select one of 24-I logical banks within this group and bits
An-2 . . are used to address the word within the logical
bank. If SI (24-' - 1) is selected, then bit An-2 of the address
is used to select either G10(24-~) (with bits Aq-3 . . .A0 used
to select a logical bank within this group) or S1(2qP2 - 1)
and so on. Note that this group identification scheme resem-
bles the decoding scheme used to decode Huffman-encoded
information. Once the group number and the bank has been
determined from the address using q bits, the remaining p bits
are used to select the word within the logical bank.

The logical banks must now be mapped onto the physical
banks of the memory system. For example, in a system with
eight banks if physical bank 3 is faulty, logical bank 7 (the
unavailable logical bank) must be mapped onto physical bank
3 and logical banks 0-6 must be mapped onto the remaining
physical banks. The logic that decodes the address and gen-
erates the appropriate bank select and word select signals is
now more complex than a simple decoder. We call this logic
the address transliterator (AT). Each memory request that is
serviced by the physical memory now passes through the AT
before it is forwarded to the physical memory system (Fig.
3) . The design of the AT is discussed in detail in the next
section. The inputs to the AT are an n-bit logical memory

address and a 24 bit vector, the bank status indicator (BSI),
that indicates the status of each bank. The BSI vector consists
of a single bit flag for each bank. The flag is set to 0 if the
bank is fault-free (available) and 1 if the bank is faulty (un-
available). The BSI vector is updated as faults occur and are
detected. The output from the AT is the appropriate physical
bank address and the address of the word within the selected
bank.

On the occurrence of another fault, the program is stopped
and the memory is remapped again. Thus, in the presence of a
second fault, the smallest logical group that contains only one
bank is eliminated. The AT hardware is informed (through the
BSI vector) and it responds by modifying its group numbering
accordingly. The program is then restarted and continues to
execute, albeit with degraded memory performance.

IV . THE ADDRESS T~ANSLITERATOR

The AT hardware consists of three parts as shown in Fig.
4: 1) a bank fault tally (BFT), 2) a bank select unit (BSU),
and 3) a word select unit (WSU). The inputs to the AT con-
sist of the n-bit logical address and the BSI vector. The BFT
determines the number of faulty banks using the BSI vector.
The BSU is responsible for generating the physical bank select
signals for a given logical address and the WSU is responsi-
ble for supplying the address within the selected bank. Before
proceeding with the details of the AT, we would like to men-
tion that the partitioning of the AT into distinct components
is done solely to facilitate the understanding of its operation.
For implementations of the AT, the above demarcation is not
necessary. However, the overall operation of the logic will
remain unchanged. Depending upon the technology used to
realize the AT, such a demarcation may or may not offer op-
timum performance. In fact, it may be possible to implement

CHEUNG et al. : GRACEFULLY DEGRADING INTERLEAVED MEMORY SYSTEM 67

TABLE I
LARGEST VALID LOGICAL ADDRESS WITH k FAULTY BANKS

portions of the AT within the address decoders of the memory
banks.

A . The Bank Fault Tally
The bank fault tally (BFT) determines the number of faulty

banks in the memory system from the information given in
the 24 bit BSI vector. The BFT provides a 29 + 1 bit output in
the form of decoded fault count indicators F = F7.4,. . . , F o ,
where F ; = 1 if and only if there are exactly i faulty banks
in the memory system. Thus, for a fault-free memory system,
FO is 1 and all the remaining fault count indicators are 0. Note
that the number of faulty banks in the memory system is given
by the number of 1's in the BSI vector and that the BFT is a
combinational circuit.

It is possible to have the outputs of the BFT in an encoded
form. This will reduce the number of interconnecting lines
between BFT and other subunits of the AT, but then the coded
information may need to be decoded by other subunits. Note
that the BFT realizes a tally circuit [lo]. Throughout this
paper, we use the decoded form of the outputs of the BFT for
ease of understanding.

