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Green buildings are sustainable buildings designed to be environmentally responsible 

and resource efficient. The Net-Zero Energy Building (NZEB) concept is anchored on 

two pillars: reducing the energy consumption and enhancing the local energy generation.  

In other words, efficient operation of the existing building equipment and efficient power 

generation of building integrated renewable energy sources are two important factors of 

NZEB development. The heating, ventilation and air conditioning (HVAC) system is an 

important class of building equipment that is responsible for large portion of building 

energy usage, while the building integrated photovoltaic (BIPV) system is well received 

as the key technology for local generation of clean power. Building system operation is a 

low-investment practice that aims low operation and maintenance (O&M) cost. However, 

building HVAC and BIPV are systems subject to complicated intrinsic processes and 

highly variable environmental conditions and occupant behavior. Control, optimization 
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and monitoring of such systems desire simple and effective approaches that require the 

least amount of model information and the use of smallest number but most robust sensor 

measurements. Self-optimizing control strategies promise a competitive platform for 

control, optimization and control integrated monitoring for building systems, and 

especially for the development of cost-effective NZEB. This dissertation study endorses 

this statement with three aspects of work relevant to building HVAC and BIPV, which 

could contribute several small steps towards the ramification of the self-optimizing 

control paradigm.  

This dissertation study applies self-optimizing control techniques to improve the 

energy efficiency of NZEB from two aspects.  First, regarding the building HVAC 

efficiency, the dither based extremum seeking control (DESC) scheme is proposed for 

energy efficient operation of the chilled-water system typically used in the commercial 

building ventilation and air conditioning (VAC) systems. To evaluate the effectiveness of 

the proposed control strategy, Modelica based dynamic simulation model of chilled water 

chiller-tower plant is developed, which consists of a screw chiller and a mechanical-draft 

counter-flow wet cooling tower. The steady-state performance of the cooling tower 

model is validated with the experimental data in a classic paper and good agreement is 

observed. The DESC scheme takes the total power consumption of the chiller compressor 

and the tower fan as feedback, and uses the fan speed setting as the control input. The 

inner loop controllers for the chiller operation include two proportional-integral (PI) 

control loops for regulating the evaporator superheat and the chilled water temperature. 

Simulation was conducted on the whole dynamic simulation model with different 

environment conditions.  The simulation results demonstrated the effectiveness of the 



 
 

iv 
 

proposed ESC strategy under abrupt changes of ambient conditions and load changes. 

The potential for energy savings of these cases are also evaluated. The back-calculation 

based anti-windup ESC is also simulated for handling the integral windup problem due to 

actuator saturation. 

Second, both maximum power point tracking (MPPT) and control integrated 

diagnostics are investigated for BIPV with two different extremum seeking control 

strategies, which both would contribute to the reduction of the cost of energy (COE). In 

particular, the Adaptive Extremum Seeking Control (AESC) is applied for PV MPPT, 

which is based on a PV model with known model structure but unknown nonlinear 

characteristics for the current-voltage relation. The nonlinear uncertainty is approximated 

by a radial basis function neural network (RBFNN).  A Lyapunov based inverse optimal 

design technique is applied to achieve parameter estimation and gradient based extremum 

seeking. Simulation study is performed for scenarios of temperature change, irradiance 

change and combined change of temperature and irradiance. Successful results are 

observed for all cases. Furthermore, the AESC simulation is compared to the DESC 

simulation, and AESC demonstrates much faster transient responses under various 

scenarios of ambient changes. 

Many of the PV degradation mechanisms are reflected as the change of the internal 

resistance. A scheme of detecting the change of PV internal shunt resistance is proposed 

using the available signals in the DESC based MPPT with square-wave dither. The 

impact of the internal resistance on the transient characteristics of step responses is 

justified by using the small-signal transfer function analysis. Simulation study is 

performed for both the single-string and multi-string PV examples, and both cases have 
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demonstrated successful results. Monotonic relationship between integral error indices 

and the shunt internal resistance is clearly observed. In particular, for the multi-string, the 

inter-channel coupling is weak, which indicates consistent monitoring for multi-string 

operation. The proposed scheme provides the online monitoring ability of the internal 

resistance condition without any additional sensor, which benefits further development of 

PV degradation detection techniques.   
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,0fanQ ( ,0pumpQ )  Volume flow rate for zero pressure increase of the fan (pump) 
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eqR   Thévenin equivalent resistance 

oR   Resistive load 

pR   PV internal shunt (parallel) resistance 

sR   PV internal series resistance 

s , x   System states 

ŝ , x̂   Predictions of the system states 

comps   Slide-valve control of the compressor 

S   Basis function vector 

t   Current simulation time 

1t , 2t   Selected time period 

T , nT   Actual and nominal temperatures 

,a iT   Local air temperature 

,db inT , ,db outT   Tower inlet and outlet dry bulb temperatures 

EWT   Evaporator inlet water temperature 

,pump wT ( ,cb wT )  Local water temperature in the pump (collection basin) 

,w iT   Local water temperature 

,w inT   Tower inlet water temperature 

, ,w out calT   Model predicted water outlet temperature 

,wb inT   Tower inlet wet bulb temperature 
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u   Control input 

optu   Optimal control input 
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effectiveV   Water droplet volume in the ith water cell 
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iV   Voltage signals 

isV   Mean value of the steady-state voltage signals 

MV ( MI )  Maximum voltage (current) of the PV system 

oV   Terminal voltage 

ocV   Open circuit voltage 

pumpV ( cbV ) Volume of the water in the pump (collection basin) 

tV   Thermal voltage of the array with sN  cells connected in series 

TV   Total tower volume 

mw   Upper bound of weight norm 

W   RBF NN parameters 

fanW   Fan power 

,pump lossW   Actual power loss of the pump at the rotational speed pumpn  

, ,0pump lossW  Power loss of the pump at nominal speed 
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W   Parameter estimation error for RBF NN 
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Greek Symbols 

 , i   ESC dither phase angles 

pump ( cb ) Local isobaric coefficient of expansion in the water pump (collection basin) 

,w i   Isobaric coefficient of expansion in the ith water cell 

c   Ratio of specific heats in the compressor 
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i   Center of the Gaussian function 
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fan   Fan efficiency 

,fan m   Fan motor efficiency 

 x (  s )  Unknown static nonlinearity of state x ( s ) 
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Chapter 1. Introduction 

Buildings consume large portion of energy in the industrialized nations. For instance, 

about 40% of the primary energy consumption in the U.S. comes from the building sector 

[1], in which 18% for commercial and 22% for residential buildings. As shown in Fig. 

1.1, the building sector bears the largest energy usage compared to the transportation 

sector (28%) and the industrial sector (32%), and accounts for about 2/3 of the U.S. 

electricity consumption in 2010 (Fig. 1.2) [1]. As consequence, the CO2 emission from 

the buildings is also significant. About 39% of the U.S. total carbon emissions are 

coming from the building sector with 18% from the commercial buildings and 21% from 

the residential buildings [4].  

 
Figure 1.1: Chart of global energy consumption and U.S. energy consumption [1] 
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2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
Building 70% 71% 71% 71% 72% 72% 72% 73% 75% 75%
industry 29% 29% 29% 29% 28% 28% 27% 27% 25% 25%
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Figure 1.2: Chart of U.S. electricity consumption, 2001~2010 [1] 

Energy efficiency and use of renewable/clean energy have become key factors for 

contemporary building development. Recently, the Green Building concept has drawn 

much attention worldwide, which aims to achieve sustainable, environmentally 

responsible and resource efficient buildings [5]. The so-called Net-Zero Energy Building 

(NZEB) has been well received as the goal to be implemented for the decades to come 

[6]. Development of NZEB requires both the enhancement of energy efficiency for the 

existing building HVAC equipment, and also the efficient power generation of building 

integrated renewable energy resources such as wind and solar. This dissertation study 

investigates self-optimizing control problems of both aspects, i.e. the efficient operation 

of chilled-water chiller-tower plant and the maximum power point tracking (MPPT) for 

photovoltaic systems.  
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1.1. Control Related Issues of Interest for Net-Zero Energy Buildings 

The Green Building is also referred as Sustainable Building or High Performance 

Building [6]. The earliest investigations and practices of green buildings date back to the 

1970s, around the first oil crisis [5]. The green building design aims to reduce the overall 

impact from the building construction, equipment operation and maintenance, energy and 

resources consumption, and pollutions of the buildings on both of the indoor and outdoor 

environments [6].  The idea of sustainable construction and maintenance has become 

much more attractive lately, very popular in the building research field and the 

architectural design practice. The NZEB concept reflects the accompanied view for 

energy usage in green buildings [7]. The U.S. DOE and its National Renewable Energy 

Laboratory (NREL) have defined the NZEB as follows: “A net-zero energy building 

(NZEB) is a residential or commercial building with greatly reduced energy needs 

through efficiency gains such that the balance of energy needs can be supplied with 

renewable technologies” [8]. The U.S. DOE has also established goals for “creating the 

technology and knowledge base for cost effective net-zero energy commercial buildings 

by 2025” [8]. The NZEB requires measures taken for both the energy efficiency and the 

renewable energy source.  

1.1.1. Chilled Water System in Commercial Buildings 

For commercial buildings, HVAC systems are critical for providing comfort and health 

indoor environment, and meanwhile, they also take a high percentage of the overall 

energy consumption [1, 9]. For 2010, the U.S. Department of Energy (DOE) estimated 

that about 54% of site energy consumption and 43% of primary energy consumption of 

the residential building sector come from the HVAC operation, in which 9% for space 
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cooling and 45% for space heating in site energy consumption and 15.1% and 27.8% in 

primary energy consumption respectively [1]. For the commercial building sector, HVAC 

accounts for 42.8% of site energy consumption (26.6% for space heating, 10.1% for 

space cooling and 6.1% for ventilation) and 39.6% of primary energy consumption 

(16.0% for space heating, 14.5% for space cooling and 9.1% for ventilation) [1]. 

In particular, the chilled-water system is widely adopted by high-capacity ventilation 

and air-conditioning (VAC) systems to balance the cooling of the indoor environment 

with chilled water. Figure 1.3 shows the schematic of a typical configuration of chilled-

water VAC system for commercial buildings, which consists of three main components: 

air handling unit, electric chiller and cooling tower.  

 

Figure 1.3: Block diagram of typical chilled water system (reproduction of Fig. 2A in [2])   

The chilled water is pumped to the air-handling units (AHU) to provide indoor space 

cooling and then circulated back to the chiller with higher temperature. Via the vapor 

compression refrigeration cycle in the chiller, the heat is transferred from the refrigerant 

to the condensing water. Then the evaporative cooling of the cooling tower helps to reject 
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heat to the ambient via the heat and mass transfers occurring at the direct contact between 

the hot water droplets and the inlet moist air [9].  

For the chilled-water VAC system, the main power consumption is due to the chiller 

compressor and the cooling tower fan. Efficient operation of the chilled-water VAC 

system is thus critical for the energy efficiency for the operation of commercial buildings 

[10]. Due to the significant variations in ambient, load and equipment conditions, the 

system behavior can vary dramatically. For real-time optimization of the energy 

efficiency, nearly model-free adaptive control strategy, or the so-called self-optimizing 

control strategy, is ideal for such system. Optimization and control techniques have been 

studied for chilled water system in the past [3, 7, 8, 11]. However, most of the existing 

methods are based empirical models, which are difficult to apply in practice due to the 

environmental changes and equipment degradation. A key interest in this dissertation 

study is to investigate on a class of self-optimizing strategy, the dither-demodulation 

based extremum seeking control (ESC), for the real-time set-point optimization for the 

chilled-water VAC system without detailed system knowledge.  

1.1.2. Building Integrated Photovoltaic System 

Development of NZEB inevitably requires building integrated (or local) renewable power 

generation, such as wind and solar. Solar energy is an attractive renewable energy source 

due to its zero-emission nature and abundant availability, displacing the daytime demand 

for the electric power from fossil fuels and facilitating peak-load shaving. Solar power 

generation has experienced dramatic growth in the past decade, 40 GW in 2010 

comparing to 0.7 GW in 1996 [12]. The Solar Energy Industries Association (SEIA) 

predicts that “the global capacity of solar power will reach 980 GW by 2020” [13].  
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The PV power generation is considered highly amenable for building integration, 

which can well take advantage of the surface areas available on the façade or roof [14]. 

The PV systems appeared in the U.S. buildings in the 1970s, with stand-alone PV 

modules mounted on remote areas of buildings. Later in the 1980s, the rooftop PV panels 

started to gain attention [15]. The Building Integrated Photovoltaics (BIPV) concept was 

introduced in the 1990s, which is a directly integration of photovoltaic system onto the 

building surfaces. Compared to the conventional installation of rack-mounted PV, BIPV 

is reported to have about 10% potential decrease in the resultant system prices due to the 

hardware and labor saving [16]. But the no-spacing design structure of BIPV may also 

lead to a reduced performance by possibly higher average operating temperature [16].  

The high cost of energy (COE) has been a major problem for the PV system, which 

has been dealt with two kinds of measures. One is to improve material and 

manufacturing. There have been great efforts in reducing the material cost and 

developing materials structured with better conversion efficiency. The other is to improve 

the operation and maintenance (O&M). From the operational standpoint, it is desired to 

maintain the PV system at its maximum power efficiency in real time [17]. However, the 

PV system characteristics are always changing with changes in the environmental 

condition. The so-called Maximum Power Point Tracking (MPPT) operation is needed to 

seek and track the maximum power point (MPP) in real time against the internal and/or 

external uncertainties. There have been various strategies developed for PV MPPT, in 

model based or model free. This dissertation aims to investigate two kinds of self-

optimizing control strategy: in addition to the aforementioned dither-demodulation 

extremum seeking control, of particular interest is the adaptive extremum seeking 
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(AESC) which is based on the knowledge of the structure of nonlinear dynamics of the 

PV system. 

