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A fixed, octave-based musical scale cannot remain faithful to the consonant simple integer ratio 
intervals and simultaneously be modulated to all keys. It is possible to reconcile these competing 
criteria, however, if the notes of the scale are allowed to vary. This paper presents a method of 
adjusting the pitches of notes dynamically, an adaptive tuning, that maintains fidelity to a desired set 
of intervals and can be modulated to any key. The adaptive tuning algorithm changes the pitches of 
notes in a musical performance so as to maximize consonance, which is calculated based on recent 
perceptual work. The algorithm can operate in real time, is responsive to the notes played, and can 
be readily tailored to the timbre (or spectrum) of the sound. This can be viewed as a generalization 
of the methods of just intonation, but it can operate without specifically musical knowledge such as 
key and tonal center and is applicable to timbres with nonharmonic spectra as well as the more 
common harmonic timbres. 

PACS numbers: 43.75.Bc 

INTRODUCTION 

Numerous musical scales have been proposed through 
the past several centuries including meantone; Pythagorean; 
various just intonations; scales by Werkmeister, Vallotti, and 
Young, Partch, and Carlos; and the now ubiquitous 12-tone 
equal-temperament scale. • Many of these scales were created 
as an attempt to minimize the inevitable inconsistencies 
(commas, dieisis, and schismas, for example) that arise when 
trying to design a single fixed scale to remain faithful to a 
desired set of intervals and to be transposable simultaneously 
to all keys. This paper suggests a different approach, one that 
allows the tuning to change dynamically as the music is per- 
formed; we call such a scale an adaptive tuning. Adaptive 
tunings pursue a single tuning strategy in which the notion of 
musical "key" loses much of its significance, yet can main- 
tain a desirable set of intervals (such as the small integer 
intervals) irrespective of starting tone. 

Carlos t and Hall 3 have introduced quantitative measures 
of the ability of fixed scales to approximate a desired set of 
intervals. Since different pieces of music contain different 
intervals, and since it is mathematically impossible to devise 
a single fixed scale in which all intervals are perfectly in 
tune, Hall 3 suggests choosing tunings based on the piece of 
music to be performed. Polansky 4 suggests the need for a 
"harmonic distance function," which can be used to make 
automated tuning decisions, and points to Wagge's 5 "intelli- 
gent keyboard," which utilizes a logic circuit to choose au- 
tomatically between alternate versions of thirds and sevenths 
depending on the musical context. The adaptive tuning con- 
cept uses a measure of consonance as its "distance function" 
to change the pitches of notes dynamically (and in real time) 
as the music is performed. Partch 6 wrote "it is conceivable 
that an instrument could be built that would be capable of an 
automatic change of pitch throughout its entire range." This 
paper shows how to realize this concept. In addition, the 
adaptive tuning is responsive to the timbre of the instruments 
as they are played. 

The adaptive tuning algorithm exploits the results of re- 

cent work 7 on the perception of consonance, the "principle 
of local consonance," which is based on a functional param- 
etrization of the tonal consonance curves of Plomp and 
Levelt. 8 Local consonance describes the relationship between 
the timbre of a sound (its spectrum) and a set of intervals 
(scales or chords) in which the sound can be played most 
consonantly. For a sound with a given timbre, the "disso- 
nance function" D(a) describes the perceived dissonance of 
the sound when played at intervals a•. Values of a at which 
local minima of the dissonance function occur are intervals 

that are (locally) maximally consonant. Such values are 
called points of local consonance and tend to be musically 
desirable intervals. For instance, simple integer ratios are 
points of local consonance for harmonic timbres. The adap- 
tive tuning algorithm calculates the (gradient of the) disso- 
nance at each time step and adjusts the tuning of the notes 
toward the nearest point of local consonance. 

This paper proposes a new (adaptive) solution to the 
longstanding problem of scale formation. The tuning algo- 
rithm is implementable in software or hardware and can be 
readily incorporated into electronic music studios. Just as 
many MIDI synthesizers have built-in alternate tuning tables 
that allow the musician to play in various just intonations 
and temperaments, an adaptive tuning feature could be added 
to sound modules. The musician could then effortlessly play 
in a scale that continuously adjusts to the timbre and the 
performance in such a way as to maximize consonance. 

Section I briefly reviews the concept of consonance and 
dissonance curves. The adaptive tuning algorithm is then de- 
rived as an approximate gradient descent of a cost function 
defined by the dissonance of the currently sounding tones. 
Section III analyzes the algorithm and gives several ex- 
amples of its behavior. Section IV compares the adaptive 
tuning algorithm to just intonation and to the slandard 12- 
tone equal-tempered scale. Section V suggests several ways 
that the algorithm might be implemented, and the final sec- 
tion concludes. 
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FIG. 1. Dissonance curves for pure sine waves as a function of frequency 
difference. The consonance and dissonance ,scales are arbitrary. (a) Base 
frequency 125; (b) base frequency 250; (c) base frequency 500, (d) base 
frequency 1000, (e) base frequency 2000. 