B. Bank Select Unit
The bank select unit consists of two subunits, the logical

bank finder (LBF) and the switching logic unit (SLU).
1) Logical Bank Finder (LBF): The LBF determines the

logical bank number of the bank being accessed for a given
logical address. Recall that in the presence of a single faulty
bank, the faulty bank is represented by a string of 1's in the
high-order q bits of the logical address. This result can be
generalized for multiple faults. Table I shows the largest valid
logical address assuming that the memory system consists of
eight banks and there are exactly k , 0 5 k < 8, faulty banks.
In the general case, given a logical address, the LBF deter-
mines the logical bank number of the bank being addressed
based on the following inputs:

1) 2q bits (i.e., high-order q bits and low-order q bits) of
the address and

2) 24 + 1 bits from the BFT indicating the fault count.
The q bits of the logical address that are used to select

the logical bank depend upon the number of faults. The LBF
has 29 outputs, denoted as B24 - 1 , . . . ,Bo, that represent the
decoded form of the logical bank numbers.

The operation of the LBF is best illustrated by an example.
Table I1 gives the 3-bit logical bank number L2L 1 LO of the ad-
dressed bank as a function of 6 bits from the complete logical
address, i.e., (An-1An-2An-3A2A1A0), and the number of

TABLE I1
LOGICAL BANK NUMBER SELECTION IN CASE OF k FAULTY BANKS

$+ x x

x x 2 1 : x x

faults k for the case of eight (q = 3) banks. In the fault-free
case, the low-order bits A2A 1Ao are used to select the logical
bank. In the presence of a single fault, the seven fault-free
logical banks are divided into three groups of four, two, and
one banks, respectively. If bit A,-1 is 0, the group of four
logical banks is selected and bits AIAo are use to select the
logical bank within the group (see bold row in Table 11). If bit
A , - 1 is 1, then the set of three logical banks is selected and bit
An-2 is used to distinguish between the two groups of banks
within the set. Other entries in the table can be interpreted in
a similar fashion.

The LBF is a combinational circuit that implements a set
of independent Boolean equations of the inputs A; and F , .
For reasons of brevity, we do not present the exact Boolean
equations for the LBF in this paper. The interested reader is
referred to [3].

2) Switching Logic Unit (SLU): The SLU maps a logical
bank number obtained from the LBF onto a physical bank
number, i.e., it provides the select signals for the physical
memory banks. A faulty bank is never selected. If there are no
faulty banks in the memory system, the physical bank number
of every bank is same as the logical bank number as shown
in Fig. 5(a). However, in the presence of faulty banks in the
memory system, the logical bank numbers are remapped by
the SLU onto physical bank numbers as follows. If there is one
faulty bank in the memory system, say physical bank number
rn, then a logical bank number rn +i, i >. 0, is remapped to the
physical bank number rn f i f l . Thus, if the faulty bank is bank
number 1, physical bank number 2 will be selected for logical
bank number 1 as shown in Fig. 5(b). For multiple faults, the
remapping mechanism is extended in a natural manner and
always selects the next available fault-free physical bank. The
inputs to the SLU consist of 29-bit BSI vector, containing the
location of faulty banks in the memory system, and the 29
outputs of the LBF. The outputs of the SLU are 29 physical
bank select signals (BSo,. . . , B S 2 4 - ~) where BS; is used to
select the physical bank number i. This logic can, therefore,
be realized using switches or multiplexors [3].

C. Word Select Unit
In a fault-free memory system, the high-order p bits of

the address determine the address of the word within a bank.