Another important issue, from the condition based maintenance standpoint, is the 

need for online monitoring. Degradation in PV devices leads to inferior power generation 

and even malfunctioning operation. It is thus critical to identify degraded PV modules 

during online operation, which helps scheduling timely maintenance to prevent low-

efficiency operation or even catastrophic failures. Many forms of PV device degradation 

are related to the change of the internal resistance [18]. Therefore, online detection of 

changes in internal resistance is critical for detecting faulty or degraded modules. 

Moreover, from the cost effectiveness standpoint, using the inherent signals available in 

the PV control system (typical MPPT control) is definitely more preferable than using 

additional sensors or performing offline measurements. Therefore, this dissertation 

investigates, in addition to PV MPPT. 

1.1.3. Major Objective of Dissertation 

In summary, this dissertation study aims to study the efficient operation for energy usage 

and energy generation local to the green buildings, with the following two objectives:  

1) Develop self-optimizing control strategy for real-time efficient operation of 

chilled-water VAC system using extremum seeking control. 

2) Develop extremum seeking control based PV MPPT strategies, and in parallel, 

develop the online scheme for detecting the changes in internal resistance using 

MPPT control inherent signals, both with potential for reducing the COE.  

 These research objectives bear the common benefit for the cost effectiveness for of 

the future net-zero energy buildings.  
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1.2. Research Problems and Approaches 

As indicated in the previous section, this dissertation study mainly focuses on two major 

objectives: energy saving by achieving efficient operation of chilled water system and 

enhances renewable energy generation by maximizing the power output of PV system as 

well as the MPPT integrated PV degradation detection. In this section, the technical 

challenges for these two aspects of work will be described in more detail, and based on 

which the respective research approaches will be presented. 

1.2.1. Self-Optimizing Control for Efficient Operation of Chilled-Water Plant 

Energy efficient operation of the chilled-water system is important for the energy saving 

purpose of commercial buildings.  

For operation of chilled-water plant, a major issue is to minimize the total power 

consumption in real time. Chiller can operate more efficiently when receiving colder 

condenser water from cooling tower. According to [19], an empirical rule is “for every 

one degree drop in condenser water temperature, chiller efficiency will increase 2%”. 

Meanwhile, for a given ambient condition, lowering the condenser inlet water 

temperature implies higher air-flow rate for the cooling tower operation, i.e. demanding 

for higher power consumption of tower fan.  Braun and Diderrich [3] studied the relation 

between relative tower airflow and total power consumption of chiller compressor and 

cooling tower fan, as shown in Fig. 1.4. The power of tower fan increases monotonically 

with the air flow rate, while the chiller power decreases monotonically. As a result, the 

relation between the total power consumption (tower fan power + chiller compressor) and 

the relative tower airflow demonstrates a convex profile, which yields a global minimum 
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as shown in Fig 1.4. This fact implies the feasibility for applying various gradient-search 

based optimization methods.  

 

Figure 1.4: Tradeoff between energy consumption of chiller and cooling tower 

(reproduction of Fig. 2 in [3]) 

In the past, model based optimization and control techniques have been investigated.  

These methods bear the benefits in terms of accuracy and stability [3, 10, 20, 21]. 

However, such methods are difficult to use in practice for several reasons. First, the 

control/optimization oriented first-principle models are difficult to obtain because the 

dynamics of chilled water system and the interactions among system components are 

rather complicated. Second, the chilled-water plant behavior is highly affected by the 

ambient conditions, i.e. depending on the accurate and reliable measurements of 

temperature and humidity of the ambient air. Third, regarding the methods built upon the 

data-driven models, frequent model calibration is required, and even so, can be far from 

complete because a full coverage of all possible load and ambient conditions is virtually 

impossible before the system degrades to a different condition.  Therefore, self-
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optimizing strategies with least dependency on model knowledge are very attractive for 

the real-time optimization of chilled-water plant operation. In this dissertation study, the 

ESC method is considered as a self-optimizing control solution for the efficient operation 

of chilled-water plant. 

The ESC application for the chilled-water system has recently been investigated by 

United Technology Research Center and their collaborators [22, 23]. In particular, Sane 

et al. [23] investigated a dither ESC scheme by regulating the condenser supply 

temperature with some simulation results. In spite of the success demonstrated, there are 

two major deficiencies in this work. First, using the condenser supply temperature as the 

ESC input requires implementation of an inner-loop control, which demands for 

additional controller design and reliable water temperature measurement.  Second, there 

is no information provided by the authors about the simulation platform used, whether the 

simulation was performed on simple empirical models or detailed physical models. Since 

the dither ESC is a dynamic scheme of gradient search, the input and output dynamics are 

critical for the choice of the ESC parameters. It is more desirable to evaluate the ESC 

design with high-fidelity dynamic simulation models of chilled-water system.  

Based on these two considerations, the ESC based chilled-water control is conducted 

from the following two aspects. First, instead of using the condenser supply water 

temperature, the tower fan speed set point is used. With the wide adoption of variable 

speed drive (VSD) for cooling tower fan, such choice of ESC input is easy and simple for 

practical implementation. It saves the development of an inner loop controller for the 

condenser supply water temperature, the installation and maintenance of the associated 

temperature sensors. Therefore, such scheme is simpler and more robust than the scheme 
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by Sane et al. [21], and meanwhile achieving the exactly same control/optimization 

objective without any compromise.  Second, a dynamic simulation model is developed 

for a chilled-water plant using Modelica based platform. In particular, the plant mainly 

consists of a screw chiller and a mechanical draft counter flow wet tower. With the 

equation-based multi-physical modeling capability of Modelica based platform, high-

fidelity dynamic simulation models can be developed to model the processes of 

evaporation cooling, mixing and the vapor compression refrigeration cooling cycle 

involved.  Furthermore, the ESC design can be evaluated on a more trustworthy platform. 

The proposed dither-ESC (DESC) tower fan control scheme is implemented with a 

hierarchical control structure as shown in Fig. 1.5. The total power is used as the 

feedback to the DESC controller and the cooling tower fan speed is chosen as the DESC 

input. For the chiller operation, in addition to efficiency, there are two basic control 

requirements: the evaporator superheat and the chiller leaving-water temperature [9, 24]. 

Regulation of the evaporator superheat can avoid the liquid refrigerant to enter the 

compressor, which would otherwise damage the compressor. Maintaining the chiller 

leaving-water temperature is an important requirement for the terminal control of the air 

handling units (AHU) [25]. To satisfy these two requirements, two inner-loop 

proportional-integral (PI) controls are implemented with relatively consistent 

performance, which secures the higher level ESC operation.  The effective flow area of 

the thermal expansion valve is controlled to regulate the evaporator superheat, while 

compressor capacity is controlled to regulate the chilled water leaving temperature, as 

shown in Fig. 1.5.  
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Figure 1.5: Basic system diagram of ESC working on chiller-tower cycle (reproduction of 

Fig. 2C in [2]) 

1.2.2. Dynamic Simulation Modeling of Chiller-Tower Plant 

As discussed in the previous subsection, a high-fidelity dynamic simulation model for the 

chilled water plant is critical for designing and evaluating the ESC controller.  This 

dissertation study develops Modelica based dynamic simulation model for the chilled-

water system, as well as the controllers involved in the ESC scheme in Fig. 1.5.   

Modelica is an object-oriented, equation based, acausal modeling language that is 

particular powerful for dynamic simulation modeling for multi-physical systems [26]. In 

Modelica, a model can be developed as an object with associate attributed defined in the 

component, which is very convenient for reuse ability. Various software development 

platforms have been developed for Modelica based modeling. Dymola is so far deemed 
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the most popular platform by industry and academia [27]. Initiated by Hilding Elmqvist, 

Dymola can translate the Modelica equations into hybrid differential algebraic equations 

(DAE) equation with a symbolic translator. With the state-of-the-arts index reduction 

algorithms, Dymola can handle large DAE systems which are typical for complex 

thermofluid applications. In contrast to Simulink [28], Dymola bears the acausal ability 

of Modelica language, which allows bidirectional data flow. System simulation does not 

require any pre-determination of computational flow. Dymola can handle both 

continuous, discrete-event or mixed signal systems. Via functional mock-up interfaces 

(FMI), Dymola can be interfaced to other simulation platforms such as Simulink. This 

dissertation study uses Dymola Versions 6.1 and 2012 FD1 [27] with Modelica Version 

2.2.1 [26]. 

In addition to the Dymola platform, the chilled-water plant modeling in this study has 

also adopted the TIL/IfT Suite library developed by TLK-Thermo [29]. Compared to 

many other existing Modelica libraries for thermal system modeling, the inheritance 

structure of TIL is considered much more advantageous for model development and 

extension.  

In this study, the chiller-tower plant simulated includes a screw chiller and a counter-

flow mechanical-draft wet cooling tower. For the screw chiller, a twin-screw compressor 

model is developed in this study following the work by [30], while other components 

such as condenser, evaporator and expansion valve have been adopted from the existing 

work [29, 31]. More effort in this study has been made to the modeling of the cooling 

tower, which includes the finite-volume-method based modeling for the evaporation 

cooling process, mixing tank, pump and water pipes.  
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1.2.3. ESC Based MPPT Control on Photovoltaic System 

As described in Section 1.1, in order to reduce the cost of energy (COE), it is ideal to 

maintain the PV operation at its maximum achievable efficiency in real time. For actual 

PV systems, the current-voltage (I-V) and power-voltage (P-V) characteristics are 

nonlinear and affected by the intrinsic (e.g. aging of the device) and external (e.g. 

irradiance intensity and temperature) conditions that are both uncertain through 

operation. Figures 1.6 and 1.7 show the I-V and P-V curves of a PV system under 

different irradiation rates and different temperatures, respectively.  

 

(a) I-V curves 

 

(b) P-V curves 

Figure 1.6: I-V and P-V curves at temperature 25 C under different irradiance rates 
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(a) I-V curves 

 

(b) P-V curves 

Figure 1.7: I-V and P-V curves at irradiance rate 1000W/m2, under different temperatures 

PV MPPT aims to search for the MPP in real time regardless of the changes of PV 

intrinsic characteristics and environmental uncertainties [17]. Conventional MPPT 

techniques are based on static optimization algorithm, such as the perturbation and 

observation (P&O) method [32], the incremental conductance (IncCond) method [33] and 

the hill climbing (HC) method [34] and many more [35-37]. Recently, the Extremum 

Seeking Control (ESC) has drawn great attention with its nearly model-free self-

optimizing ability [38-42].  
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The dither based extremum seeking control scheme is investigated and deployed on 

both single- and multi-string PV structure in this dissertation study, as shown in Chapter 

6. For dither ESC MPPT design, the power output is the only need feedback signal. The 

dither ESC realizes the gradient search process by extracting the gradient information 

through a dither-demodulation scheme. The dither ESC design does not need any system 

model structure, and stabilizing loop gain is mainly determined by the second-order 

derivative (or Hessian). For PV MPPT, the power-voltage curves in Figures 1.6 and 1.7 

have significantly different slopes at the two sides of the MPP, which implies that the 

loop gain has to be chosen small enough to handle the situation when the search starts 

from the steeper side.  

For PV power conversion system, the overall characteristics are determined by both 

PV device physics and the conversion circuitry. The models of the power conversion 

circuits are quite tractable and relatively simpler, while in comparison, the current-

voltage relation can be considered as a nonlinear static map of relatively consistent shape. 

Therefore, such partial knowledge of system model structure can be best utilized to 

design a self-optimizing controller with better convergence properties. In this dissertation 

study, the adaptive extremum seeking control (AESC) scheme is also investigated for 

MPPT of single-string PV system. In particular, the radial basis function (RBF) neural 

network is used to approximate the complex nonlinearity for the I(V) characteristics. The 

asymmetry in characteristics is naturally included in the structure of the nonlinear state 

equations. A projection algorithm based parameter learning law is applied to guarantee 

the convergence of the RBF parameters [43]. The convergence to the optimum and the 

stability of the controlled system is secured by a Lyapunov based inverse optimal design 
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technique. The adaptive ESC scheme is evaluated by simulation study. The PV 

module/array model and the control system are built with Matlab® R2009a Simulink® 

7.3 SimPowerSystems. Adaptive ESC achieves a fast searching speed and excellent 

searching performance with different environment changes.  

1.2.4. DESC MPPT and Integrated PV System Diagnostics  

Due to the high initial cost and low conversion efficiency of the PV system, the PV 

modules are normally required to provide stable and high performance over 20 years [44-

46]. However, the PV device may degrade or even fail over time or by accident. There 

are many types of degradation mechanisms for PV devices, such as deterioration of 

packaging material, loss of adhesion, bad interconnects between cells and modules, 

degradation due to moisture intrusion, degradation of the semiconductor device, cracked 

cells, hot spot formation and many other problems related to water ingress or temperature 

stress [47, 48]. Most degradation mechanisms lead to higher serial resistance and/or low 

shunt resistance, which may result in overall power output reduction and even excessive 

surface heating [18]. Figures 1.8 and 1.9 show the P-V and I-V characteristics with 

different shunt resistances, respectively.  
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Figure 1.8: P-V Characteristics with different internal shunt resistances 

 

Figure 1.9: I-V Characteristics with different internal shunt resistances 
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The PV system performance can be significantly affected by device degradation [49]. 

It is therefore beneficial for PV system operation to be able to detect the degraded or 

faulty modules in real time so that they can be replaced in time so as to reduce the 

possible loss of power generation. As many degradation mechanisms are linked to the 

change of internal resistances, it is desirable to monitor the change of internal resistance 

in real time. 

To the author’s best knowledge, the existing techniques for monitoring the PV 

internal resistance are offline [50-53], which reduces the COE due to the interruption of 

power generation process and the need for additional maintenance cost. It is thus 

desirable to develop techniques for monitoring the internal resistance online using the 

measurement(s) already available in PV operation, e.g. the MPPT input and/or output 

signals.  

This dissertation study investigates a scheme for online detection of change in 

internal resistance for PV modules, based on the signals available in the dither ESC. For 

dither ESC with square-wave dither signals, the steady-state output is effectively a train 

of small-amplitude step responses. The transient performance indices of such step 

responses are heavily affected by the internal resistance. Therefore, extracting the 

relevant transient characteristics of the steady-state signals of dither ESC MPPT is 

expected to help detect the change of internal resistance in real time in a control-

integrated fashion. In particular, the shunt resistance is selected as the target parameter. 