I. A MEASURE OF DISSONANCE 

The psychoacoustic work of R. Plomp and W. J. M. 
Levelt s provides a basis on which to build a measure of 
consonance and dissonance that can be used to guide the 
adaptation. Plomp and Levelt asked volunteers to rate the 
perceived dissonance of pairs of pure sine waves, giving 
curves such as Fig. 1, in which the dissonance is minimum at 
unity, increases rapidly to its maximum somewhere near one 
quarter of the critical bandwidth, and then decreases steadily 
back toward zero. When considering timbres that are more 
complex than pure sine waves, dissonance can be calculated 
by summing up all the dissonances of all the partials and 
weighting them according to their relative amplitudes. This 
leads to curves such as Fig. 2, which shows the dissonance 
curve for a timbre with nine harmonic partials. Note that the 
local minima occur near many of the steps of the 12-tone 

1.0 

.75 

0 1 

1.0 

Z3456 7 8 9 10 13 12 number of 
semitones 

hftn octave frequency 
ratio 

1.5 2.0 

FIG. 2. Dissonance curve for the timbre with nine harmonic partials. The 
horizontal axis represents frequency difference. Dots mark the location of 
notes in the standard 12-tone equal-tempered scale. Dissonance values are 
normalized so that the largest value occurs at unity. 

equal tempered scale (actually, they fall on the nearby simple 
integer ratios, as shown in Table I). Similar curves can be 
drawn for nonharmonic timbres. 

To be concrete, the dissonance between a sinusoid of 
frequency fl with amplitude o t and a sinusoid of frequency 
f2 with amplitude o 2 can be parametrized as 

d(fl,f2,ul,u2)=utu2(e -*sl/2 /tl- e-t•slœ2-hl), (1) 
where 

s = d*/[s I min(f I ,/2) +s2], (2) 

a=3.5, b=5.75, d*=0.24, st=0.021, and s2 =19 are 
determined by a least-squares fit. The amplitude term o 1o2 
ensures that softer components contribute less to the total 
dissonance measure than those with larger amplitudes, d* is 
the interval at which maximum dissonance occurs, and the s 
parameters in (2) allow a single functional form to interpo- 
late smoothly between the various curves of Fig. 1 by sliding 

TABLE I. Notes of Ihe equal-tempered musical scale compared to locations of points of local consonance of the 
dissonance curve for a nine partial harmonic timbre, and compared to the just intonation major scale from 
Wilkinson. I Septimal (sept.) scale values from Partchfi 

12-tone Minima of Just 

Note Power equal dissonance intonation 
name or= tz• temperament curve (Wilkinson t ) 

C ot ø= 1 1 1:1 unison 

C• a t = 1.059 16:15 just semitone 
D aZ=l.122 1.14 (8:7=sept. maj. 2l 9:8 just whole tone 
DI a'a=l.189 1.17 (7:6=sept. rain 3) 

1.2 (6:51 6:5 just min. 3 
1.25 (5:4) 5:4 just maj. 3 
1.33 (4:3) 4:3 just perfect 4 

1.4 (7:5=sept. tritone) 45:32 just tdtone 
1.5 (3:2) 3:2 perfect 5 
1.6 (8:5) 8:5 just min. 6 
1.67 (5:3) 5:3 just maj. 6 

1.75 (7:4=sept. min. 7) 16:9 just min. 7 
1.8 (9:5=large just maj. 7) 15:8 just maj. 7 

2.0 2:1 oclave 

E a4=1.260 
F cr • = 1.335 
F• ot•= 1.414 
G o? = 1.498 
Gg a3=1.587 
A a ø= 1.682 
A• am=1.782 
B a I• = 1.888 
C a•2=2.0 
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FIG. 3. Dissonance curve for a nonharmonic timbre with partials at 1,/•0, 
/•],s, ilia, 15a], 1•, •?, and •, where •=lhe ninth root of 2. This timbre is 
appropriate for nine-tone equal lemperament, since minima of the disso- 
nance curve occur at many oœ the nine-tone scale steps (top horizontal axis) 
and not at the steps of the 12-tone scale steps (bottom axis). The dissonance 
values (vertical axis) are arbitrary. 

the dissonance curve along the freque.ncy axis so that it be- 
gins at the smaller of f] and f2 and by stretching (or com- 
pressing) it so that the maximum •lissonance occurs at the 
appropriate frequency. See Ref. 7 for a derivation, justifica- 
tion, and discussion of this model. 

More generally, a timbre F with base (or fundamental) 
frequency f is a collection of n sine waves (or partials) with 
frequencies ( f , a 2f ..... a ,f) and amplitudes ( u ] ,u 2 ..... On), 
where the a i have been ordered from lowest to highest and 
all are greater than 1. The intrinsic dissonance of the timbre 
F is the sum of the dissonances of all pairs of partials 

I n n 

DF=• • Z d(a'j, ai[,oi,oi), (3) 
i=l j=l 

with the convention that a • = ]. When two notes of the tim- 
brc F arc played simultaneously at an interval a, the result- 
ing sound has a dissonance that is the same as that of a 
timbre with frequencies 

(f ,a 2f ,-- -,anf , oil, ota 2f ..... ota nf)' 

Equation (3) can then be used to calculate the intrinsic dis- 
sonance of this concatenated timbre. Equivalently, define the 
timbre aF to contain the frequencies ( af, ota2f ..... aanf ) 
with amplitudes (0] ,02 ..... 0,). The dissonance of F at the 
interval a is 

] n n 

De(a)= 5 (O•+O•e)+• Y. d(a•f,a%f,v•,v]), (4) 
i=1 j=! 

and the dissonance curve generated by the timbre F is DF(a) 
over an appropriate range of a. 