68 IEEE TRANSACTIONS ON COMPUTERS, VOL. 39, NO. I , JANUARY 1990

5 0 0 x 0 1 0 0
0 1 0 1 0 0 0

4 0 x x 0 0 1 0

3 0 x x 0 0 1 0
1 0 0 1 0 0 0

2 0 x x 0 0 1 0
l X X O l 0 0

1 0 x x o o 1 0
1 0 x 0 1 0 0

Logical Physical
Address B, BSI Address

1 1 0 1 0 0 0

Space I Space

o x x X I 0 0 0 1

Physical
BankSelect
Signals

N-2 N-2
N- 1 N- 1

(a)
Logical physical
Address Address

Bank
Logical Physical

Number Signals

N-2 N-2
N-1 N- 1 :B&

Space S P Z

0
1

BankSelect

(b)
Physical
Address
Space

Logical
Address ' 8

Space

Physical
BankSelect ;gr N-3 ;E: Signals

N-2 N-2
N- 1 N- 1

(C)
(a) Logical to physical bank mapping with no faults. (b) Logical to

physical bank mapping with physical bank 1 faulty. (c) Logical to physical
bank mapping with physical banks 1 and 2 faulty.

Fig. 5.

However, if faulty banks exist in the memory system, the ad-
dress of the word within a bank depends on the number of
faulty banks in the system as well as the logical bank number
of the selected bank. For example, for a memory system with
eight banks (q = 3) and with one faulty bank, if a memory
reference selects logical bank 5 then the word address within
logical bank 5 is given by bits An--3, An-4 , . . . , A I . In gen-
eral, if for a given address some high-order j bits are used
to determine the logical bank number then the word address
within the bank is given by (A , - ; , . . . , A g - ; + l) . The func-
tion of the WSU, therefore, is to extract the appropriate p
bits that represent the address of the word within the selected
bank from the n-bit logical address. The WSU accomplishes
this by using two subunits, the address reformulation control
logic (ARCL) and the address reformulation unit (ARU).

I) The Address Reformulation Control Logic (ARCL):
This subunit determines the p bits that represent the word
address. The p bits are then extracted in the ARU by using
shift-left by i bit or SLi operations on the input address and
retaining the high-order p bits. The ARCL determines the
value of i , i.e., the SL; signals from the information provided
in the high-order q bits of the logical address and the number
of faults obtained from the BFT. The SLi signals are then
provided to the ARU.

Rather than present the detailed Boolean equations, we
again illustrate the operation of the ARCL with the help of an
example. Table IT1 presents the SLi signals for q = 3 and k

TABLE 111
CONTROL SIGNALS OF THE ARCL IN CASE OF k FAULTY BANKS

faults. In the fault-free case, the high-order p bits themselves
represent the word address, i.e., SLo = 1. In the case of
two faulty banks, we have two groups of four and two banks,
respectively. If the group of four banks is addressed, i.e.,
A,-I = 0 (see the bold row in Table TIT), the logical address
needs to be shifted left by 1 (SL1 = 1) and the high-order p
bits retained for the word address. If the group of two banks
is selected (A,-I = l) , then the logical address needs to be
shifted left by 2 (SL2 = 1) and the high-order p bits extracted.

2) The Address Reformulation Unit (ARU): The ARU
accepts the n-bit address and the shift control signals SLi
as inputs and provides the p-bit word address. The ARU is,
therefore, a simple shifter and can be realized using multi-
plexors.

D. An Example
Through the following example we illustrate the operation

of the complete AT. Let us consider a memory system con-
sisting of eight memory banks (q = 3) with a 16 bit address
(n = 16). If physical banks 1 and 2 are faulty, the BSI vector
will be 00000110, where the most significant bit of the BSI
vector indicates the status of the physical bank 7. If the input
address is 1001 11 11 1 11 11 100, from Table I1 we see that log-
ical bank 4 of group Glo is selected. Therefore, 3 bits of the
address (A , - I A , - ~ A o) are used to identify the logical bank
and the remaining bits of the address (An-3An-4 . . . A ~ A I)
are used as the word address within the bank. The remapping
of the logical bank numbers, i.e., outputs of the LBF, to the
physical bank select signals by the SLU is shown in Fig. 5(c).
As the address given above generates the bank address for the
logical bank 4, the physical bank 6 is selected. The outputs
of the subunits of the AT are summarized below in Table IV.