For multi-string operation, the degradation/fault related change of internal resistance for 

individual module can be isolated with the dither frequency used for each string.  
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1.3. Problem Statements for Dissertation Research 

As a summary of the description in Section 1.2, the dissertation research aims to address 

the following four research tasks: 

1) Develop an extremum seeking control based tower fan controller for efficiency 

operation of chilled-water plant in real time, using the total power as feedback and 

the tower fan speed setpoint as input. 

2) Develop a Modelica based dynamic simulation model for a chilled-water system 

that consists of a screw chiller and a mechanical-draft counter-flow cooling tower. 

3) For dither ESC based MPPT scheme with square-wave dither input, develop a 

detection scheme for monitoring the internal resistance using the steady-state 

variables available for the dither ESC MPPT. 

4) Develop an adaptive extremum seeking control based PV MPPT scheme. 

1.4. Organization of the Dissertation 

The reminder of this dissertation is organized as follows. 

Chapter 2 provides a review of literatures on the topics relevant to the aforementioned 

research problems. The achievements and limitations of the existing research are 

discussed, which aims to justify the motivations for the proposed research approaches. 

Chapter 3 represents the dynamic modeling of a mechanical-draft counter-flow wet 

cooling tower. The chapter starts with the cooling tower modeling along with the 

determination of the overall number of units (NTU) and the Lewis relation (Lef). Some 

related component models adopt the TIL library are also shown. The simulation results 

for steady state scenarios provided by a classic literature are provided, and compared with 
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an existing work. Then, a transient simulation of the dynamic cooling tower model 

follows. Finally, the modeling of the screw chiller is presented. 

 The ESC tower fan control of the chilled water system is presented in Chapter 4.  

The inner-loop controllers for the chiller operations are described. An overview of the 

dither based extremum seeking control design is presented, followed by the particular 

design for the problem of interest. The simulation and case studies are provided for 

different scenarios. 

Chapter 5 designs the maximum power point tracking for photovoltaic system using 

adaptive extremum seeking control technique. A simplified PV system model is obtained 

by an averaging scheme.  Then, the AESC design procedure is presented, based on 

Lyapunov stability theorem and the use of the RBF neural network. The simulation 

results are shown with comparison to those by the dither ESC scheme. 

Chapter 6 investigates the ESC MPPT integrated detection scheme for the change of 

internal shunt resistance for PV systems. Dither ESC based MPPT is implemented for 

both single- and multi-string PV systems with square wave dither input. A small-

amplitude transfer function analysis justifies the effect of the internal resistance on the 

step-response transient of the steady-state signals of the square-wave ESC. Simulation 

study is performed for both single- and multi-string scenarios. 

The contributions of this dissertation research are summarized in Chapter 7, along 

with the future work.  
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Chapter 2. Literature Review 

This chapter provides a review of literature related to the topics investigated in this 

dissertation research. First, the two extremum seeking control schemes, i.e. the dither 

based extremum seeking control (DESC) and the adaptive extremum seeking control 

(AESC), are reviewed. Then, two main aspects of research relevant to the ESC control of 

the chiller-tower system are reviewed, i.e. modeling of the chilled-water plant and 

optimization and control techniques for the chilled-water systems, followed by the 

discussion on the existing work of ESC control for the chiller-tower system. For the 

photovoltaic system, the previous MPPT techniques are first reviewed, followed by the 

typical multi-string configurations. Then, the PV device degradation issues are reviewed, 

as well as the existing detection techniques. The major achievements and the drawbacks 

in the foregoing modeling and control problems are discussed, which motivates the 

reiteration of the major objectives and methodologies considered by this dissertation 

research. 

2.1. Review of Extremum Seeking Control (ESC) Techniques 

In a broad sense, extremum seeking control refers to a large class of control strategies 

that can search for the unknown and often time-varying optimal input set point for 

nonlinear systems with respect to certain performance index. There are several categories 

of ESC techniques, with different schemes to achieve the optimality in the spirit of 

gradient search, such as switching ESC, dither ESC, sliding-mode ESC, numerical 

optimization (e.g. simultaneous perturbation stochastic algorithms) based ESC, among 
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others [54].  In this dissertation study, two types of ESC techniques have been 

investigated for the chilled-water system and PV MPPT applications, i.e. the Dither ESC 

and the Adaptive ESC. These two techniques are reviewed in this section.  

2.1.1. Review of Dither Based Extremum Seeking Control 

The idea of extremum seeking was first discovered in the work by Leblanc [55] in 1922, 

with application to electric railways. Significant research efforts had been made to the 

further development of ESC techniques and various applications between 1940s and 

1970s [56-61]. Blackman presented a review of extremum seeking in 1962 [62]. In 1968, 

Meerkov investigated the averaging based stability analysis in extremum seeking system 

[63]. Sternby [64] gave a survey on extremum seeking control and also investigated 

different model-based control problems with questioning the effectiveness of extremum 

seeking [65]. Åström and Wittenmark, in the last chapter of their class text on adaptive 

control [66], give an overview extremum seeking control, and consider ESC as one of the 

most promising techniques in the adaptive control area. In particular, they pointed out the 

need for clear guidelines of ESC design and the stability proof.  

The first stability proof of single parameter ESC on general single-input-single-output 

(SISO) dynamic nonlinear plant was provided by Krstić and Wang [67] using both the 

averaging and the singular-perturbation methods. Later, a discrete-time ESC scheme was 

investigated by Choi et al. [68]. Their analysis was confined to “a class of plants with a 

series combination of linear input dynamics, static nonlinearity performance map and 

also linear output dynamics”. A mild sufficient condition of exponentially convergence to 

a neighborhood of the extremum value is guaranteed by an averaging analysis. Krstić and 

co-workers [67, 69, 70] further discussed the dither based extremum seeking scheme and 
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investigated the local stability and performance improvement of DESC. Tan et al. [71-73] 

extended the ESC stability discussion to the global stage with a simplified extremum 

seeking scheme, the tradeoff between the attraction domain size and the ES convergence 

speed is also shown. Nešić [74] summarized the investigations of the dynamic properties 

for typical extremum seeking controllers, and showed that adaptively change the dither 

amplitude can achieve global ES when local extrema exist. 

Later, multiple-parameter ESC was also investigated. Rotea [75] provided an 

averaging analysis on a multi-parameter extremum seeking algorithm with the 

measurement noise included, followed by giving a set of design guidelines. In parallel, 

Walsh [76] investigated a new control law with a discrete-time setting. The exponential 

stability was proved with the averaging analysis as well. Ariyur and Krstić [77, 78] 

presented a multi-parameter ESC framework with formal treatment of time-varying 

optimum inputs. Standard LTI control techniques were used to derive a set of design 

guidelines. The design difficulty is quantitatively evaluated with the considerations of the 

number of parameters and the shape of the unknown performance index map.  

A simple description of dither based ESC is presented as follows. The ESC is to find 

the optimal input uopt(t) in real time for a generally unknown and/or time-varying 

objective function  ,l t u with the online measurement of the objective value to be 

minimized [67, 75], i.e. 

  arg mi ,n
mopt

u R
u ul t


  (2.1) 

where u(t) is the input vector. A typical dither ESC block diagram is shown in Fig. 2.1. 

FI(s) and FO(s) denote the input and output dynamics, respectively. The output of the 
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objective function y, which may be corrupted by noise n, is assumed to be directly 

measurable for feedback. The dither and demodulation signals are required to be periodic, 

e.g. sinusoidal or square-wave. For the sinusoidal case, the dither and demodulation 

signals can be defined as 

  1 1( ) sin( ) sin( )T

md t t t    (2.2) 

  2 1 1 1( ) sin( sin() )T

m m md t a t a t       (2.3) 

where ωi, αi are the frequency and phase angle respectively. d1(t) and d2(t) are used in 

combination to extract the gradient of the objective function. The perturbed output of 

FO(s) passes the high-pass filter FHP(s), multiplied by the demodulating signal d1(t), and 

then passes the low-pass filter FLP(s). The resultant signal is proportional to the gradient 

 ˆ/l u u  . By closing the loop with an integrator, the gradient will approach to zero 

provided that the closed-loop stability holds. The compensator K(s) can be added to 

enhance the transient performance. 

 

Figure 2.1: Block diagram of dither ESC 

2.1.2. Adaptive Extremum Seeking Control 

The Adaptive Extremum Seeking Control (AESC) scheme was proposed by Guay and his 

co-workers [43, 79-82]. The AESC aims to optimize a selected objective function for 
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nonlinear systems with parametric uncertainties. The system model structure is required 

to be available for the AESC design. Different from the dither based ESC, the output of 

the objective function is assumed not measured or measurable, and cannot be fed back to 

the controller either. Under such assumption, state feedback is needed to maintain access 

to system behavior. There are two distinctive but related goals for the AESC design: 

parameter estimation and the extremum seeking. The corresponding design tasks are to 

drive both the parameter estimation error and derivative of the objective function to zero. 

The convergence of the relevant dynamics is secured by applying the inverse optimal 

design technique. Dither signals are introduced to provide the persistent excitation 

required.  

Later, Guay et al. [43] extended their work to handle the system with uncertain output 

equation by utilizing the radial basis function neural network (RBFNN) and the 

projection-algorithm based parameter learning law. The weight parameters in the 

RBFNN involved are estimated in the foregoing fashion. DeHaan and Guay [79] further 

added the ability of handling the state constrained nonlinear system to AESC based on 

[81]. The logrithmatic barrier function is used to handle the state constraints. The 

parameter convergence in AESC control design was also discussed later by Adetola and 

Guay [83] for a class of nonlinear systems. Several applications of AESC for different 

research areas have been presented recently [84-87]. Steen investigated the AESC 

scheme for a Haldane kinetics bioreactor with specific interest on the persistent excitation 

condition. [84]. Hudon et al. optimized the productivity of a tubular reactor with limited 

actuation information, i.e. only temperature information, to extimate the unmeasured 

concentration at the exit of the reactor [85]. Cougnon et al. investigated the AESC 
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application on fed-batch bioreactors with Haldane kinetics. In this work, the substract 

concentration is assumed as the only available on-line measurement [86]. Li et al. applied 

the AESC scheme on PV MPPT problem [87]. 

The AESC framework adopted in this dissertation research follows [43], which is 

briefly reviewed as follows. As illustrated in Figure 2.2, the AESC is concerned with  the 

generalized system dynamics [43]: 

  , ,x f x x u     (2.4) 

with the objective function  

  ,y h x x     (2.5) 

where output y is assumed not directly measureable.  

 

Figure 2.2: System structure for AESC 

The structure information for f[x, μ(x), u] and h[x, μ(x)] are required for the AESC 

design with the observable system states nx R , μ(x) is unknown static nonlinearity, and 
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u is the control input to be designed. The estimated state dynamics x̂ , the estimated state 

error dynamics xe  and the optimization oriented tracking error dynamics sz are then 

represented as follows:  

  1 , , ˆˆ , ,xx ex p W c u  (2.6) 

  2 , ˆ ,,x xp x ee W c  (2.7) 

  3 , ˆ , ,s x upz W d  (2.8) 

where c  represents the design parameters to be assigned in the control design process, Ŵ  

is the estimated RBFNN parameters to be described next, and d is the dither signal to be 

designed to provide persistent excitation. 

In [43, 88], the RBFNN was proposed to approximate the nonlinearity μ(x), i.e.  

      *T
lx t W S x t t          (2.9) 

where μl(t) is the approximation error, and the ideal weight W* is obtained by 

     * : arg min sup
wW

TW S x xW 


   (2.10) 

where  |w mW wW  . wm is the upper bound of the weight norm, which is chosen 

at the design stage. An adaptive learning technique using projection algorithm is used to 

online estimate the unknown parameters.  

  ˆ ˆPr ,oj , ,xW x e W c  (2.11) 

A Lyapunov-based controller is designed to ensure the convergence of the state 

trajectory into an adjustable neighborhood of the optimum depending on the 

approximation error μl(t).  
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2.2. Previous Work on Modeling of Chilled-Water Plant 

As stated in Chapter 1, high-fidelity dynamic simulation models of the chiller-tower 

system is highly desired as virtual plant for evaluating the control and optimization 

schemes. In this dissertation research, a counter-flow mechanical-draft cooling tower is 

adopted, along with a screw chiller. In this section, previous work on the modeling of 

cooling tower will be reviewed first, followed by the review on the modeling of the screw 

compressor. These reviews set forth a good foundation for the modeling efforts to be 

presented in Chapter 3. The other relevant components in the chilled water plant adopt 

Li’s work [31] and the TIL Library [29]. 

2.2.1. Literature Review on Cooling Tower Modeling 

Based on the evaporation cooling mechanism, the cooling towers are commonly used to 

reject the heat to the atmosphere in large thermal systems, such as power generation 

units, water-cooled refrigeration and air conditioning for commercial buildings [9]. The 

cooling towers can be categorized in different manners [9]: 

 Heat transfer: dry cooling towers, wet cooling towers, and fluid coolers. 

 Air flow generation: natural-draft cooling towers, mechanical-draft cooling 

towers, and fan assisted natural-draft cooling towers. 

 Relative orientation between the air and the water flow paths: cross flow cooling 

towers, counter flow cooling towers. 

In this dissertation research, the mechanical-draft counter flow wet cooling tower is 

considered as it is used more for the chilled-water plants of commercial buildings. 
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 A lot of work has been done for modeling cooling towers in the past century. Walker 

et al. [89] proposed a basic theory of cooling tower operation in 1923. Merkel [90] 

developed the first practical theory including the differential equations of heat and mass 

transfer, which has been well received as the basis for most work on cooling tower 

modeling and analysis [9, 91-96]. In Merkel’s model, both sensible and latent heat 

transfer processes are considered based on the driving potential from the enthalpy 

difference. In order to simplify the analysis, the water loss from evaporation and drift are 

neglected in Merkel’s treatment, and the Lewis relation is assumed as unity. Although 

these assumptions make the cooling tower model relatively simple and easy to 

implement, the effective tower volume is also underestimated by 5-15% [97]. Nottage 

[98] and Yadigaroglu and Pastor [99] tried to make some advanced changes on Merkel’s 

cooling tower model to achieve better accuracy in practice. The mathematical analysis 

and effect of the approximations used in Merkel’s work were studied by Baker and 

Shryock [100] , and they attempted to minimize the steady-state error by a different 

approach. They claimed that each improvement on model accuracy may enhance the 

difficulty of analysis.  