While (3) is generally more useful for calculations, the 
dissonance curve (4) allows a simple visualization of the 
behavior of the adaptive tuning algorithm. Figures 2 and 3 
show the dissonance curves for a harmonic and a nonhar- 

monic timbre. Suppose the musical score (or the performer) 
commands two notes F] and Fe, which form an interval a•. 

The dissonance D•(a) of this interval can be viewed directly 
from the dissonance curve. The algorithm essentially "slides 
down" the curve until it reaches the nearest local minimum 

or*, which is a point of local consonance. The algorithm 
retunes the notes F t and F 2 to F• and F• so that the actual 
interval sounded is precisely F• /F• = a*. 

II. ALGORITHM STATEMENT 

The algorithm must have access to the timbre (or spec- 
trum) of the sounds it is to adjust. This information may be 
built-in (as in the case of a musical synthesizer or sampler 
that inherently knows the timbre of its notes) or it may be 
calculated (via a Fourier transform, for instance). The algo- 
rithm adjusts the pitch of each note so as to decrease the 
dissonance until the nearest point of local consonance is 
reached. This modified set of pitches (or frequencies) is then 
output to a sound generation unit. Thus, whenever a new 
musical event occurs, the algorithm calculates the optimum 
pitches so that the sound locally minimizes the dissonance. 

There are several possible ways that the necessary ad- 
justments can be carried out. Consider the simple case of two 
notes with pitches F• and Fz (with F•<F2). With no adap- 
tive tuning, the interval Fe/F] will sound. The simplest 
adaptive strategy would be to calculate the dissonances of 
the intervals Fz/F• + • for various values of e (appropriate 
e's could be determined by the bisection method, for in- 
stance). The point of minimum dissonance is given by that 
value of ß for which the dissonance is smallest. The pitches 
of F] and F 2 are then adjusted by an appropriate amount, 
and the more consonant interval sounded. 

This simple "search" technique is inefficient, especially 
when it is necessary to calculate the dissonance of several 
notes sounded simultaneously. The "gradient descent" 
method 9 is a better way of finding the nearest local minimum 
of the dissonance curve. Suppose that rn notes, each with 
timbre F, are desired. Let f• </2<... <fro represent the fun- 
damental frequencies (pitches) of the notes. A "cost" func- 
tion D is defined to be the sum of the dissonances of all the 

intervals at a given time, 

D=• Z Z • Z d(apfl,aqfl•,Op,Oq). 
/=1 k=l p=l q=l 

An iteration is then conducted which updates the f• by mov- 
ing "downhill" over the tn dimensional surface D. This is 

frequency[ = frequency[-{step size}{gradient}, 
value J value J 

where the gradient is an approximation to the partial deriva- 
tive of the cost with respect to the ith frequency. The minus 
sign insures that the algorithm looks for a local minimum 
(rather than a local maximum). The adaptive tuning algo- 
rithm is 
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do 

for i = 1 to m 

dD 

fi(k4r l)=/i(k)-/z dfi(k) (6) 
endfor 

until [f•(k+l)-f•(k)[<8 Vi, 

where k is an iteration counter. Thus the frequencies of all 
notes are modified in proportion to the change in the cost and 
to the step size/.• until convergence is reached, where con- 
vergenee means that the change in all frequencies is less than 
some specified & Some remarks are in order. 

(i) 8 should be chosen based on the tuning accuracy of 
the sound generation unit. 

(it) As a practical matter, it is often advisable to fix the 
frequency of one of the fi's and to allow the rest to adapt 
relative to this fixed pitch. 

(iii) It is sensible to carry out the adaptation with a loga- 
rithmic step size, that is, one that updates the frequency in 
"cents" rather than directly in hertz. 

(iv) It is straightforward to generalize the algorithm to 
retune any number of notes, each with its own timbrai struc- 
ture. 

(v) A detailed discussion of the calculation of dD/dfi(k ) 
is given in the Appendix. 

(vi) There are many ways to carry out the minimization 
of D. An iterative algorithm is proposed because closed-form 
solutions for the minima are only possible in the simplest 
cases. 

(vii) If desired, the adaptation can be slowed by choos- 
ing the step size small. Outputting intermediate values causes 
the sound to slide into the point of maximum consonance. 
This is one way to realize Darregs vision of an "elastic" 
tuning. to 

IlL BEHAVIOR OF THE ALGORITHM 

Any iterative procedure raises issues of convergence, 
equilibria, and stability. Since the adaptive tuning algorithm 
is defined as a gradient descent of the dissonance D, such 
analysis is conceptually straightforward. However, the func- 
tion D is complicated, its error surface is multimodal, and 
exact theoretical results are only possible for simple combi- 
nations of simple timbres. Accordingly, the analysis focuses 
on a few simple settings, and examples are used to demon- 
strate which aspects of these simple settings generalize to 
more complex (and hence more musically interesting) situa- 
tions. Theorem 1 shows the close relationship between the 
behavior of the algorithm and the surface formed by the dis- 
sonance curve. In effect, the behavior of the algorithm is to 
adjust the frequencies of the notes so as to make a controlled 
descent of the dissonance curve. The simplest possible case 
considers two notes F and G, each consisting of a single 
partial. 