E. Logic Delays in the AT
For a conventional low-order interleaved memory system,

shown in Fig. 1, the address bits are transferred on two paths
between the processor and the memory. The two paths are the
bank select path and the word select path. The logic present
in either path is a simple decoder. By using an AT, additional
logic is inserted in both these paths. Since the delays intro-
duced by the extra logic will be of a different nature for dif-
ferent technologies and different implementations of the AT,

CHEUNG et al. : GRACEFULLY DEGRADING INTERLEAVED MEMORY SYSTEM

Logical
Bank

Finder (LBF)

Switching Logic
Unit (SLU)

Address Reformulation
Conml Logic (ARCL)
Address Reformulation

Unit (ARU)

69

Fi 'sand B 4 = 1 ,
A,-,A,-pt,,-,=100

Bi s and BSI vector

Bi = 0 for 0 S i G' and i # 4.
AptiA,=100

BS6 = 1,
BSi =OforOSi G'andi #6.

SL 's = 0 for 0 S i S3 and i # 2
Fi 's and SL, = 1,

A,_,A,-ptA,-3=100

SLi'S
16 bit address and 0111111111110

TABLE IV
OUTPUTS OF THE SUBUNITS OF THE AT; INPUT ADDRESS =

1001111111111100 A N D
k = 2

Unit Inputs outputs
Bank Fault F , = 1,

I F; =OforO;idandi#2 . I

we shall not attempt to quantify the delays in general. Rather,
we give the reader a feel for the additional delays introduced
by the AT and present the results for a conservative CMOS
design.

The BFT does not contribute to the delay through the AT
since its output does not change between faults. The longest
path within the BSU is from the address inputs to the outputs
of the LBF plus the delay through the SLU. The complexity
of the LBF is such that it can be realized by a two-level logic
circuit (gates or a PLA); the SLU can be realized as a simple
switch (or multiplexor). Each of these units will, therefore,
contribute a small, fixed delay. Similarly, in the WSU, the
critical path is from the address inputs to the outputs of the
ARCL plus the delay through the ARU. The ARCL logic
is simple enough that it can be realized as a two-level logic
circuit and, as commented in Section IV-C-2, the ARU can
be realized using multiplexors. The operations of the BSU
and the WSU are carried out in parallel and, therefore, the
critical path for the AT is the longer of the critical paths of
the two units. Thus, the delay through the AT is equivalent to
the delay through a few levels of logic.

In order to get a better feel of the delays in the AT, we
implemented the AT logic in CMOS VLSI using Magic. Each
unit of the AT was designed separately as described in this
paper. The AT was designed for a memory system consisting
of 16 memory banks and a 32-bit logical address. The details
of complete design can be found in [3]. A timing simulation
using the Crystal simulator indicated a delay of 44 ns through
the AT. We believe that the delay can be reduced with aggres-
sive design; relative delays within the WSU and BSU and the
methods to reduce these delays are also discussed in [3]. Even
for our conservative design of the AT, for a given processor
and memory technology, the delay through the AT can be kept
within a single CPU clock cycle [3]. Therefore, we believe
that the AT logic will not degrade fault-free memory latency
to a significant extent.

V. PERFORMANCE EVALUATION

We evaluated the performance of the proposed memory re-
configuration scheme using a truce-driven simulation analy-
sis. A trace of instruction and data references was obtained
for several benchmark programs. Data from the trace files
was then fed into a program that simulated the memory sys-

tem. Since the simulator is driven by actual memory reference
traces that have no timing information, the simulator assumes
that consecutive memory references in the trace file occur in
consecutive CPU cycles.