Lowe and Christie [101] studied the heat transfer processes and the pressure drop 

performance for cooling towers with different slash packings, and they proposed a 

method to obtaining the volume transfer coefficient from the estimated tower 

performance data with the parameters of tower coefficient and tower exponent. Threlkeld 

[102] included the water loss due to evaporation and the actual Lewis number into the 

cooling tower analysis. Jaber and Webb [103] introduced the effectiveness-NTU (number 

of transfer units) design method for counter-flow cooling towers using Merkel’s 
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simplified theory. Sutherland [97] carried out a more rigorous analysis of cooling tower  

including water loss by evaporation at 1983.  

Braun and his co-workers [104, 105] gave a detailed analysis on cooling tower 

modeling, and developed effectiveness models by assuming a linearized air saturation 

enthalpy and a modified definition of effectiveness models using the constant saturation 

specific heat cs. A modeling framework was developed for estimating the water loss and 

then validated over a wide range of operating conditions. Bernier [106, 107] presented a 

one-dimensional (1D) analysis of an idealized spray-type tower, which showed how the 

cooling tower performance is affected by the fill height, the water retention time, the air 

and water mass flow rates. Stoecker [108] proposed an empirical model of cooling tower 

with constant air and water flow rates based on polynomial approximation. Söylemez 

[109] proposed a way to estimate the size of the forced draft cooling tower, and utilize an 

iterative technique to predict the tower performance. 

Kloppers and Kröger [110] investigated the loss coefficient correlation for wet-

cooling tower fills, and proposed a new formulation of empirical equation which 

correlates the fill-loss-coefficient data more effectively. They also compared the 

aforementioned methods by Merkel and Poppe [111], and the e-NTU methods [112]. 

They claimed that all these approaches predicted practically identical water outlet 

temperatures for both mechanical and natural draft towers. Poppe’s approach gave lower 

water outlet temperature than the other two for natural draft towers. Jameel et al. [94, 

113] considered a counter flow wet cooling tower for its performance characteristics 

investigation. The heat and mass transfer effort is studied with an additional 

consideration on the direct contact of water and air. A theoretical model is proposed with 
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experimental evaluation. A mathematical model for a mechanical-draft cooling tower is 

studied by Fisenko et al. [114]. The model solves a boundary-value problem for the ODE 

system (ODE). The performance changes of water droplets and moist air are investigated. 

Qureshi and Zubair [92] proposed a more comprehensive model of wet cooling towers in 

2006. Their analysis included the consideration of the spray and rain zones, for a better 

estimation of the tower performance. More recently, Wetter [115] proposed a static 

cooling tower model using Modelica with static mapping to the performance curve of a 

York cooling tower. 

Most existing models for cooling towers [91, 93, 116-120] are steady state or 

effectiveness models. As stated in Chapter 1, the dynamic modeling of cooling tower is 

desired for control design and fault detection and diagnostics (FDD), and to the author’ 

best knowledge, no work has been reported on the dynamic model prior to this 

dissertation research [121, 122].  

In this dissertation research, a dynamic model for a mechanical draft counter-flow 

wet cooling tower is presented based on 1D heat and mass balance dynamic equations. 

The assumptions from Braun’s work [105] were followed to simplify the analysis. Heat 

and mass transfer is only considered in the direction normal to the medium flows, while 

the heat and mass transfer through tower walls to the environment is neglected. The mass 

fraction of water vapor in the moist air is approximated equal to the humidity ratio. 

Several distinctive treatments are performed in this study. First, the mutative water and 

air specific heats are used to relax the constraints, by use of the property calculation 

capability available in the TIL Media Library [29]. Second, instead of considering the 

Lewis relation as unity, the formulation in [123] is followed. Thirdly, the finite volume 
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(FV) method is applied in order to achieve more robust performance for start-up and all 

load-change transients [124]. The control volumes of water and moist air were defined 

separately, with opposite flow directions. Dynamic mass and energy balances were 

evaluated for each control volume, and the heat and mass transfer are considered between 

each pair of water and moist-air control volumes. The proposed model includes both 

sensible and latent heat transfer effects on the tower performance. The balance between 

the water loss and the humidity increase in the moist air is reinforced through all the 

control volumes. The water loss is determined by the mass transfer coefficient based on 

the geometry and performance map of specific cooling tower. 

2.2.2. Literature Review on Screw Chiller Modeling 

Screw chiller is one of the most common types of vapor compression system with the 

advantage of high efficiency, high reliability and wide operating range [9]. Screw 

compressor is the key component in the screw chillers, which is based on the positive-

displacement rotary mechanism. Two types of screw compressors are utilized for 

refrigeration and air conditioning applications: single screw and twin screw, both can be 

used with fluid injection and economizers [25]. In this dissertation study, a non-

economized twin-screw compressor without fluid injection is considered.  

Many thermodynamic and CFD (computational fluid dynamics) models have been 

developed for screw compressor in the literature [125-130]. Jonsson [131] presented the 

performance simulation of twin-screw compressors with economizer. The mathematical 

description of the geometrical design is involved to describe the thermodynamic process. 

Wu et al. [132] gave experimental investigations on the performance of the twin-screw 

type refrigeration compressor with the effects from both the economizer type and the 
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superfeed pressure by using indicator diagram. Stosic et al. [133] presented the 

mathematical modeling and performance calculation for screw compressors. Different 

envelope methods are used to model different rotor profiles of the screw compressors. 

Detailed mathematical models are also provided with performance calculation and design 

configuration. Lee et al. [134] presented theoretical models of both oil-less and oil-

injected twin-screw air compressors, in which the performance of the compressors are 

evaluated through simulation with different design parameters such as the rotor profile, 

the geometric clearance, and the oil injection conditions.  

Seshaiah [135] investigated the performance of the oil injected twin-screw air 

compressor with specific consideration of compressing different light and heavy gasses. 

A mathematical model [136] with standard thermodynamic relations and the ideal gas 

law is implemented with more detailed investigation on volumetric efficiency and 

adiabatic efficiency of the screw compressor. Experimental evaluations yield that the 

overall uncertainties of the volumetric and adiabatic efficiencies are ±18.08% and 

±10.54%, respectively. A dynamic model of a twin-helical-screw compressor with oil-

flooded configuration was presented by Krichel and Sawodny [137]. Separate 

mathematical models are set up for the four components of the screw compressor, i.e. the 

intake valve, the twin screws, the motor and the oil/air separator. A compressor-storage 

system is simulated with Simulink, and the dynamic behavior is evaluated with 

experimental data. Liu et al. [138] proposed a screw compressor model for performance 

prediction and simulation of the associated refrigeration system. Several regression 

models are given for different components of the screw compressor under different 

design parameters and operating conditions. However, most of the screw compressor 
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models in the literatures are detailed to the component level. In this dissertation research, 

the focus is mainly on the energy consumption of the chiller system, while the dynamics 

of screw compressor is much faster than other components in the screw chiller [130, 

133]. Most of the aforementioned models tend to be too complicate for such purpose. 

Therefore, a simple and yet effective screw compressor model should be considered. 

Fu et al. [139] presented a steady-state simulation model of liquid screw chiller. Both 

non-economized and economized screw compressor models are investigated with 

polytropic assumptions for the inlet and outlet temperature-pressure relation. The 

performance prediction errors are with in ±10% in large cooling capacity tests for seven 

different chiller systems. They extended the work to involve the dynamics from the 

thermal effect in the evaporator. The screw compressor model still remain as static model 

due to the very small thermal inertia [140]. Zhang et al. [30, 141] further extended Fu et 

al.’s work [139] to transient modeling of an air cooled screw chiller without significant 

changes on the static model of screw compressor. The model and control performances 

are validated with experimental data with reasonably prediction of the transient behavior.  

The screw compressor model used in this dissertation research adopts Zhang’s work 

[30]. A polytropic static compression model from [30] is adopted with adjustable slide 

valve opening for further compressor control purpose. The volumetric efficiency is 

obtained by the pressure-volume relation applied in [139]. The electrical power 

consumption of the screw compressor is calculated by the actual work done to the 

refrigerant flow divide by the assumed adiabatic, motor and mechanical efficiencies 

[139]. 
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2.3. Control and Optimization Techniques on Chilled Water System 

Proper control and optimization strategy is critical for efficient operation of chilled-water 

system due to potential variations in ambient, load and equipment conditions. Modeling, 

control and optimization techniques have been extensively investigated for the chilled-

water system in the past [3, 7, 8, 10, 11, 14, 15, 21-23, 142-151]. Kaya and Sommer [11] 

presented a supervisory control strategy for chillers by finding the optimal difference 

between the chilled water supply temperature and the return temperature due to the trade-

off between the energy costs for pumping and refrigeration. A 2nd–order polynomical 

empirical models are used to estimate the COP (coefficient of performance). Chow et al. 

[7] investigated a global optimization strategy for absorption chiller system by involving 

artificial neural network (ANN) and genetic algorithm (GA). Sowell and Haves [144] 

compared the performances of several building simulation platforms including 

Simulation Problem Analysis and Research Kernel (SPARK) and HVACSIM+. Yao et 

al. [21] presented an optimal operation of chilled-water system by performing a 

constrained optimization based on the empirical models of the system components, and 

an index of system coefficient of performance (SCOP) was proposed to evaluate the 

energy saving benefit. Lu et al. [142] investigated the condenser water loop of the 

centralized HVAC system, and provided an optimization strategy based on empirical 

models in terms of the COP and the PLR (part load ratio). Sun and Reddy [143] 

presented a model based optimal control strategy for building HVAC systems using the 

CSB-SQP (complete simulation-based sequential quadratic programming) technique.  

Fong et al. [8] presented the component based chilled water system simulation with 

mathematical descriptions of chiller and cooling coil, and discussed the dynamic control 
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and optimization algorithm based on the developed simulation platform. Ma et al. [10] 

proposed a supervisory control strategy for online control and optimization of building 

cooling water systems based on GA (genetic algorithm) and empirical models. Yu and 

Chan [14] discussed the economic benefits from the chiller system energy optimization, 

and presented an optimal cooling water temperature control based on empirical PLR 

models. Liu and Chuah [15] proposed an hourly regulated optimal control scheme by 

controlling the difference between the ambient wet bulb temperature and the condenser 

water temperature instead of directly finding the optimal condenser water temperature. A 

regressional function is used to predict the optimal approach temperature.  

In particular, Braun and Diderrich [3] studied the coupling between the power 

consumption of chiller compressor and cooling tower fan. As shown in Fig. 1.4, they 

demonstrated that the tower fan power increases with the relative tower airflow, while the 

chiller power decreases. As net effect, the total power consumption shows a global 

minimum. The total power curve also demonstrates a strong convex characteristic, which 

would facilitate the use of any gradient search type of optimization methods. Then, the 

authors proposed an open-loop control scheme to search for the near optimal fractional 

tower airflow based on the parameter estimation of the design characteristics of the 

chiller and cooling tower. Furthermore, Fig. 1.4 suggests convex (nearly quadratic) 

characteristics for the total power map, which guarantees the possibility of locating the 

global minimum with online search for the optimal air flow for the cooling tower. 

Similar to Braun and Diderrich’s study, most existing methods to the control and 

optimization of the chilled-water systems have been based on nominal/empirical models. 

In practice, due to the significant variation in ambient conditions and the hard-to-estimate 
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system degradation, such models may often be inaccurate. In this study, in order to 

overcome the change in the total power map due to unknown environment changes and 

the hard estimated system degradation,  the extremum seeking control (ESC), as a major 

class of self-optimizing control strategies, is adopted.  

As described in Section 2.1, the objective of ESC is to search for the optimal input in 

real time in a nearly model-free fashion. Recently, the ESC scheme has drawn quite 

attention for HVAC applications [152]. Li et al. [153] presented an ESC scheme for 

efficient operation of the air-side economizer. Burns and Laughman [154] investigated a 

multiple inputs extremum seeking scheme to optimize the energy consumption of the 

vapor compression cycle. For the chilled-water systems, application of ESC has been 

recently investigated by United Technology Research Center and their collaborators [22, 

23]. Tyagi et al. [22] presented a work with golden-section search as their extremum 

seeking solution for determining the optimal condenser supply water temperature based 

on an oracle function. Such scheme may lead to long searching time in practice since 

every step of search needs to wait for the system transient to settle. Also, such method is 

more vulnerable to external disturbance and variation of plant behavior. For the same 

problem, Sane et al. [23] described a dither ESC solution, where the condenser supply 

temperature is again used as the control input. Simulation results were shown without 

mentioning the details about the simulation platform. As the dither ESC is a dynamic 

scheme of gradient search, the key aspects of its design are the choice of dither frequency 

with respect to the input dynamics and the compensation for the phase change due to the 

input and output dynamics and the high-pass filter. An ESC design of such may not be 

sufficient without simulation on a dynamic model of the cooling tower and chiller. Also, 
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the control input adopted in [23] and [22], i.e. the condenser supply water temperature, is 

not a variable that can be directly manipulated in practice. Some inner loop control of the 

cooling tower must be implemented. Also, additional cost is induced for installation and 

maintenance for the associated temperature sensor.  

With these concerns considered, this dissertation research handles the ESC based 

chilled-water system control problem with two different perspectives. First, a Modelica 

[26] based dynamic simulation model platform is developed for the cooling tower in 

Dymola [27]. Second, the cooling tower fan speed, instead of the condenser supply water 

temperature, is used as the input for the ESC control design [2]. With the typical variable-

speed drive (VSD) equipped for the cooling towers nowadays, setting the VSD frequency 

or the fan motor speed is direct and simple [155]. In comparison, the scheme of using the 

condenser inlet water temperature relies on the associated temperature measurement and 

some inner loop controller for such temperature regulation. The proposed scheme 

eliminates such dependency, which would be more cost effective and reliable. With 

constant condenser water flow rate assumed, the total power consumption of the chiller 

compressor and the cooling tower fan is used as the performance index for feedback. In 

particular, a screw chiller is chosen for the simulation plant model, which would not 

affect the generality of the results for plants with other types of chillers. The proposed 

ESC framework is illustrated in the schematic in Fig. 1.5.  