Theorem 1: Let f0 and go be the frequencies of two sine 
waves, with fo < go- Apply the adaptive tuning algorithm (6). 
Then (a) go>(1-sl)fo-s2 implies that ]g•+l-f•+•[ 

1.o 

.25 

(1+(:[)f/2 (:If 

I ^ I s I c I [• I E I 

FIG. 4. Dissonance between a note with two fixed partials at/and af, and 
a note with a single partial g, as a function of g. There are five possible 
behaviors as the adaptive luring algorithm is tierated, depending on the 
starting frequency. If g is in region A, g drifts toward zero; in region B, g 
merges with .•, in region C, g has minimum at (1 +or)f/2; in region D, g 
merges with or f; or, in region E, g drifts toward infinity. 

>[gk-fkl for all k; and (b) g0<(1 -st)fo-s2 implies that 
Igk+-fn.d<lgn-fnl for all k, where the s i are defined in 
(2). 

Proof: All proofs are relegated to the Appendix. 
In case (a), the f• and g• grow further apart as time 

evolves, while in case (b), f• approaches g• and the algo- 
rithm drives the dissonance d(f• ,g•) to its global minimum 
at some point where f•=g•. To see this graphically, picture 
the algorithm evolving on one of the single humped disso- 
nance curves of Fig. 1. If the initial difference between f and 
g is small, then the algorithm descends the near slope of the 
hump, driving f and g closer until they merge. If the differ- 
ence between f and g is large, then the algorithm descends 
the far side of the hump and the dissonance is decreased as f 
and g move further apart. The two partials "drift away" from 
each other. (This is conceptually similar to the "parameter 
drift" of Ref. 11, where descent of an error surface leads to 
slow divergence of the parameter estimates.) Together, (a) 
and (b) show that the point where g = (1 - s t)f- s2 (the top 
of the hump) is an unstable equilibrium. 

For more complex timbres, more interesting (and useful) 
behaviors arise. Theorem 2 shows how interlaced partials 
can avoid both drifting and merging. 

Theorem 2: Consider two notes F and G. Suppose that 
F consists of two partials fixed at frequencies f and otf with 
oe>l, and that G consists of a single partial at frequency go 
that is allowed to adapt via the adaptive tuning algorithm {6). 
For simplicity, assume that s of (2) is identically equal to 1. 
Then (a) there are three stable equilibria: at g =f, at g = 
and at g = ( 1 + a)f/2; (b) if golf, then [g•+ t -fl > Ig•-f[ 
for all k; and (c) ifgo>>a f, then Ig+t-ofl>lg,-o,f[ for 
all k. 

Figure 4 shows the c. orresponding error surface. The re- 
gions of convergence for each of the possible equilibria are 
shown below the horizontal axis. As in Theorem 1, when g is 
initialized far below f or above o•f (in regions A or E), then 
g drifts away, while if g starts near enough to f or o•f (in 
regions B or D), then g ultimately merges with f or otf. The 
interesting new behavior in Theorem 2 occurs in region C, 
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TABLE IL Converged major and minor chords differ depending on the 
number of harmonic partials they contain. 

Converged Converged Converged 
Initial frequencies frequencies frequencies 
notes Initial for 2-3 for 4 for 5-16 

(12 tone) frequencies partials partials partials 

Minor 

C 523 523 523 5• 

Eb •2 •7 641 627 

G •4 784 784 784 

Major 
C 523 523 523 523 

E 659 647 641 654 

G 784 784 784 784 

where g is repelled from both f and af and becomes trapped 
at a new minimum at (1 + a)f/2. !n fact, this behavior is 
genericssandwiched partials typically reduce dissonance by 
assuming intermediate positions. This is fortunate, since it 
gives rise to many of the musically useful properties of adap- 
tive tunings. In particular, sets of notes with interlaced par- 
tials do not tend to drift apart since it is difficult for partials 
to cross each other without a rise in dissonance. 

To be concrete, consider notes F with partials at fre- 
quencies (fo,f• ,...,.In) and G with partials at frequencies 
(g0,g• ..... g,,,). Suppose that gi is sandwiched between fi 
and/•+•, 

f j+ •* <gi<f j+t- 8', 

for some 6* larger than the distance to the top of the hump in 
Fig. 1, and suppose that all other partials are far away: 

fj-,afi, fj+,af•+2, 

Then the dissonances (and their gradients) between gi and 
the fi are insignificant in comparison to the dissonances be- 
tween gi and the nearby frequencies fi and fi+•. Thus gi 
acts qualitatively like the g of Theorem 2 as it is adjusted by 
the adaptive tuning algorithm toward some intermediate 
equilibrium. Of course, the actual convergent value depends 
on a complex set of interactions among all the partials, but gi 
tends to become trapped, since approaching either f or atf 
requires climbing a hump of the dissonance curve and a cor- 
responding increase in dissonance. 

As more partials are adapted, the error surface increases 
in dimension and becomes more complex. Notes evolve on 
an m-dimensional sheet that is pocketed with crevices of 
consonance into which the algorithm creeps. Even a quick 
glance at the Appendix shows that the number of equations 
grows rapidly as the number of interacting partials increases. 
To examine the results of such interactions in a more realistic 

situation, Table II reports converged values (in hertz, accu- 
rate to the nearest integer) for triads played with harmonic 
timbres with varying numbers of partials. In each case, the 
algorithm is initialized with fundamental frequencies that 
correspond to the 12-tone equal tempered notes C, E I', G (a 
minor chord) or to C, E, G (a major chord), and the algo- 
rithm is iterated until convergence. No "drifting" notes or 

divergence occurs because the partials of the notes are inter- 
laced. In all cases, the fifth (the interval between C and G) 
remains fixed at a ratio of 1.5:1. For simple two and three 
partial notes, the major and minor chords merge, converging 
to a "middle third" that splits the fifth into two parts with 
ratios 1.21 and 1.24. With four partials, the middle third 
splits the fifth into two nearly equal ratios of 1.224. 