The simulator written by us takes into account the memory
structure and the virtual memory management process [3].
The simulation model consists of a pipelined processor capa-
ble of issuing a memory request at each CPU cycle. The mem-
ory references are divided into instruction references and data
references. For each memory reference a word is transferred
between the memory system and the processor. We assume
an instruction cache with a cycle time identical to the CPU
cycle time to service instruction references. Thus, only data
references go to the interleaved memory. The use of the bus
alternates between the instruction and the data cycles. During
an instruction cycle, instructions are fetched from the cache
and the data requests are buffered in a queue. We assume
that all instruction requests are satisfied by the instruction
cache. During a data cycle, data requests in the data queue
are allowed to access memory if no bank conflict occurs. If
an access to a busy bank is detected, subsequent requests are
suspended until the next available memory cycle.

A program is allocated a fixed number of data pages (max-
imum of 32) for its use. A least recently used (LRU) replace-
ment policy is employed to replace a page when a page fault
occurs and no free page frame is available. The pages are
loaded into memory on demand. The page size is 2K bytes.
Initially, we assume that only one data page is present in mem-
ory. In case of bank failures, fewer data pages are allocated to
the program. The reduction in the number of pages is propor-
tional to the number of faulty banks. The pages are distributed
among the groups of the reconfigured memory in proportion
to the number of banks in the group. A page lies completely
within a group of banks. Pages are first loaded into the group
with the largest number of banks and are then loaded into the
groups with fewer banks. For example, if there are two groups
consisting of eight and four banks, respectively, a process will
place 67 percent of its data pages in the group of eight banks
first and the remaining pages in the group of four banks next.
The time to process a page fault is 2000 memory cycles [9].

Recall that faults degrade memory system performance in
two ways: 1) the available memory bandwidth is reduced and
2) a reduction in the available physical memory increases the
probability of a page fault. We believe that a performance
metric must take into account both factors of memory perfor-
mance. Therefore, we combine the effects of reduced band-
width and increase in page faults into a single metric T similar
to the metric used by Smith [131. The performance metric T
is defined as

T = total data trace length +time to process a page fault

x number of data page faults

where the data trace length is the number of data references
divided by the data bandwidth. T is an indicator of the memory
access time for the trace when both bandwidth and page faults
are taken into account.

We realize, however, that in some situations the bandwidth

70

TraCe

nroff
compact
boyer
iok
spice
mplo
cripto
csh

IEEE TRANSACTIONS ON COMPUTERS, VOL. 39, NO. 1 , JANUARY

Trace Records Data Pages
Instruction Data Touched

284966 175488 52
234110 205468 22
217147 229871 216
236628 250384 151
258563 250996 55
255708 173266 94
147663 150386 221
220367 211592 12

I990

csh WgeFaults 443 507 562 627 740 909 1143 1528 5029
pages 16 15 14 13 12 11 10 9 8
T 1 1.15 1.26 1.41 1.63 2.01 2.48 3.29 10.62

may be the more important metric and the number of page
faults may be of secondary importance. In other cases, the
page faults may be of major concern. Therefore, along with
the metric T, we also present the bandwidth and the number
of page faults for each one of our experiments.

A . Experiments and Results
To evaluate the performance of the reconfigurable memory

system, we used the following benchmark programs: 1) nroff,
a text formatting program, 2) compact, a program for file
compaction using adaptive Huffman encoding, 3) boyer, a
theorem proving program [4], 4) tak, an execution of the
Takeuchi function [4], 5) spice, a circuit simulation program,
6) mpla, a PLA generation program for the Magic layout
editor, 7) cripta, an encryption program written in Lisp, and
8) csh, a command interpreter for the UNIX operating system.

The number of instruction and data references traced for
the above programs are given in Table V. The total number
of data pages in each trace are also given in this table.