In practical chiller operation, the tower fan has both maximum and minimum speed 

limits. The control input (cooling tower fan speed) may be saturated to its upper bound 

during certain operating conditions. Due to the presence of the integrator in the ESC loop, 

integral windup is inevitable for ESC system operations and may slow down or disable 
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the optimal searching ability of ESC. Li and Seem [156] proposed a back-calculation 

based anti-windup ESC scheme, which was later applied by [153] for the ESC operation 

of the air-side economizer. In this dissertation research, this scheme is applied to the ESC 

operation of the chilled water system under fan speed saturation. 

The details of screw chiller modeling and chilled water system optimization control 

design will be presented in Chapter 4. 

2.4. MPPT Techniques on Photovoltaic System 

As described in Chapter 1, MPPT control of the PV system aims to locate and maintain 

the MPP for online operation regardless the change of the PV intrinsic and environment 

uncertainties. Many MPPT techniques have been proposed in the literature [17, 33, 35-

37, 39-42, 157-160], most of which are based on static optimization algorithm, such as 

the perturbation-and-observation (P&O) method [32], the incremental conductance 

(IncCond) method [33] and the hill climbing (HC) method [34, 161]. The P&O method is 

well known and has been widely used for its simplicity. It operates by changing the PV 

array voltage periodically. The array power is observed to seek the desired direction 

towards higher power output. The IncCond method tunes the operating point with the 

idea of gradient search (dPPV/dVPV). The HC method directly considers the relationship of 

the duty ratio and power output, the local MPP can be searched if the difference between 

dPPV/dD and zero can be eliminated by feedback control. Some other techniques like 

look-up table (LUT) [35], voltage/current based PV generator [36] and fuzzy logic [37] 

are also developed. However, the static optimization based searching methods often have 

slower convergence and may be limited when the system undergoes quick change of 
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environment conditions.  

Dynamic MPPT control methods [162-167] have recently been studied more, aiming 

to improve the transient performance. Hiyama et al. [162] proposed a simple neural 

network (NN) structure to provide identification of the optimal operating point of the PV 

system, and then achieved the real time continuous estimation of the MPP with the 

information from the NN. Simoes et al. [163] investigated a fuzzy algorithm based MPPT 

technique to continuously on-line track the maximum power, the scheme was 

successfully implemented in experimental test with RISC microcontroller. Wilamowski 

and Li [164] also presented a fuzzy based PV MPPT scheme, the output circuit voltage 

and short circuit current are observed to represent the temperature and illumination 

information in the fuzzy controller, respectively. Noguchi et al. [165] proposed a novel 

PV MPPT method based on a short-current pulse of the PV system. The short-current 

pulse amplitude is used to represent the optimum operating current with a proportional 

parameter k. Fast power-versus-current curve scanning is utilized to adaptively estimate 

the value of k and overcome the disturbances from environment. Yoshida et al. [166] 

extended the P&O method by selecting the switching ripples from DC/DC converter as 

the perturbing signal, MPPT with high speed performance has been achieved by 

monitoring the photovoltaic array power with the knowledge of dynamic characteristics 

of the arrays. Chu and Chen [167] investigated a sliding mode control scheme for MPPT 

of PV system, a switched system model was discussed for the controller design purpose. 

/PV PVP I   is selected as the sliding function to guarantee the estimation of the MPP.  

The Extremum Seeking Control (ESC), as a class of nearly model-free self-

optimizing control strategies that can search for the unknown and/or time varying optimal 



42 
 

 
 

input parameter regarding a given performance index of a nonlinear plant process, has 

drawn great attention [67, 69-74, 168, 169]. The ESC based MPPT methods have been 

investigated most recently [38-42, 170-175]. Levya et al. [38] adopted a classic switching 

ESC scheme well studied in 1950’s for PV MPPT, while providing a Lyapunov type of 

stability proof. Brunton et al. [39] developed a novel extremum seeking scheme with 

inverter ripple to treat the PV MPPT problem under rapidly varying weather conditions. 

The experimental results of the proposed ES method were compared to P&O method 

with a much faster transient performance. Lei et al. [41] investigated the dither ESC 

based MPPT with a specified treatment of partial shading, an initial discussion about ESC 

integrated detection of internal resistance change is also presented. Then a further 

discussion is extended to the global MPPT control on PV system with variable shading, a 

sequential ESC based scheme is proposed and validated with simulation studies [40]. 

Moura and Chang [42] presented a ESC MPPT scheme with Lyapunov based switching. 

The sinusoidal perturbation signal can be exponentially decayed when the system 

converged to a neighborhood of the MPP, which may lead to a higher power efficiency 

with smaller bias to the optimal point. Leyva et al. [170] further extended their previous 

study [38] and implemented and verified the proposed sinusoid based ESC scheme with 

an experimental solar generator.  Zazo et al. [171] presented a Newton-like ESC scheme 

to deal with the PV MPPT problem. Both the gradient and the estimation of the PV 

characteristic Hessian are utilized to track the MPP with the help of sinusoidal dither 

signals. Zhang et al. [172] investigated a practical extension of dither ESC with variable 

step-size for the PV MPPT problem. Faster response speed and improved accuracy are 

claimed for the proposed scheme. Malek et al. [173]discussed the MPPT problem on a 



43 
 

 
 

PV based electrical power system for a satellite. Two different algorithms, i.e. Integer 

Order ESC and Fractional Order ESC are proposed and compared. The proposed 

techniques are implemented and tested with both simulations and experiments and 

received higher conversion efficiency than traditional MPPT methods used in satellite 

power supply systems. Ghaffari et al. [175] presented a multivariable gradient based ESC 

schemes on the power optimization problem for PV system with micro-converters. A 

further investigation of using Newton’s update law can improve the slow convergence of 

ESC controller in the multivariable systems [174].  

As described in Section 2.1, such ESC scheme extracts gradient information using the 

pair of dither and demodulation signals, high-pass and low-pass filters. By closing the 

control loop with integrator, the gradient-proportional signal is driven to zero in steady 

state for achieving the optimality. As the gradient information is locked to the selected 

dither frequency, this scheme is robust to process noise and variation of the performance 

map [38-42].  

In spite of the success demonstrated in these work, the dither ESC based MPPT 

schemes have shown certain limitations. As an inherent limitation of the dither ESC 

framework, its validity is often limited to the neighborhood of the optimum (equilibrium), 

and the ESC design addresses the stability and performance issues based on assumption 

of specific functional form for performance map, e.g. quadratic function. Structural 

nonlinearity in the performance map cannot be taken into account explicitly, which may 

limit the performance. For example, the P-V characteristic bears very different slopes at 

the two sides of the MPP. As a safe choice, the ESC loop gain has to be limited by the 

steeper side, which may lead to slow convergence if searching from the gradual (low-
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voltage) side. 

With the foregoing consideration, this dissertation research approaches the PV MPPT 

problem with AESC reviewed in Section 2.1.  The AESC controller is designed based on 

the knowledge of the system model structure and certain objective function that is 

defined based on measurable state variables [81]. Continuous kernel functions can be 

used to approximate the unknown nonlinear output mapping, for which the parameters 

are estimated by some parameter learning law derived with the Lyapunov based inverse 

optimal design technique. The AESC scheme searches for both the optimal parameters 

and the optimal input simultaneously. As the asymmetry of the nonlinear map of P-V 

characteristics is dealt with by the parameter learning process, the AESC is expected to 

achieve better transient performance in the PV MPPT. In particular, the PV output power 

is simply the product of the terminal voltage and current, thus the objective function is 

hinged on the nonlinear characteristics of I(V). The I-V characteristics can be 

dramatically varied with intrinsic and environmental conditions such as temperature and 

irradiance.  

For PV power conversion system, the power converter related circuitry is easier to 

obtain tractable models, while no simple closed-form model is available for the I-V 

characteristics [176-178]. Therefore, the RBFNN is adopted as the assumed functional 

for the AESC design [43].  Similar to [43], the Gaussian RBF kernel [88] is adopted to 

approximate the unknown I(V) characteristics. A Lyapunov-based adaptive learning 

control technique is applied to guarantee the convergence of the overall system output to 

an adjustable, approximation error dependent neighborhood of the optimum.  
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2.5. PV System Degradation and Detection Techniques 

As described in Chapter 1, degradation monitoring is critical for the practice of condition 

based maintenance which can also reduce the COE of PV power generation [52, 179]. 

Although the commercial PV module’s warrantee is typically up to 20 years, earlier 

degradation or failure still happens due to multiple reasons such as dirty PV device 

surface, ultraviolet, high temperature, high humidity and intrinsic degradation of the p-n 

junctions [180, 181].  

Front-surface soiling is a degradation mode that comes from the dirt on the PV device 

surface. It may cause relatively lower power losses (less than 10%) and it could be 

detected visually [182]. Degradation caused by light induction or high temperature also 

occurs over time. Light induced degradation (Staebler-Wronski effect) [183], is due to the 

broken Si-Si bonds in the depletion region of the cell and will lead to meta-stable defects. 

This kind of PV degradation can be detected by observing the I-V characteristics 

periodically [184]. The high temperature may also cause degradation by decreasing the 

open circuit voltage Voc and leading to an overall reduction to the PV device power 

generation [185]. The temperature induced module degradation can also be detected by 

measuring the I-V characteristics. Optical degradation is another mode of module 

degradation caused by the effects from ultraviolet, temperature and humidity, which may 

cause the discoloration of the encapsulating material [186]. The optical degradation can 

be visually detected using 375 nm ultraviolet lamp illumination [50]. The degradation 

from the reflectivity increase of the anti-reflective coating can also reduce the power 

generation efficiency by reducing the absorption of the income incident photons. The I-V 

curve monitoring can also help in this case [51]. 
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Intrinsic degradation of PV module is mainly reflected by the change of the internal 

resistances of the PV cell. The PV cell performance can be reduced by decreasing the 

shunt resistance or increase of the series resistance [187-189]. The series resistance Rs in 

the PV cell is mainly related to two parts: the resistances from the metal contacts and the 

current movement through the emitter and the base of the cell [182], respectively. It 

increases gradually due to the thermal and environmental effects. Increase of  Rs leads to 

the decrease of the PV cell output voltage and the power loss of the PV device [182]. 

Dark I-V characteristics measurement can be used to evaluate the condition changes of 

the series resistance [53]. The shunt resistance Rp is another major factor in the PV cell to 

cause significant power loss. The impurities and crystal damage in the PV cell may 

introduce alternate current paths for the light-generated current. It will cause the increase 

of the shunt current, and lead to the PV performance reduction. The condition change of 

the shunt resistance can also be monitored by dark I-V characteristics measurement [51]. 

In this dissertation research, the change of the shunt resistance is investigated. 

For the condition monitoring purpose, variables like PV array voltage and current can 

be selected, while the I-V characteristic measurement is also a major technique to detect 

the PV module degradation. With the open-circuit I-V curve obtained, it has been 

proposed [49] that the internal series resistance may be obtained based on its 

proportionality with the slope of I-V curve, or as intercept of the slope of I-V curve [18]. 

With the complete evaluation of the PV modules before installation, the degradation 

could be warned with offline evaluation of the system characteristic [184]. Signal 

processing [190], thermal infrared imaging [191] and other methods [192] have also been 

investigated for PV device fault detection and diagnostics. However, all these methods 
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are either offline with require large number of measurements under different irradiation 

levels or need to rely on the reliability of multiple sensors [193].  

In this dissertation research, another advantage of the dither ESC has been 

considered, especially when square-wave dither input is applied. Under square-wave 

dither, the steady-state ESC output consists of a number of small-amplitude step 

responses, and the transient characteristics of such step responses are affected by certain 

system parameters. For PV operation, the internal shunt resistance has significant impact 

on the transient characteristics of the dithered output, and thus it is expected to use such 

correlation to detect the possible PV degradation and faults. This approach provides a 

control integrated diagnostic probe for PV degradation detection, which is a cost-

effective scheme for PV condition monitoring.  
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Chapter 3. Modeling of Chilled Water Plant 

For the ESC control, the chilled-water plant being simulated consists of a water-

cooled screw chiller and a mechanical-draft counter-flow wet cooling tower. The cooling 

tower model follows the work by Braun et al. in [105]. The screw compressor modeling 

follows the work by Zhang et al. in [30], while the condenser, evaporator and expansion 

device models are based on the work by Li, et al. in [194]. For other components, such as 

fan, pump, collection basin, we have adopted the counterparts in the TIL Library 2.0.1 

[29]. In this chapter, the dynamic model of the cooling tower is presented in Section 

3.1.1, with discussion about the determinations of number of transfer units (NTU) and 

Lewis relation (Lef) in Section 3.1.2. Section 3.1.3 presents the component-level models 

for fan, pump and collection basin. The developed cooling tower model is evaluated with 

the experimental data from Simpson and Sherwood [195] in Section 3.2, in terms of the 

steady-state value of the outlet water temperature. The dynamic behavior is also 

simulated under the change of inlet conditions, although no validation can be provided at 

this stage. The screw chiller model is discussed in Section 3.2. The screw compressor 

model is presented in Section 3.2.1. Other components in the chiller cycle are briefly 

described in Section 3.2.2, including condenser, evaporator and expansion valve. These 

component models are adopted from [31], and their detailed description are given in the 

Appendix C.  

3.1. Dynamic Modeling of Counter Flow Wet Cooling Tower 

This section presents a dynamic simulation model for a typical mechanical draft counter-

flow wet cooling tower.  
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For cooling tower operation, heat rejection is accomplished via the heat and mass 

transfer occurring at the direct contact between hot water droplets and ambient air. Figure 

3.1 shows the schematic of a mechanical draft counter flow wet cooling tower that is 

typically used for chilled water system in commercial buildings.  