For notes with five or more partials (up to at least 16), 
the two initializations evolve into distinct musical entities. 

The major chord initialization converges to a triad with ratios 
1.2 and 1.25, while the minor chord initialization converges 
to a triad with the inverted ratios 1.25 and 1.2. These are 

consistent with the minor and major thirds of the just into- 
nation scale, suggesting that performances in the adaptive 
tuning are closely related to a just intonation when played 
with harmonic timbres of sufficient complexity. 

Thus musical theory (in this case just intonation) is in- 
timately related to perceptions of consonance, assuming an 
ideal harmonic structure. When timbres deviate from a har- 

monic structure, however, music theory and consonance dif- 
fer. It is easy to hear that the ear prefers consonance over 
music theory. A particularly striking example is provided by 
the use of stretched (and/or compressed) timbres. t2'i3 Con- 
sider a complex nonharmonic timbre with partials at 

f, 2.1f, 3.24f, 4.41f, and 5.6f, 

which are the first five partials of the stretched timbre de- 
fined by 

f n = f A lOg2 n, 

for A = 2.1. As shown in Table III, an initial set of notes at 
C, E, G, C converges to notes with fundamental frequencies 
that are completely unrelated to "normal" 12-tone equal 
tempered intervals based on the semitone •2x/•. Rather, they 
are notes of a "stretched" scale that is closely related to the 
stretched semitone fl = 12 2,dt•.l. Thus a major chord com- 
posed of notes with stretched timbres converges to a 
stretched major chord. Similarly, Ihe minor chord converges 
to a stretched minor chord. Recall that in Ref. 7 a scale and 

a timbre were defined to be related if the timbre generates a 
dissonance curve with local minima at the scale steps. Using 
this notion of related scales and timbres, the action of the 
algorithm can be described succinctly: The adaptive tuning 

TABLE IlL Using five partial "stretched" timbres, the adaptive tuning al- 
gorithm converges to "stretched" major and minor chords, ,8 = •2 2,•.1. 

Initial Initial Nearest 

note• frequency of Convergent stretched 
(12 tone) fundamental values Ratio scale tone 

C 523 523 1.0 /30 
E b 622 635 1.21 /f= 1.20 
G 784 808 1.54 ,8? = 1.54 
C 1046 1099 2.1 

C 523 523 1.0 /5 ø 
E 659 665 1.27 /54=1.28 
G 784 808 1.54 ,8•= 1.54 
C 1046 1100 2.1 ,812=2.1 
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algorithm automatically retunes notes so as to play in the 
scale related to the timbre of the notes. 

IV. RELATION TO JUST INTONATION AND TO 12- 
TONE EQUAL TEMPERAMENT 

Since harmonic timbres are related to a scale composed 
of simple integer ratios, using the adaptive tuning (AT) strat- 
egy is similar to playing in a just intonation (JI) major scale. 
Table I compares intervals in the 12-tone equal temperament, 
in major just intonation scales (from Refs. 1 and 6), and the 
locations of the local minima of the dissonance curve for a 

timbre with nine harmonic partials. The intervals in just in- 
tonation are quite similar to the locations of the local 
minima. In particular, the consonance curve agrees with the 
"septimal" scales of Partch for seconds, tritones, and the 
minor seventh, but with the just major scale for the major 
seventh. Local minima occur at both the septimal and the just 
thirds. 

Significant differences arise, however, when the tonal 
center of the piece changes. Consider a musical fragment that 
cycles through the "circle of fifths": 

C G D A E B Fll Cg Gll Dll All F C. 

When played in JI in the key of C, this progression sounds 
very "out-of-tune." For instance, major thirds are harmoni- 
ously played at intervals of 5:4 in the keys near C, but are 
sounded as 32:25 in A and E and as 512:405 in Fll. Some 
fifths are impure also; the fifth in the Dll chord, for instance, 
is played as 40:27 rather than the desired 3:2. Such inaccu- 
racies are readily discernible to the ear and sound quite out- 
of-tune and dissonant. Problems such as this are inevitable 

for any nonequal fixed tuning. 3 The adaptive tuning is able to 
maintain the simple 5:4 and 3:2 ratios throughout the musical 
fragment because it is not a fixed set of notes. 

One might consider "switching" from Jl in C to Jl in G 
to JI in D, etc., using the local musical key to determine 
which JI scale should be used at a given instant. This would 
cure the immediate problem for this example. Unfortunately, 
it is not always easy to determine the proper local key of a 
piece, nor even to determine if and when a key change has 
occurred. The AT automatically adjusts the tuning to the de- 
sired intervals with no a priori knowledge of the musical key 
required. When used with harmonic timbres, it is reasonable 
to view the AT as a way to interpolate continuously between 
an appropriate family of just intonations. 

A subtler problem is the existence of the "syntonic 
comma" as illustrated in Fig. 5. Hall 3 points out that if this 
musical fragment is played in JI with the tied notes held at 
constant pitch, then the instrument finishes lower than it be- 
gins. Equal temperament prevents this drift in tonal center by 
forcing the mistuning of many of the intervals away from 
their just small integer ratios. The adaptive tuning maintains 
the just ratios and the tonal center remains fixed'. This is 
possible because the pitches of the notes are allowed to vary 
microtonally. For instance, the C note in the second chord is 
played at 264 Hz while the "same" note in the first chord is 
played at 261.5 Hz. 