The traces for each of these programs were fed to the trace-
driven simulator and the bandwidth, the page faults, and the
value of the performance metric computed. To account for the
presence of faulty banks, each trace is simulated for reduced
number of addressable banks and the number of pages allo-
cated to each program reduced in proportion to the amount
of memory lost. The T metric is normalized with respect to
the fault-free case. The results of our experiments are pre-
sented in Table VI. The bandwidth in this table is defined as
the number of busy banks per memory cycle. From the ta-
ble, one observation is quite obvious-a decrease in the avail-
able physical memory increases the number of page faults.
We also observe that, in most cases, the bandwidth when a
banks (9 5 a 5 15) are used is better than the bandwidth
that could be achieved with eight banks. If bandwidth alone
is the major performance-determining factor, then the recon-
figuration scheme could be used to reconfigure part or all of
the remaining fault-free banks (for example, we could choose
to reconfigure only 12 banks in the case of one, two, three,

CHEUNG et al. : GRACEFULLY DEGRADING INTERLEAVED MEMORY SYSTEM 71

or four faults). If the memory capacity is a limiting factor,
then page faults play an important role in the overall mem-
ory access time. Our reconfiguration scheme allows the use
of all the fault-free memory thereby minimizing the number
of page faults. The resulting degradation in memory system
performance (as measured by 7) is quite graceful.

Based on the experimental results we can conclude that
the proposed reconfiguration scheme allows for the grace-
ful degradation of interleaved memory systems. In situations
where the memory capacity is unimportant, the reconfigura-
tion scheme is able to reconfigure the fault-free banks so that
the resulting memory configuration has a better bandwidth
than a memory configuration with the next lower power-of-2
number of banks. In situations where the memory system ca-
pacity is a limiting factor, the reconfiguration scheme is able
to reconfigure the memory to mininiize the number of page
faults and, at the same time, recover part of the lost memory
bandwidth.

VI. CONCLUSIONS
In this paper, we have presented the design of an inter-

leaved memory system whose performance degrades grace-
fully in the presence of faulty banks. We discussed the details
of such a design and evaluated its performance using a trace-
driven simulation. Our simulation results show that the per-
formance of an interleaved memory system that employs the
design proposed in this paper does indeed degrade gracefully

1131 A. J. Smith, “A modified working set paging algorithm,” IEEE Trans.
Comput., vol. C-25, pp. 907-914, Sept. 1976.

[14] -, “Cache memories,” ACM Comput. Surveys, vol. 14, pp.
473-530, Sept. 1982.

[15] 3 . E. Smith and J . R. Goodman, “A study of instruction cache or-
ganizations and replacement policies,” in Proc. 10th Annu. Symp.
Comput. Archifecture, June 1983, pp. 117-123.
F. W. Terman, “A study of interleaved memory systems by trace
driven simulation,” in Proc. Symp. Simulation Comput. Syst., 1976,

1161

pp. 3-9.

Kaifung C. Cheung (M’88) received the B.S.E.E.
degree from the University of Southern California,
Los Angeles, in 1985 and the M.S.E.E. degree
from the University of Wisconsin-Madison, Madi-
son, in 1987.

He is now with the Far East Local Engineering
Group of the Digital Equipment Corporation, Hong
Kong, where he is working on local language soft-
ware products. His current interests include com-
puter architecture, VLSI designs, and computer net-
works.

Gurindar S. Sohi (S’SS-M’SS) received the
B.E.(Hons.) degree in electrical engineering from
the Birla Institute of Science and Technology, Pi-
lani, India in 1981 and the M.S. and Ph.D. de-
grees in electrical engineering from the University
of Illinois, Urbana-Champaign, in 1983 and 1985,
respectively.

Since September 1985, he has been with the
Computer Sciences Department of the University
of Wisconsin-Madison where he is currently an As-
sistant Professor. His interests are in computer ar-

in the presence of faults. Furthermore, the address translation chitecture, parallel and distributed processing, and fault-tolerant computing.

mechanism needed for graceful degradation does not increase
the memory latency significantly.

ACKNOWLEDGMENT

The authors are thankful to Prof. C. R. Kime and to the
anonymous referees for their helpful comments and sugges-
tions.