 

Figure 3.1: Schematic diagram for mechanical draft counter flow wet cooling tower  

The cooling tower includes fan, distribution system, spray nozzles, fill (packing), 

collection basin and condenser pump. The warm water from chiller is sprayed downward 

through the pressurized nozzles and then flows through the fill, and the evaporative 

cooling occurs as the air flow is pulled upward by the tower fan through the fill. The fill 

is used to increase both the surface area and contact time between the air and water flows. 

For relatively dry air, the warm water can be cooled to a temperature below the ambient 

dry-bulb temperature. During the process, some water is evaporated into the air while 

some water is lost by misting effect (drift). Therefore, an external source of water, called 

makeup water, is needed to compensate for the water loss due to evaporation and drift. 

The condenser pump drives the water back to the chiller. 
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In this dissertation research, the dynamic modeling of cooling tower system 

components adopt both the free packages from Modelica Standard Library and the 

commercial packages from the TLK/IfT Library (TIL) [196]. Furthermore, the extended 

developments of the models are established as follows: 

1) Water and moist air side models are re-developed to describe the evaporative 

cooling process of the cooling tower instead of the common heat exchangers. The 

transient behavior of the thermal process is considered due to further optimization 

control purpose. 

2) The one-dimensional heat and mass transfer between the water and air streams is 

established by utilizing the overall number of transfer units (NTU) and Lewis 

relation ( fLe ). 

3) The collection basin model of the cooling tower is developed, which provides 

important additional dynamics for the cooling tower system. 

Dynamic modeling of cooling tower is beneficial for control design and fault 

detection and diagnostics of the chilled-water systems [9]. The proposed dynamic model 

of the cooling tower is based on the one-dimensional dynamic heat and mass balance 

equations. The assumptions from Braun’s work [105] were followed to simplify the 

analysis: 

1) Heat and mass transfer is only considered in one dimensional, the perpendicular 

direction of the flows. 

2) The cooling tower is assumed well sealed, no heat and mass transfer through the 

walls to the environment. 
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3) The humidity ratio is used to approximate the mass fraction of the water vapor in 

the moist air. 

4) The cross-sectional area of the tower is assumed uniform.  

5) The water and moist air temperatures are assumed uniform at any cross section. 

Several distinctive treatments are carried out in this study: 

1) Mutative water and air specific heats are used to relax the constraints, with the 

help of the property calculation capability available in the TIL Media Library 

[196]. 

2) The formulation in Bosnjakovic’s work [123] is followed instead of considering 

the Lewis relation as unity. 

3) The finite volume method is applied in order to achieve more robust performance 

for start-up and all load change transients [124].  

4) NTU and fLe  are used to characterize the heat and mass transfer coefficients for 

specific tower design due to the difficulty in getting a general correlation for heat 

and mass transfer in cooling tower [106].  

The control volumes of water and moist air are defined separately, with opposite flow 

directions. Dynamic mass and energy balances are evaluated for each of the control 

volumes, the heat and mass transfer are considered between each pair of the water and 

moist-air control volumes. The proposed model includes both sensible and latent heat 

transfer effects on the tower performance. The balance between the water loss and the 

humidity increase in the moist air is reinforced through all the control volumes. The 
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water loss is determined by the mass transfer coefficient based on the geometry and 

performance map of specific cooling tower. The associated evaporation cooling process 

and its related components are model developed by utilizing Modelica (Version 2.2.1) 

[26] with Dymola (Versions 6.1 and 2012 FD1) [27], TIL Library 2.0.1 and TIL Media 

Library 2.0.4 [29]. 

3.1.1. Cooling Tower Modeling 

The evaporative cooling process of the mechanical-draft counter-flow wet cooling tower 

is modeled with the finite volume method, as shown in Fig. 3.2. The control volumes for 

water and moist air are constructed, respectively. The water and moist air flows are in 

opposite directions. Dynamic mass and energy balances are established for both water- 

and air-sides, with control volumes shown in Fig. 3.3 and Fig. 3.4, respectively. The heat 

and mass transfer are considered between each pair of the water and moist air control 

volumes. The transient mass and energy storage is treated at the water side but neglected 

at the air side. 

For the ith water-side control volume, the energy balance is established as 

 , , , , ,w i w in i w out i iHH H q      (3.1) 

where ,w iH  is the enthalpy change for the cell, , ,w in iH  is the inlet water enthalpy, , ,w out iH  

is the outlet water enthalpy, respectively. iq  is the heat flow transferred to the 

neighboured (also the ith) moist-air cell, which includes both sensible heat flow and the 

latent heat flow due to evaporation. Equation (3.1) can be expanded into 

    ,
, , , , , , , , , , , , ,

w i
w i p w i w in i w in i w i w out i w out i w i i

dT
m c m h h m h h q

dt
          (3.2) 
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where ,w im  is the mass of water stored in the cell, , ,p w ic  is the specific heat of water 

(which can be determined by the local water temperature ,w iT ) in the cell, , ,w in im  and 

, ,w out im  are the mass flow rates for the inlet and outlet water flow, respectively. , ,w in ih  and 

, ,w out ih  are the specific enthalpy of the inlet and outlet water flow, respectively, and ,w ih  is 

the specific enthalpy of water in the cell. 

 

Figure 3.2: Illustration of control volumes for cooling tower modeling 

 

Figure 3.3: Energy balance between neighbored water and air control volumes 
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Figure 3.4: Mass balance between neighbored water and air control volumes 

For the mass balance of the same water-side control volume, cell volume cellV  is 

assumed as constant, while water density ,w i  may change with evaporation and 

temperature change in the cell. The dynamic mass balance follows 

 ,
, , , , ,

w i
w in i w out i evap i

dm
m m m

dt
      (3.3) 

 , ,w i effective w im V    (3.4) 

where ,evap im  is the vapour mass transfer flow rate into the moist air side. effectiveV  is the 

water droplet volume in the cell. The ratio of water droplet per unit volume of the tower 

is around the level of 0.001 [106]. Substituting Eq. (3.4) into Eq. (3.3) yields 

 
 ,

, , , , ,
,

,
effective w i

w i effe

effec

ctive

tive w i

w in i w out i evap i

dV d

dt dt

d V
V m m m

dt

 
        (3.5) 

,effective iV  can be obtained by [107]: 

 ,
,

cell
effective w in

w i T w

V
m

A v
V


   (3.6) 

where wv  is the velocity of water droplets under free fall (no packing), is assumed as 

constant.  TA  is the cross-sectional area of the tower. Taking the time derivative of Eq. 

(3.6) yields 



55 
 

 
 

 ,
,

effective w incell
w i

T w

dV dmV

d tA dt v
 


 (3.7) 

Equation (3.7) reveals that if ,w inm  does not vary much, effectiveV  can be assumed as 

constant; otherwise, the gradient of ,w inm  is needed to account for the change of effectiveV . 

The time derivative of density   can be expressed as function of pressure P  and 

specific enthalpy h  [196]: 

 
h P

d dP dh

dt P dt h dt

              
 (3.8) 

As the cell pressure is approximately constant for the cooling tower operation, Eq. (3.8) 

can be simplified as 

 
pw

d dh dT

dt c dt dt

        (3.9) 

where 
1

PT




     
 is the isobaric coefficient of expansion and pwc  is the specific heat 

capacity at constant pressure. Substituting Eq. (3.9) into Eq. (3.5) leads to the mass 

balance of the ith water cell: 

 ,
, , , , , , ,

,w i
w in i w out i evap i effectiv

w incell

T w
e w i w i

dT
m m m V

dt

dm

d

V

A v t
        


 (3.10) 

where ,w i  and ,w i  can be determined by the local water temperature. 

At the air side, the steady-state relations were derived following the detailed analysis 

model [105], i.e. 

 , , , , 0a in i a out i iH H q     (3.11) 

 , ,i sen i lat iq q q     (3.12) 

The sensible and latent heat flow rates can be determined by 
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  , , , ,sen i C i V cell w i a iq h A V T T   (3.13) 

  , , , , , , , , , ,lat i f g i evap i f g i D i V cell s w i a iq h m h h A V         (3.14) 

where ,C ih  is the local heat transfer coefficient, VA  is the surface area of water droplets 

per unit volume, ,a iT  is the local air temperature, , ,f g ih  is the latent heat of vaporization 

depending on the local water temperature. ,D ih  is the local mass transfer coefficient, , ,s w i  

is the saturated air humidity ratio at the local water temperature, and ,a i  is the local 

humidity ratio of the moist air. 

The fill is used in most cooling towers, however, it is usually hard to predict its heat 

rejection performance analytically because of the difficulty in evaluating the contact time 

and the surface area between the moist air and the water streams through the fill [106]. 

The fouling in the packing materials may result in a reduction in the overall effectiveness 

of the tower and make it even harder to evaluate the fill geometry accurately. Due to the 

difficulty in getting a general correlations for heat and mass transfer in cooling tower in 

terms of the physical tower characteristics, the NTU and the Lewis relation fLe  have 

been used to characterize the heat and mass transfer coefficients for specific tower 

designs [105]. 

The mass transfer coefficient can be derived by using the overall NTU for mass 

transfer, i.e. 

 ,

,

D i V T

a in

h V
N U

m

A
T 


 (3.15) 

where TV  is the total tower volume and ,a inm  is the inlet air flow rate. The mass transfer 

coefficient can thus be determined with  
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 ,
,

a in
D i V

T

NTU m
h A

V





 (3.16) 

which varies with the tower geometry, NTU and tower inlet air flow rate. The heat 

transfer coefficient is determined by 

 , ,
,

f pm i a in
C i V

T

Le NTU c m
h A

V

  



 (3.17) 

where fLe  is defined as 

 ,

, ,

C i
f

D i pm i

h
Le

h c
  (3.18) 

and the local specific heat of moist air ,pm ic  is determined by 

 , , , ,pm i pa i a i pv ic c c   (3.19) 

where ,pa ic  is the local specific heat of dry air and ,pv ic  is the local specific heat of water 

vapor [104]. ,C ih  may change with the local value of fLe  and ,pm ic . 

3.1.2. Determination of NTU and Lef 

The Merkel’s number MMe  can be related to the mass transfer coefficient by [197]: 

 ,

, ,

CTn

w inD V T
M

w in a i
CT

n

mh A V
Me c

m m

 
    

 


 

 (3.20) 

where ,w inm  is the inlet water flow rate of cooling tower, CTc  and CTn  are empirical 

constants specific to a particular tower design. Kröger [198] presented a methodology to 

obtaining the Merkel’s number from experimental data with empirical equations of 

thermal properties (see Appendix A). Multiplying both sides of Eq. (3.20) by , ,/w in a inm m   

leads to  
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,

,

n

w in

a in

m
T

m
N U c


 
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 




 (3.21) 

where coefficients CTc  and CTn  can be fitted from the performance measurements for a 

specific tower on a log-log plot [105]. 

The Lewis relation has been discussed in literature. Poppe and Rogener [111] cited 

the definition of Lewis relation according to [123], i.e.  

 , ,2/3 1 / lnrs w s w
f

a

r

r a r

d d
Le Le

d d

 
 

     
          

 (3.22) 

where Le  is the Lewis number, assumed as a constant as 0.865. rd  is the ratio of the 

molecular weight of water to the molecular weight of air, which is a constant of 0.622. 

Grange [199] and Bourillot [200] claimed that for a wet cooling tower, Eq. (3.22) is 

approximately 0.92. Kloppers and Kröger [201] stated that, if the ambient air is very 

humid, variation of the Lewis relation has little influence on the water outlet temperature, 

and neither on the heat rejected from the cooling tower; while for dry conditions, 

variation of the Lewis relation can lead to significantly different results. It was also 

suggested that the equation by [123] should be used, and a numerical value of 0.92 be 

preferred when the fill performance test data is insufficient to accurately predict the 

Lewis relation of a particular fill. 

The simulation evaluation of the steady-state value of the cooling tower model will be 

shown in Section 3.1.4.A. In particular, the Lewis relation value will also be shown, the 

simulation results shows a very close value around 0.92. 
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3.1.3. Model of Related Components Used in Simulation 

3.1.3.A. Cooling Tower Fan 

The tower fan modeling follows the TIL.MoistAirComponents.Fans.Fan2ndOrder 

component in the TIL Library [29]. From the fan affinity law, the volume flow rate, 

pressure increase and rotational speed are related by 

 , ,0 ,0
,0

fan
fan affinity fan

fan

n
Q Q

n
   (3.23) 
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where ,0fann  is the nominal speed, fann  is the rotational speed, ,0fanQ  is the volume flow 

rate for zero pressure increase, and , ,0fan affinityQ  is the volume flow rate for zero pressure 

increase following the fan affinity law. For zero volume flow rate, ,0fanp  denotes the 

pressure increase and , ,0fan affinityp  denotes the pressure increase following the fan affinity 

law [196]. The actual pressure increase can be determined with 
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 
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Then the fan power can be given by 

 
,

fan fan
fan

fan fan m

p Q
W

 
 

  (3.26) 

where fan  is the fan efficiency and ,fan m  is the motor efficiency. fan  can be determined 

by a polynomial regression of the manufacture’s data [202]. 
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3.1.3.B. Condenser Water Pump 

The condenser water pump model is intended to predict the power consumption by the 

pump. A constant pressure change could be set up in later simulations due to the 

assumption of constant condenser water flow rate. The TIL pump model 

TIL.LiquidComponents.Pumps.Pump2ndOrder has been adopted [29], with the pump 

affinity law defined similarly to that for the fan modeling, which are given as: 
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where pumpn  is the rotational speed, ,0pumpn  is the nominal speed, ,0pumpQ  is the volume 

flow rate for zero pressure increase, and , ,0pump affinityQ  is the volume flow rate for zero 

pressure increase following the pump affinity law. For zero volume flow rate, ,0pumpp  

denotes the pressure increase and , ,0pump affinityp  the pressure increase following the pump 

affinity law. The actual pressure increase can be determined with 
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The power loss and the shaft power of the pump can then be determined by 
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 , ,pump shaft pump loss pump pumpW W p Q     (3.32) 
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where , ,0pump lossW  is the power loss at nominal speed, ,0pump  is the nominal efficiency, 

,pump lossW  is the actual power loss at rotational speed pump , and ,pump losse  is a constant 

exponent for power loss calculation. 