One of the major advanlages of the 12-tone equal tem- 
pered scale over JI is that it can be transposed to any key. 

Frequencies when 392.5 436---436 387.5--387.5 
played in Just Intonation 327 327 290.5-290.5 323 261.5-261.5 290.5 242 258.5 
with held notes: 

131 109 87 96.5 129 

Frequencies when 392 440 440 392 392 
played in12-tone equal 329.5 329.5 293.5 293.5 329.5 
temperament: 261.5 261.5 293.5 247 261.5 

131 110 87.5 98 131 

Frequencies when 392.5 440 438.5 391 392.5 
played 'n adaptive 327 330 292 294 327 261.5 264 292 245 261.5 

tuning: 131 110 87.5 98 131 

Ratios when played in 6/5 4/3 3/2 4/3 6/5 
adaptive tuning and 5/4 5/4 1/1 6/5 5/4 
in just intonation: 2/1 6/5 5/3 5/4 2/1 

FIG. 5. An example of the "syntonic comma" ia just intonation; the piece 
ends about 21 cents lower than it begins. 12qone equal-temperament main- 
laias the pitch by distorting the simple inleger ratios. The adaptive tuning 
microtonally adjusts the pitches of the notes to maintain simple ratios and to 
avoid Ihe wandering pitch. All frequency values are rounded to the nearest 
0.5 Hz. 

The adaptive tuning strategy shares this advantage, as dem- 
onstrated by the circle of fifths example. Both 12-tone and 
the AT can be played starting on any note (in any key). The 
12-tone equal scale has sacrificed consonance so that (say) 
all the C notes can have the same pitch. As before, the adap- 
tive tuning algorithm modifies the pitch of each note in each 
chord slightly in order to increase the consonance. Thus the 
C note in the C chord has a (slightly) different frequency 
from the C notes in the G• and F chords. 

When restricted to a single key (or to a family of closely 
related keys) JI has the advantage that it sounds more con- 
sonant than 12-tone equal (at least for harmonic timbres), 
since all intervals in 12-tone equal are mistuned somewhat 
from the simple integer ratios. The AT shares this advantage 
with JI. Thus the difference between a piece in AT and the 
same piece played in 12-tone equal is roughly the same as 
the difference between JI and 12-tone, for pieces in a single 
key when played with harmonic timbres. Whether this in- 
crease in consonance is worth the increase in complexity 
(and effort) is much debated, although the existence of 
groups such as the "Just Intonation Network "•4 is evidence 
that some find the differences worthy of exploration. 

A major advantage of the adaptive tuning approach be- 
comes apparent when the timbres of the instruments are non- 
harmonic, that is, when the partials are not harmonically re- 
lated. Consider a "bell-like" or "gong-like" instrument with 
the nonharmonic spectrum of Fig. 3 which was designed for 
play in nine-tone equal temperament using the techniques of 
Ref. 7. The dissonance curve is significantly different from 
the harmonic dissonance curve of Fig. 2. The most consonant 
intervals occur at steps of the nine-tone equal-tempered scale 
(the top axis) and are distinct from the simple integer ratios. 
The 12-tone equal scale (shown in the bottom axis) does not 
contain a close approximation to most of these consonant 
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TABLE IV. Using the nine-tone timbre of Fig. 3, the adaptive tuning algo- 
rithm converges to minima of the related dissonance curve. The major chord 
converges to a chord with nine-tone scale steps 1, 3, and 5. 

Initial Initial Nearest 

notes frequency of Convergent Convergent nine-tone 
(12 tone) fundamental values ratio scale step 

C 523 528 

El, 622 617 1.17 /32=1.17 

C 523 528 

E 659 659 1.26 •=1.26 

C 523 518 

F 698 705 1.36 /5 •= 1.36 

C 523 513 

F•; 739 755 1.47 /f=1.47 

C 523 528 

G 783 777 1.47 /•5= 1.47 

C 523 523 

Gll 830 830 1.59 /36=1.59 

C 523 519 

A 880 888 1.71 /f= 1.71 

C 523 533 

All 932 915 1.71 /•17= 1.71 

C 523 528 

E 659 660 1.26 /53 = 1.26 
G 783 770 1.47 /f = 1.47 

intervals. Table IV demonstrates the behavior of the AT al- 

gorithm when used with this nine-tone timbre. Pairs of notes 
are initialized at standard 12-tone intervals; the algorithm 
compresses or expands them to the nearest point of local 
consonance. In all cases, the converged values are intervals 
in nine-tone equal temperament. Similarly, a standard major 
chord converges to the first, third, and fifth scale steps of the 
nine-tone scale. 

The adaptive tuning strategy can be viewed as a gener- 
alization of just intonation in two directions. First, it is inde- 
pendent of the key of the music being played, that is, it 
automatically adjusts the intonation as the notes of the piece 
move through various keys. This is done without any specifi- 
cally "musical" knowledge such as the local "key" of the 
music. Second, the adaptive tuning strategy is applicable to 
nonharmonic timbres as well as harmonic, thus broadening 
the notion of "just intonation" to include a larger palette of 
sounds. 

