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DNA methylation can affect gene accessibility and therefore gene expression. Including those that . . :
. . : : < In this stage, the CPG markers and ensemble gene ids that were — Gene Overl
suppress or promote tumor growth and progression. In this research, we examined the potential of e .. ene_Uverlap
. . . . . Identified as being important by both Random Forest and ANOVA O
developing a scalable feature selection and deep learning framework capable of processing high : - —
. . ) : ) . o were used to create a deep learning classification model for cancer
dimensional genomic datasets to identify methylation and gene expression sites in the human genome srediction 3
ibuti | | adenocarcinoma (PDAC). - . . >
contributing to pancreatic ductal adenocarcinoma ( 2 ¢ The deep learning model consisted of 4 dense layers with 100, L 61 . e
_ —
200, 300, 200 neurons respectively. UEJ
s A default activation of Relu was used in all these layers. <
Dataset ¢+ The learning rate was set to 0.001 with a patience of 20 epochs. %
The entire process is listed in Figure 1. Methylation and RNA-seq files were obtained from TCGA- « The dropout rate was set to 0.1 with a loss function of sparse Random_Forest ANOVA
PAAD project. From a total of 178 donors, 195 methylation files were obtained that comprised of 11 categorical cross entropy. Gene_Overlap
normal and 184 tumor samples. The RNA-seq dataset had 183 files comprising of 4 normal and 179 <+ For methylation data, the neural network was trained in eight
tumor samples. Incremental stages of 100 epochs each with a total of 800 epochs.
f —_ i 11 normal samples combined with 23 tumor samples at each
stage. 1324 1851 6615
TCGA-PAAD ] [ TCGA-PAAD <« For RNA-seq data, the neural network was trained In seven o
Methylaton | | Sene Expression incremental stages of 100 epochs each with a total of 700 epochs. 2
\ ) Here_4_normals combined with 25 tumor sar_nples were use_d. 5 Random Forest ANOVA
¢ In this incremental approach, the deep learning model readjusted

Its weights based on a different combination of tumor and normal _ _
samples. The combined final training accuracy after both models ~ Figure 3: Results from feature selection
| on the entire dataset can be seen in Table 1.
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— Er/]b«rrl.\(;rl])?;iesnt Accuracy Precision Recall Fl Cohen Kappa ROC AUC
Methylation 0.995 ] 0.994 0.997 0.954 0.997
‘ RMNA-seq 0.995 ] 0.994 0.997 0856 0.997
Wi 0 ——— 0:No Cancer Table 1: Deep learning metrics for both methylationand RNA-seq data
i\ 1 ——1: Cancer
‘ Enrichment Analysis R KEGG 2021 Human
Input FC Output y Pathwa?/s.ln cancTar 9.30.e—12.l
Layer Convolution Layer Layer Layer ,:, The 4039 genes Obtalned as an Overlap from Transcriptional misregulation in cancer *1.71e-10
feature selection using Random Forest and oieogh/cans in cancer 5 A0S0
- Hepatitis B *6.98e-09
Flgure 1 Dlag I’am Of methOdOIOQy ANOVA Were used to perform an eanChment Gastric cancer *4.96e-08

analysis. These genes included that of both
methylation and RNA-seq feature selection
»» When compared with a list of 221 tumor-

p53 signaling pathway *6.83e-08

Addressing Data Imbalance

Human papillomavirus infection *7.87e-08

Wnt signaling pathway *1.59e-06

¢ Due to data imbalance with the minority class

= = - - related genes that Were Identlfled from Hepatocellular carcinoma *1.74e-06
being normal samples, direct application of .
: . literature, our results returned 98 common Chronic myeloid leukemia *1.97e-06
feature selection was not possible due to model | | | | |
tumor genes. 0 : Y ogu(pvaluel ; 0

biased towards features that express tumor.
¢ Hence, normal samples were combined with a

s Enrichr database was used to identify common
pathways across the overlap genes.

Figure 4: Pathway analysis of 98 cancer genes indeitified

roup of tumor samples using random Samples of . . ' i '
8n derr)sampling where ?nstances gfrom the Majority Class ¢ Figure 4 shows the pathway analysis of the 98 from Iiterature and present in feature selection
majority class (tumor) are subsampled until a cancer genes while Figure 5 shows the Nicotine addiction 8:61e-:03 e
more balanced class distribution is achieved pathways analysis of all feature selected genes. | icacum signaing pattay 5.4320:
R FOI‘ the meth |a'[I0n dataset thlS rocess WaS 0:0 These aISO included genes Such as “KRAS", Neomycin, kanamycin and gentamicin biosynthesis 5.94e-02
’ repeated 8 tlr?/]es Wlth 293 tu’mOI’ ”E) eaCh rou Normal Tumor Tumor Normal "TP53", and "SMAD4” revealing that the Endometrial cancer 6.3e-02
o Foli the RNA-seq dataset, this process V\?as P stratified feature selection technique Is indeed Adherens junction 6.72e-02
repeatec 7 times With 25’tumor in each group Figure 2: RepresentatiOn Of Undersamp”ng USEd USGfUl at identifying Important features' fIUta?aterglz Sir_]atli)se :Sle(;zz
. ] i ong-term potentiation ©.ve-
’:’ The process |S delCted |n Flgure 2 In one CyCIe Of feature SeIeCtlon ACknOWIedgementS Fc gamma R-mediated phagocytosis 7.04e-02
F t S I t- We WOUId Ilke tO acknowledge fundlng Support Adrenergic signaling in ca-rdiomyoq./tes 7.33e-02
eature selection from the National Institute of General Medical e T tonnes 2
. - - —logio(p-value)
¢ Feature selection performed separately for every sub-group in random undersampling process. Sciences of the National Institutes of Health, : .
. . . ; . under NDSU COBRE Award Number Figure 5: Pathway analysis of all feature selected genes
“ ANOVA and Random Forest implemented for dimension reduction. : . o :
2 For ANOVA, all features that reported to have a p-value < 0.05 were selected 1P20GM109024, the Office of Research and Identified from feature selection
« Random Forest classifier utilized 500 decision trees to return the selected list. CREYE BW@U‘C’UW@, and NIH grant P30 CA77598 utilizing the Biostatistics Core shared resource
< The features selected were combined to vyield a final list of important features. of the I\/!asomc C_:ancer Center, Uplversny _of Minnesota and by the National Center for Advancing |
% CpG markers from Methylation and EnsemblelDs from RNA-seq were matched to gene names. Translational Sciences of the National Institutes of Health Av_vard Number UL1TR002494. The content Is
< Results from this gene overlap seen be in Figure 3. solely the responsibility of the authors and does not necessarily represent the official views of the
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