The mass and energy balances for the pump are 

 ,
, , ,pu

pump
mp

w
pump in pump out pump w pump

dT
m m V

dt
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where ,pump inm  and ,pump outm  are the inlet and outlet flow rates of the water pump, 

respectively. pump  is the local isobaric coefficient of expansion in the pump. ,pump w  is 

the local water density in the pump. ,pump wT  is the local water temperature in the pump. 

pumpV  is the volume of water in the pump, which is generally treated as a constant. ,pump inh  

and ,pump outh  are the specific enthalpies for the inlet and outlet water, respectively. pumph  is 

the specific enthalpy of water in the pump, and ,pump shaftW  is the pump shaft power. 

3.1.3.C. Collection Basin 

The mass and energy balance equations of the collection basin can be established as 

[196]: 

 ,
, , , ,
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where ,cb makeupm  is the water flow rate from some source of make-up water. cbh  is the 

specific enthalpy of water in the collection basin. The volume of water cbV  in the 

collection basin is assumed to be constant for now. So the flow of water make-up is equal 

to the total water loss from evaporation. ,cb inm  and ,cb outm  are the inlet and outlet water 

flow rates of collection basin, respectively. cb  is the local isobaric coefficient of 

expansion in the basin, and ,cb w  is the local water density. ,cb wT  is the local water 

temperature in the basin. ,cb inh  and ,cb outh  are the specific enthalpies for the inlet and 

outlet water, respectively. 

3.2. Simulation Study for Cooling Tower Modeling 

Simulation study is conducted to study the behavior and the performance of the dynamic 

model of cooling tower. Both steady-state and transient performance of the cooling tower 

evaporative cooling process will be shown below. The steady-state value of the cooling 

tower outlet water temperature is evaluated with the experimental data from [195]. The 

parameters used in the simulation are listed in Appendix B. The solver is selected as 

Dassl and the tolerance setting in this simulation is selected as 0.0001.  

3.2.1. Steady-State Simulation and Comparison 

Figure 3.5 shows the Dymola layout of the model of evaporation cooling process for the 

cooling tower, developed with TIL library. There are five inputs in the cooling tower 

model, i.e. the inlet moist-air flow rate, inlet moist-air temperature, inlet moist-air 

humidity ratio, the inlet water flow rate and the inlet water temperature. 
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Figure 3.5: Dymola layout for evaporative cooling process of cooling tower 

The steady-state performance of the proposed model is evaluated with the 

experimental data from [195], with five cases compared in Table 3.1. , ,w out calT   is the 

model predicted water outlet temperature. Figure 3.6 plots all the experimental data of the 

outlet water temperature and those predicted with the proposed model. The prediction 

error has the mean of 0.344K and the standard derivation of the 0.428K, which is 

comparable to the results in [105].  

TABLE 3.1  

COMPARISON OF COOLING TOWER SIMULATION MODEL AND EXPERIMENTAL DATA 
 

Cases 1 2 3 4 5 

 o
, Cw inT  33.22 34.39 43.61 38.78 43.06 

 o
, Cw outT  25.50 29.00 27.89 29.33 29.72 
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 o
, Cdb inT  28.83 31.78 35.00 35.00 35.72 

 o
, Cwb inT  21.11 26.67 23.89 26.67 26.67 

 o
, Cdb outT  28.44 31.22 32.78 33.28 33.89 

 , kg/sa inm  1.187 1.165 1.158 1.265 1.157 

 , kg/sw inm  1.009 1.009 0.755 1.009 0.755 

 o
, , Cw out calT  25.46 28.78 28.12 29.87 29.94 

 

 

Figure 3.6: Comparison for outlet water temperature between model prediction and 

measured data 
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3.2.2. Transient Simulation 

Since no field test data is available by the time period of this study, an investigation into 

the media condition change through the tower cells is provided to evaluate the validity of 

the transient description. All the condition changes in the case studies use a very fast 

ramp change with ramp duration as 0.01 sec. 

For simulation Test 1, the transient profile for the change from Scenario 1 to Scenario 

2 as defined in Table 3.2. is observed under the changes of the inlet water temperature, 

the inlet air temperature and the inlet air humidity ratio. Figure 3.7 shows the profile of 

outlet water temperature The water inlet temperature and the air inlet dry bulb 

temperature increase, which may cause an increase of the water outlet temperature. 

Meanwhile, the decrease of the relative humidity of the inlet air may cause a decrease of 

the water outlet temperature. For static model simulation, only the increase between the 

two states could be observed with the missing transient performance. The dynamic model 

in this dissertation study demonstrates a significant undershoot.  

TABLE 3.2 

DEFINITIONS OF SCENARIOS 1 AND 2 INVOLVED IN SIMULATION TEST 1  
 

Scenario 1 2 

 o
, Cw inT  38.78 48.06 

RH (%) 65.3 51.4 

AH (kg/m3) 0.0192 0.0162 

 o
, Cdb inT  31.86 33.11 

 , kg/sa inm  1.1584 1.1584 
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 , kg/sw inm  0.7548 0.7548 

 o
, , Cw out calT 29.08 29.53 

The water temperature performances in different cells are shown in Fig. 3.8. Because 

water is treated as in an inverse direction in the model, as shown in Fig. 3.2, so the water 

flow direction is: given inlet water temperature, cell 7, cell 5, cell 3 and outlet water 

temperature (water cells of even number is omitted). Please refer to Fig. 3.2 for the cell 

numbering. 

 

Figure 3.7: Transient profile of water outlet temperature in simulation test 1 with stand-

alone cooling tower model   
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Figure 3.8: Transient profile of water cell temperatures in simulation test 1 with stand-

alone cooling tower model 

The tower inlet water becomes warmer during the condition change specified, but the 

effect cannot affect the outlet water temperature instantly, the warm water need to flow a 

long distance before it get to the tower outlet. Meanwhile, the decrease of the relative 

humidity of the inlet moist air will directly affect the outlet water temperature due to the 

counter flow structure of the cooling tower, so the tower outlet water temperature will 

decrease at the beginning of the condition change. Finally, when the warm water sprays 

downwards and arrives the tower outlet, the outlet water temperature will increase,  and 

reach the same steady state result may shown in the static models. So there is an 

undershoot occurs instead of a smooth transient. 

An opposite test is shown in Fig. 3.9, which demenstrates the transient performance 

from scenario 1 to scenario 2 in Table 3.3.  
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TABLE 3.3  

DEFINITIONS OF SCENARIOS 1 AND 2 INVOLVED IN SIMULATION TEST 2 
 

Scenarios 1 2 

 o
, Cw inT  48.78 38.06

RH (%) 65.3 82.6

AH (kg/m3) 0.0192 0.0262

 o
, Cdb inT  31.86 33.11

 , kg/sa inm  1.1584 1.1584

 , kg/sw inm  0.7548 0.7548

 o
, , Cw out calT 30.58 31.85

 

 

Figure 3.9: Transient profile of water outlet temperature in simulation test 2 with stand-

alone cooling tower model 
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In test 2, the inlet water temperature decrease from 49oC to 38oC will may lead to a 

decrease of the outlet water temperature. Meanwhile the relative humidity of the inlet 

moist air increases from 65.3% to 82.6%, which may lead to an increase of the outlet 

water temperature. The steady state result shows a final increase on the temperature of 

the outlet water. However, the simulated transient performance shows an overshoot 

instead of a smooth transient. The water temperature performance change in different 

cells is shown in Fig. 3.10, with a similar explanation as test 1. 

  

Figure 3.10: Transient profile of water cell temperatures simulation test 2 with stand-

alone cooling tower model 
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Figure 3.11: Dymola layout for the whole system of cooling tower model 

Figure 3.11 shows the Dymola layout for the entire cooling tower model, it contains 

the cooling tower body where the evaporative cooling process occurs together with the 

cooling tower fan, collection basin, condenser pump, a part of tube which represents the 

chiller side pressure change and a makeup water source. The whole system of cooling 

tower is simulated to show further entire system dynamics. Figure 3.12 shows an 

additional transient on the water outlet temperature caused by collection basin. 

The simulation results of Lewis relation fLe  which calculated by the equation from 

[123] is shown in Fig. 3.13. The average value is around 0.915, which is compatible with 

the recommended numerical value of 0.92 in [201]. 
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Figure 3.12: Transient profile of water outlet temperature for comparison between tower 

body and collection basin output water 
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Figure 3.13: Simulation results of Lewis relation in the transient test 
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3.3. Modeling of Screw Chiller 

3.3.1. Screw Compressor 

The dynamics of screw compressor is much faster than that of the entire chiller cycle. For 

this dissertation study, a detailed transient model of screw compressor is not necessary 

for the energy efficiency investigation. Instead, a polytropic static compression model 

developed by [30] is adopted:  

 , , , ,c in comp c in c c max c vm s Vn   (3.37) 
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where ,c inm  is the refrigerant mass flow rate at the compressor inlet, and comps   [0, 1] is 

the slide-valve control, which determines the compressor load. comps  is used to regulate 

the chilled water temperature. ,c in  and ,c out are the refrigerant densities at the 

compressor inlet and outlet, respectively. cn  is the compressor speed. ,c maxV  is the 

theoretical compressor volume with full load condition. ,c inP  and ,c outP  are the compressor 

inlet and outlet pressures, respectively. c  is the ratio of specific heats in the compressor, 

and ,c v is the volumetric efficiency. The volumetric efficiency could be obtained from 

the pressure volume curve [130]. ASHARE [9] suggests the pressure-volume curve 

characteristic for the pressure ratio ranging from 2 to 9, for both the twin-screw and the 

single screw compressors.  

The volumetric efficiency is determined as  
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following [139]. The electrical power consumed by the compressor is  
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where ,c outm  is the refrigerant mass flow rate at the compressor outlet. ,c inh  and ,c outh  are 

the inlet and outlet specific enthalpies, respectively. ,c a , ,c mo  and ,c me are the adiabatic 

efficiency, motor efficiency and mechanical efficiency, chosen as 0.8, 0.85 and 0.95, 

respectively [139]. 

3.3.2. Condenser, Evaporator and Expansion Valve  

The shell-and-tube heat exchanger models of condenser and evaporator in the screw 

chiller follow the work by [31, 194] with same geometry and parameter configuration, 

the detailed description will be listed in Appendix C and D. Both exchangers are of the 

counter-flow type with in-tube water flow. Based upon the adoption of concentric heat 

exchanger, the shell-side heat transfer area is calculated based on the water tubes outer 

surface area and the surface enhancement factor. The finite volume method is applied for 

both the water and the refrigerant sides. The heat transfer is considered between each pair 

of the cells. The mass and energy balances are set for each cell (in both refrigerant and 

water side).  

The expansion valve model in [196] is adopted, which assumes a quadratic relation 

between the mass flow rate and the pressure difference across the valve. The effective 

flow area is set as an external input, which can be used to regulate the evaporator 

superheat for the chiller. No transient mass storage is assumed for the expansion valve 
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model, and an isenthalpic throttling process is considered. The geometry and parameter 

settings are adjusted to fit the entire combination with the cooling tower cycle; the 

detailed description will be shown in the Appendix C. 
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Chapter 4. ESC Based Optimization Control of Chilled Water 

System 

Energy efficient operation of chilled-water systems is important for the energy saving 

of commercial buildings. This chapter presents an ESC scheme for energy efficient 

operation of the chilled-water system. The Modelica based dynamic simulation model 

developed in Chapter 3 is used for demonstrating the effectiveness of the proposed 

control strategy. The ESC scheme takes the total power consumption of chiller 

compressor and tower fan as feedback, and uses the fan speed setting as control input. 

The inner-loop controllers for the chiller operation include two PI control loops for 

regulating the evaporator superheat and the chilled water temperature. All the controllers 

and chiller-tower plant model are integrated into simulation platform. Simulation was 

conducted for three scenarios: fixed condition, change in evaporator inlet water 

temperature, and change in ambient air condition. The simulation results demonstrated 

the effectiveness of the proposed ESC strategy, and the potential for energy saving is also 

evaluated. Also investigated is the ESC windup issue caused by the limitation of the fan’s 

maximum operation speed. A back-calculation anti-windup ESC scheme is applied and 

its effectiveness is validated by simulation results.  

The proposed control framework for chilled water system is presented in Section 4.1. 

In Section 4.2, the ESC design guideline is reviewed and the ESC controller is designed 

based on the estimated system input dynamics, the modified anti-windup ESC scheme is 

also discussed. The simulation case studies are shown in Section 4.3, and the summary 

will be provided in Section 4.4. 
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4.1. Proposed Controls in Chilled Water System 

As mentioned earlier in Chapter 1, in addition to the power consumption, two critical 

variables must be well controlled: the evaporator superheat and the chiller leaving water 

temperature. First, the superheat control is important for chiller operation. In the 

evaporator, liquid refrigerant has a much higher heat transfer coefficient than the 

vaporized refrigerant. The two-phase flow is desirable for enhancing the cooling capacity 

of the system. Meanwhile, if not all the liquid refrigerant gets vaporized before entering 

the compressor, the remained liquid will damage the compressor. So the evaporator 

superheat must be maintained to ensure both safety and efficiency [9, 24]. Notice that 

varying the evaporator superheat can lead to different cooling efficiency, while this study 

does not pursue the optimal superheat setpoint. Also, as required by the AHU operation, 

the chilled water temperature is expected to be maintained around a setpoint [9].  

To satisfy these two needs, two inner-loop PI controllers are implemented to regulate 

the evaporator superheat and the chiller leaving water temperature by tuning the 

expansion valve’s effective flow area ( TXVA ) and the screw compressor slide-valve 

opening ( comps ), respectively. The schematic of the chiller-tower system with both the 

ESC controller and the inner-loop PI controllers is shown in Fig. 4.1. The setpoints for 

the evaporator superheat and the chilled water temperature are 5oC and 7oC, respectively 

[25].  