Consonance is only one aspect of music, and the use of 
adaptive tunings has no influence on musical essentials such 
as rhythm and melody. Even within the realm of harmony, it 
would be naive to suggest that maximizing consonance is 
always desirable. A dissonance-free rendition of Stravinsky's 
"Rite of Spring" would surely lose much of its impact. 

V. IMPLEMENTATIONS AND VARIATIONS 

The adaptive tuning algorithm can be readily incorpo- 
rated into existing MIDI-based synthesizers and music stu- 
dios in the form of software, stand alone hardware, or (ide- 
ally) as a built-in option analogous to the alternate tuning 

tables currently found in many MIDI-based sound modules. 
There are several ways that adaptive tunings could be added 
to (or incorporated in) a computer based music environment. 
These include (i) software to manipulate Standard MIDI 
Files (or the equivalent) [in such an implementation, the mu- 
sician or composer generates a Standard MIDI File (SMF); 
the adaptive tuning algorithm is implemented as a software 
program that reads the SMF, adapts the tuning of the notes as 
described above, and writes a modified SMF file that can 
subsequently be played via standard sound modules or ma- 
nipulated further by the musician/composer in a sequencer 
program]; (ii) a stand-alone piece of hardware (or software to 
emulate such hardware) that interrupts the flow of MIDI data 
from the controller (for instance, the keyboard), adapts the 
tuning as described above, and outputs the modified notes; 
(iii) the adaptive tuning strategy can be incorporated directly 
into the sound generation unit (the synthesizer or sampler); 
and (iv) direct manipulation of digitized sound. 

The software strategy (i) has the advantage that it may 
be simply and inexpensively added to any computer-based 
electronic music system. The disadvantage is that it is inher- 
ently not a real-time implementation. On the other hand, both 
the stand-alone approach (ii) and the built-in approach (iii) 
are capable of real-time operation. The current MIDI speci- 
fication has no reserved commands for retuning notes. Even 
so, both (i) and (ii) could be implemented using "pitch 
bend" commands. An unfortunate side effect of this is that 

the note commands would need to be rechanneled, thus in- 

creasing the complexity of the system setup for the operator. 
Since the algorithm is most effective when it has access to 
the timbre (or spectrum) of the sound, both (i) and (ii) re- 
quire that the operator input the timbre. Of course, a fre- 
quency analysis module could be added to the software/ 
hardware, but this would increase the complexity of the unit. 
The built-in solution (iii) does not suffer from any of these 
complications (indeed, the synthesizer inherently "knows" 
the timbre of the sound it is producing) and is consequently 
preferred for MIDI implementation, though it would clearly 
require a commitment by musical equipment manufacturers. 
Approaches (i) and (ii) have been implemented in software 
and were used to generate the examples given in this paper. 

The adaptive tuning could also be implemented in hard- 
ware (or software to emulate such hardware) that directly 
manipulates digitized sound. The device would perform an 
appropriate FFT (fast fourier transform, or equivalent) to de- 
termine the current spectrum of the sound, run the adaptive 
algorithm to modify the spectrum, and then return the modi- 
fied spectrum to the time domain with an inverse FFT. The 
device could be operated off-line or in real time if sufficient 
computing resources are devoted to the task. 

Throughout this paper, the adaptive tuning algorithm has 
been stated in terms of an optimization problem based on 
dissonance curves solvable by gradient descent methods. 
Other optimization problems based on other psychoacoustic 
measures of sound quality and solvable by other types of 
algorithms are also possible. Indeed, as the state of knowl- 
edge of psychoacoustic phenomena increases, new adaptive 
tuning algorithms seem likely. 

The adaptive tuning algorithm is stated in terms of an 
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optimization problem, that of adjusting a set of m notes, each 
with n partials, to the nearest local minimum of the disso- 
nance curve. Simple search and gradient techniques are only 
two of many possible methods capable of solving this opti- 
mization problem. Other methods include "random search 
methods" (for instance, simulated annealing •5 and the ge- 
netic algorithmS6), methods based on linear (or nonlinear) 
programming, or other optimization solving algorithms. A 
particularly natural approach might be in terms of a neural 
network structure. The specific goal of the optimization 
problem (as the minimization of the dissonance curve of Ref. 
7) is only one of many possible optimization criteria that 
might be useful in creating adaptive tuning algorithms. For 
instance, other parametrizations of the P!omp-Levelt s curves 
would lead to closely related optimization problems. Factors 
other than consonance and dissonance could also be used, for 
instance, one might choose an adaptation based on some as- 
pect of tonal fusion, •7 or one based on some aspect of audi- 
tory masking. Is Alternately, adaptive tunings could be based 
on some set of a priori desirable intervals, rather than di- 
rectly on properties of the auditory system. Algorithms could 
also be derived that consist of weighted versions of more 
than one of the above criteria. 

Vl. CONCLUSIONS 

The adaptive tuning strategy provides a new solution to 
the longstanding problem of scale formation. Just intonations 
(and related scales) sacrifice the ability to modulate music 
through multiple keys, while 12-tone equal temperament sac- 
rifices the consonance of intervals. Adaptive tunings retain 
both consonance and the ability to modulate, at the expense 
of (real-time) microtonal adjustments in the pitch of the 
notes. The adaptive tuning approach is based on data that 
encodes basic human perceptions, the tonal consonance 
curves of Pierap and Levelt. a As such, it may lay a claim to 
cultural independence, at least to the extent that such funda- 
mental perceptions are intercultural. 