REFERENCES
D. P. Bhandarkar, “Analysis of memory interference in multiproces-
sors,” IEEE Trans. Comput., vol. C-24, pp. 897-908, Sept. 1975.
G. Burnett and E. G. Coffman, “A study of interleaved memory sys-
tems,” in Proc. AFIPS 1970 Spring Joint Comput. Conf.. 1970,

K. C. Cheung, “Organization and analysis of interleaved memory sys-
tems,” M.S. Thesis, Dep. Elec. Comput. Eng., Univ. of Wisconsin-
Madison, Madison, WI, 1987.
R. P. Gabriel, Performance and Evaluation of Lisp Systems.
Cambridge, MA: MIT Press, 1985.
K. Hwang and F. A. Briggs, Computer Architecfure and Parallel
Processing. New York: McGraw-Hill, 1984.
P. M. Kogge, The Architecture of Pipelined Computers. New
York: McGraw-Hill, 1981,
D. J. Kuck and R. A. Stokes, “The Burroughs scientific processor
(BSP),” IEEE Trans. Comput., vol. C-31, pp. 363-376, May 1982.
D. H. Lawrie and C. R. Vora, “The prime memory system for array
access,” IEEE Trans. Comput., vol. C-31, pp. 435-442, May 1982.
M. Malkawi and J . H. Patel, “Perfonnance measurement of paging
behavior in multiprogrammed systems,” in Proc. 13th Annu. Symp.
Comput. Archifecture, June 1986, pp. 111-118.
C. Mead and L. Conway, Introduction to VLSI Systems. Reading,
MA: Addison-Wesley, 1980.
D. K. Pradhan, Fault Tolerant Computing: Theory and Techniques.
Englewood Cliffs, NJ: Prentice-Hall, 1986.
B. R. Rau, “Program behavior and the performance of interleaved
memories,” IEEE Trans. Comput., vol. C-28, pp. 191-199, Mar.
1979.

pp. 467-474.

Kewal K. Saluja (S’70-M’73) received the B.E.
degree in electrical engineering from the University
of Roorkee, Roorkee, India, in 1967, and the M.S.
and Ph.D. degrees from the University of Iowa,
Iowa City, in 1972 and 1973, respectively.

He is currently in Associate Professor in the
Department of Electrical and Computer Engineer-
ing at the University of Wisconsin-Madison where
he teaches logic design, computer architecture,
microprocessor-based systems, VLSI design and
testing. Previously he was at the University of New-

castle, Australia. He has also held visiting and consulting positions at number
of institutions such as the University of Southern California, the University
of Iowa, and Hiroshima University. His research interests include design for
testability, fault-tolerant computing, VLSI design, and computer architecture.

Dhiraj K. Pradhan (S’7O-M’72-SM’8O-F’88) is
currently a Professor in the Department of Electri-
cal and Computer Engineering, University of Mas-
sachusetts, Amherst. Previously, he has held posi-
tions with the University of Regina, Sask., Canada,
Oakland University, Rochester, MI, Stanford Uni-
versity, Stanford, CA and IBM Corporation. Also,
he has served as a consultant to various industries.
He has been actively involved with research in fault-
tolerant computing, testing, computer architecture,
and parallel processing since receiving the Ph.D.

degree in 1972. He has published numerous papers in these areas. He is ed-
itor and coauthor of the book entitled, Fault-Tolerant Computing: Theory
and Techniques, Vols. I and II (Englewood Cliff, NJ: Prentice-Hall).

Dr. Pradhan has edited the Special Issue on Fault-Tolerant Computing of
the IEEE TRANSACTIONS ON COMPUTERS (March 1980). Also, he has served as
session chairman and Program Committee Member for various conferences.
He was the co-chairman for the 1988 IEEE Workshop on Fault-Tolerant Par-
allel Distributed Systems.