The behavior of the adaptive tuning algorithm was de- 
scribed in terms of notes continuously descending a complex 

d 

a(œ,g,o,w)= 

which is a close approximation to the desired derivative. 
Then an approximate gradient is readily computable as the 
triple sum (A2) of elements of the form {A3). 

Two simplifications are made to streamline the results. A 
single dissonance function is assumed for all frequencies, 
and all partials are presumed to have unit amplitudes. Thus 

multidimensional landscape studded with dissonant moun- 
tains and consonant valleys. For harmonic timbres, the adap- 
tive tuning acts like a just intonation that automatically ad- 
justs to the key of the piece, with no specifically musical 
knowledge required. For nonharmonic timbres, the adaptive 
tuning automatically adjusts the frequencies of the tones to 
the nearest point of local consonance, providing an auto- 
mated way to play in the scale related to the timbre of the 
sound. Adaptive tunings are determined by the timbre of the 
sounds and by the piece of music performed; chords and 
melodies tend to become more "in tune with themselves." 

APPENDIX 

This Appendix derives concrete expressions for the up- 
date terms of the adaptive tuning algorithm (6) and details 
proofs of the theorems. Only the terms in D [see {5)] that 
include œi need to be considered when calculating the gradi- 
ent dD/dfi. Thus 

dD d ( 1 m n dfi dr, 
k=l p=l q=l 

k=l p=l q=l 

(AI) 

(A2) 

since d(f,g,o, w) = d(g,f,o,w) and the derivative commutes 
with the sums. Calculating the derivative of the individual 
terms (d/dfi)d(f,g,o,w) in (A2) is complicated by the pres- 
ence of the absolute value and min functions in (1) and (2). 
The function is not differentiable at f= g, and changes de- 
pending on whether f>g or g>f. Thus we define the func- 
tion 

I 

ha* {bd*(f-g)l ] 
if f>g, 

bd*(gs,+s2) [bd*(f-g)l] 
(œs, + s2) 2 exp / fs--7•2 if f<g, 

(A3) 

s=l in (2) and el=v2 = 1 in (1). Taking the derivative of 
(1) with respect to x= If2-fll, and equating it to zero shows 
that the point of maximum dissonance occurs at 
d* =in(a/b)/(a-b). 

Proof of Theorem 1: From (A3), the updates for land g 
are 
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[ad*(g•s•+s•) [ad*(f•-g•)\ 

(fkSl+S2)2 exp fast+s2 IJ 

_ [ ad* exp(ad*(f•-gDI - + ¾s2) + '! 

ha* exp(bd*(f•-g•).l] (f•st+s2) f•s•+sz II' (•) 
The term in brackets in (•) is positive whenever 

[ad*(f-gD 
a exp[ f•s• '] >b exp[ f•s• ']' (A6) 

which is true whenever 

ad*(f•-g•) bd*(f•-gD 
•n(• ) • > •n( b ) • (•7) 

f•s• +s2 f•s• +s2 

Rea•anging gives 

ln(a)-ln(b) d*(f•-g,) 
> (AS) 

a-b f•s• +s2 

Since the left-hand side is equal to d*, this can be rewritten 

f &s • + s2> f •- g • . (A9) 

Thus g•> (1 - s •)f•- s• implies that g•+ • > g•. Similarly, 
[•+•<f•, which together show (a). On the other hand, if 
g•<(1--s•)f&--s2, an identical argument shows •at 
g•+•<g• and f•+l>/• for all •. • 

Proof of •eorem 2: The total dissonance for this case 
includes three te•s, D•o•=d(f ,g ) + d(f ,a• + d(g, af). 
Since a •d f are fixed, d(f, a• is const•t, and minim•ing 
D tot• is the same as minimizing d(f,g)+ d(g, a f). Combin- 
ing (•) and (•) under the assumption that s = 1, and as- 
suming that f<g< af, the update for g is 

g•+ • = g•- •( ae-a(•i-g•) _ be-u(•i-g•) 

- ae-•g*-l) + be- •(g*-•). (A10) 

This has an equilibrium when af-g•=g•-f, that is, when 
g = [(1 + a)/2]f. Calculation of the •cond derivative shows 
that it is •sitive at this •int as long as //2(a-1)•l, 
which holds for all reasonable [ and a. Hence this is a stable 
equilibrium. Note that if s = 1 is not assumed, then a much 

more complex update arises for g. This will have an equilib- 
rium near, but not at, (1 + o0f/2. 

Because of the nondifferentiability of the dissonance 
function at f=g, we cannot simply take the derivative at this 
point. The strategy to show that f=g is stable is to show that 
if g =f+ e for some small •>0 then the update decreases g, 
while if g=f-6 for some small e>0 then the update in- 
creases g. Supposing that g>f, and assuming that f(o•- 1) 
•> 1, the gradient is approximately 

ae-af( •- • )_ be-of(•-•)_ a + b. (All) 

Since b is about twice the size of a, this is positive. Similarly, 
for g=f- e, the gradient is approximately 

ae -af(a- 1} __ be-Of(a- 1)+ a - b, (A12) 

which is negative. Consequently, f=g is a local stable point. 
The point where otf=g is analyzed similarly. Analogous ar- 
guments to those used in theorem I show that for g<•f, g 
decreases, while for g>> at f, g increases. [] 
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