For simplicity, the cooling tower inlet water mass flow rate is assumed unchanged, so 

the variable part of the entire system power consumption consists of the power 

consumption of the screw compressor and that of the cooling tower fan.  The dither based 

ESC framework is applied to the chiller-tower cycle to minimize the total power 
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consumption of the screw chiller and cooling tower fan by tuning the tower fan speed, as 

shown in Fig. 4.1. 

 

Figure 4.1: Schematic for the ESC control system for chiller-tower plant 

4.2. Overview of Design Guidelines for Dither ESC  

As shown in Section 2.1.1, a typical design of a dither based extremum seeking 

control strategy needs to determine several framework components [75]: 

 Dither signal    1 sin dtd t a  and demodulation signal    2 sin dtd t    , 

including dither frequency, dither amplitude and the phase difference between the 

dither and demodulation signals. 

 High-pass and the low-pass filters 

 Compensator   
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The dither frequency should be chosen well within the bandwidth of the input 

dynamics. The input dynamics can be estimated by applying certain appropriate inputs 

depending on the system order, e.g. step, ramp or pseudo random binary sequence 

(PRBS) inputs.  After the transfer function  IF s  is estimated, a proper dither 

frequency d  can be selected. Empirically, d could be selected in the range of  1/ 3  and 

1/10  of the cut-off frequency c  of the system input dynamics. 

The dither amplitude a needs to be selected with two considerations. A small dither 

amplitude can reduce the output oscillation at steady state, while it cannot be too small, 

otherwise the dithered output would be buried in the measurement noise at the dither 

frequency. For the purpose for extracting the gradient information, the high pass filter 

and low pass filter need to be designed so that d  resides in the pass-band of  HPF s  and 

the stop-band of  LPF s .  The phase angle  is selected to compensate for the phase shift 

due to the plant dynamics and the high pass filter  HPF s . If the output dynamics is 

negligible, the following relation should be satisfied: 

    
2

,
2I HPF j F j
            

 
 (4.1) 

A value close to 0 is recommended for  . 

For the simplest ESC design, the compensator K(s) can be chosen as a constant. 

Krstić showed that the transient performance can be improved by selecting proportional-

derivative (PD) compensator for K(s) [69].  

The ESC method achieves the convergence to the system optimality based on an 

integral action on the gradient proportional signal extracted by the pair of dither-
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demodulation signals, high-pass and low-pass filters. For practical systems, all actuators 

have physical limitations, which saturate the control actions at certain point. For example, 

in this study, the tower fan speed setting has both upper and lower bounds. Therefore 

integral windup could be a problem for ESC system operations. To avoid the integral 

windup, a number of anti-windup techniques have been proposed in the past for PI or PID 

controllers [203-207]. Li and Seem [156] proposed a back calculation based anti-windup 

strategy for ESC systems, as shown in Fig. 4.2, which is compatible with the simple 

nature of extremum seeking control. Recently, Li et al. [153] applied this scheme to the 

ESC control of the air-side economizer for dealing with the damper saturation situations. 

In this study, this scheme is again applied to deal with the possible integral windup due to 

the fan speed saturation. 

 

Figure 4.2: Block diagram of modified anti-windup ESC 

4.3. Simulation Study 

4.3.1. Dither ESC Design 

The ESC tower fan control strategy is designed based on the idea described in previous 

sections for the plant modeled in Chapter 2. First, the input dynamics from the tower fan 
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speed to the total power consumption is estimated based on the system responses of 

several step changes at both sides of the optimum. Scenarios for both increasing and 

decreasing the fan speed are tested for each fan speed selected. Figure 4.3 compares the 

several scaled step responses of the simulation model and the fitted second order 

approximation.   

 

Fig. 4.3: Comparison of full simulation model and the 2nd-order estimate 

The input dynamics is estimated based on the slowest step response to achieve better 

robustness in further designed controller: 

  
2

2 2

0.0316

2 1.06 0.0316 0.0316Î s
s s

F 
   

 (4.2) 

where the undamped natural frequency 0.0316 rad/secn   is obtained by estimating the 

10% to 90% rise time from the tested step responses. The damping ratio   is estimated 

by manually tuning around the average value obtained from the regression analysis.  The 

result shows good fitting even with some very different inputs. The cutoff frequency of 
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the input dynamics c is about 0.0187 rad/sec. The dither frequency d is thus selected at 

0.0043 rad/sec. Then, FHP(s) and FLP(s) are chosen as   

  
2

2 22 0.65 0.0025 0.0025HP

s
sF

s


   
 (4.3) 

  
2

2 2

0.003

2 0.65 0.003 0.003LP sF
s


   

 (4.4) 

The dither amplitude is selected as 7.1 Hz for the VSD input. The dither phase angle is 

selected as -0.604 radian to ensure   0 under the estimated input dynamics of Eq. (4.2). 

4.3.2. Case Study 

The designed ESC is then simulated on the dynamic simulation model of the chiller-

tower system that was described in Chapter 3. The ESC performance is first tested with a 

fixed operating condition. The relative humidity and temperature for the cooling-tower 

inlet air flow are set as 20% and 310K, respectively. The temperature and mass flow rate 

of the evaporator inlet water are set as 285.15K and 13.2kg/s, respectively. In the 

following cases, all the ESC controller gains were selected as 0.031. For the anti-windup 

ESC case, the back calculation gain was selected as 0.12.  

Case 1: Fixed Operation Condition: 

Figure 4.4 shows the static map from cooling tower fan speed to the power consumptions 

of the chiller compressor and the tower fan, with the optimal fan speed and power 

consumption estimated as 250.351 Hz and 231174 W, respectively.  
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Figure 4.4: Static map from cooling tower fan speed to total power consumption 

The simulation first starts at a fixed fan speed of 200 Hz, and the ESC controller is 

turned on at t = 5000 sec.  As shown in Fig. 4.5, the ESC settled with the average steady-

state fan speed of 256.302Hz and the total power of 232018 W, respectively, with the 1% 

settling time of about 11720 sec. Compared to the estimated optimum in the static map, 

the steady-state error is about 2.37% and 0.37% for the fan speed and the total power, 

respectively. Notice that Fig. 4.5 shows that the estimated optimal fan speed falls within 

the range of the input dither. The evaporator superheat and the corresponding valve 

effective flow area are shown in Fig. 4.6, and Figure 4.7 shows the profiles of the chilled-

water temperature and the compressor slide-valve opening. It reveals that both evaporator 

superheat and chilled-water temperature follow the given references well and the 

corresponding valve effective flow area and compressor slide-valve opening adjust 

smoothly to fit the requirements. 
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Figure 4.5: ESC on chiller tower system with fixed operation condition, fan speed and 

power consumption 

 

Figure 4.6: Superheat control results for ESC with fixed operation condition 
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Figure 4.7: Chilled water temperature control for ESC with fixed operation condition 

Case 2: Decrease of Evaporator Inlet Water Temperature  

The ESC controller is then tested with a ramp change in the evaporator inlet water 

temperature TEW (e.g. due to a load reduction) from 12oC to 10oC in 3000 second starting 

from t = 60000 second. The static maps of the two conditions are shown in Fig. 4.8, with 

the optimal point being (250.351 Hz, 231174 W) for the first condition, and (179.345 Hz, 

86527.3 W) for the second condition, respectively. The first condition is the same as the 

previous case of fixed condition.  

As shown in Fig. 4.9, when the ESC settled to steady state, the average fan speed and 

power consumption are about 182.714 Hz and 86538.4 W, respectively, differing from 

the estimated optimum by only 1.88% and 0.013%, respectively. The 1% settling time of 

power output is about 13735 second. Also, as marked in Fig. 4.8, if the fan speed 

remained unchanged during the ramp change, the system would operate at point A, which 

consumes 91759.1 W. Therefore, ESC adapts the system operation with power saving of 

5231.8W (5.7%). The evaporator superheat and the corresponding valve effective flow 
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area are shown in Fig. 4.10. Figure 4.11 shows the profiles of the chilled-water 

temperature and the compressor slide-valve opening. 

 

Figure 4.8: Static maps for TEW decreased from 12oC to 10oC 

 

Figure 4.9: ESC simulation results for TEW decreased from 12oC to 10oC 
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Figure 4.10: Superheat profile for ESC tower fan control when TEW drops from 12oC to 

10oC 

 

Figure 4.11: Chilled water temperature profile for ESC tower fan control when TEW drops 

from 12oC to 10oC 
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Case 3: Change of Ambient-Air Temperature and Relative Humidity: 

Then the ESC controller is tested with the change of ambient condition. As shown in Fig. 

4.12, the cooling tower inlet air temperature drops from 37oC to 35oC, and the relative 

humidity increases from 20% to 80%. The ramp starts at t = 60000 second, and lasts for 

3000 seconds. The static maps of the two conditions are shown in Fig. 4.13. The optimal 

point of the second condition is at 275.089 Hz and 357564 W.  

 

 

Figure 4.12: Change of ambient-air condition: the air temperature decreases from 37oC to 

35oC, and the relative humidity increases from 20% to 80% 
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Figure 4.13: Static power map for two ambient air conditions: temperature and relative 

humidity of 37oC and 20% versus 35oC and 80% 

Figure 4.14 shows that the ESC searched average steady-state fan speed and total 

power consumption of the second condition are about 279.915 Hz and 357721 W, 

respectively. The differences are only 1.75% and 0.044%, respectively, compared to the 

modeled optimal values. Again, the estimated optimal fan speed from the static map falls 

within the range of input dither. The power output settles within ±1% of the steady state 

values at about 4823 sec. If the fan speed remained unchanged during the ramp change, 

the operation would be at point B in Fig. 4.13, which indicates that the adaptation of ESC 

achieves an 0.32% (1155W) power saving. The evaporator superheat and the 

corresponding valve effective flow area are shown in Fig. 4.15. The controlled chilled 

water temperature and corresponding compressor slide-valve opening are shown in Fig. 

4.16. These results indicate satisfactory inner-loop control performance and reasonable 

control input profiles. 
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Figure 4.14: ESC simulation results when the ambient air condition changed from 37oC 

and 20% RH to 35oC and 80% RH 

 

Figure 4.15: Superheat profile under ESC tower fan control when the ambient air 

condition changed from 37oC and 20% RH to 35oC and 80% RH 
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Figure 4.16: Chiller leaving water temperature profile under ESC tower fan control when 

the ambient air condition changed from 37oC and 20% RH to 35oC and 80% RH 

Case 4: ESC Integral Windup and Anti-windup ESC 

Finally, the effectiveness of the back-calculation anti-windup ESC is verified by 

simulation. The allowed maximum fan speed is assumed as 290 Hz. The plant is assumed 

to experience a change in the evaporator inlet water temperature change (load change). 

No ambient environment change is applied, and all other settings are same as the case of 

fixed operation condition. As shown in Fig. 4.17, the evaporator inlet water temperature 

is initially set at 12 oC. At 60000 sec, a ramp change is introduced to EWT , bringing an 

increase to 13 oC in 5000 seconds. Then at 125000 sec, another 5000 sec ramp change 

brings EWT  back to 12 oC. 
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Figure 4.17: Fast ramp changes in evaporator inlet water temperature for simulation case 

to demonstrate integral windup and anti-windup ESC test  

Figure 4.18 shows that the integral windup problem of the standard ESC with 

actuation saturation. In the upper subplot, the optimum is successfully achieved by the 

ESC search before the first ramp change. From 60000 sec on, under the change of system 

condition, the fan speed is saturated at 290 Hz. When the second ramp change is applied, 

the ESC fails to search for the new optimum due to the integral windup. The fan speed is 

stuck at the saturation limit (i.e. 290 Hz). The lower subplot of Fig. 4.18 shows the 

difference between the total power consumptions for ESC search and the actual optimum 

based on the static map. 

Then the back-calculation based anti-windup ESC scheme is applied to the same case 

above. As shown in Fig. 4.19, the antiwindup ESC responds to the system condition 

change when the second ramp change of EWT  starts and converges to the new optimum 

successfully. The simulation results show that the modified antiwindup ESC scheme 

could effectively solve the potential integral windup problem caused by system actuator 

saturation.  
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Figure 4.18: ESC integral windup for simulation case 4 with actuator saturation 

 

Figure 4.19: Simulation results of case 4 with anti-windup ESC 

In summary, the proposed ESC scheme is validated with simulations on the detailed 

simulation model of the chiller-tower plant. It is noteworthy that the extremum seeking 
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capability demonstrated does not rely on the knowledge of the plant models. Compared to 

the model based methods in the aforementioned literatures, this scheme does not rely 

unreliable sensors or accurate process model, which makes the method much more robust 

to sensor failure and plant variation due to unknown environment changes and the hard-

to-estimate system degradation. Also, the back-calculation based anti-windup ESC 

scheme can also handle the problem comes from actuator saturation. 
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Chapter 5. Maximum Power Point Tracking for Photovoltaic 

System Using Adaptive Extremum Seeking Control 

In order to maximize the PV power generation efficiency, it is crucial to locate the 

MPP in real time under realistic illumination conditions. The current-voltage (I-V) 

characteristics of PV device are nonlinear and the MPP may vary with the intrinsic and 

environmental conditions. The MPPT control is designed to seek the MPP regardless of 

the device and ambient changes. In this chapter, the AESC technique is applied to the 

MPPT problem for single-string photovoltaic system.  

The PV cell model from [176] and a simple DC-DC converter are utilized to build up 

the simulation model. For the AESC controller design, the state-space dynamic equations 

are set up to represent the system structure with the nonlinear time-varying  I(V) relation 

with the control input being the duty ratio of the pulse-width modulator (PWM) of the 

DC-DC buck converter. A Gaussian kernel based RBFNN is adopted to approximate the 

unknown I(V) characteristics. A projection algorithm based parameter learning law is 

applied to guarantee the convergence of the RBFNN parameters to fit the unknown 

nonlinear relationship between states, and a Lyapunov based inverse optimal design 

technique is used to ensure the convergence to the optimum [43].  

The remainder of this chapter is structured as follows. Section 5.1 presents the PV 

simulation model including the DC-DC buck converter. Section 5.2 describes the control-

oriented approximated analytical modeling of PV system dynamics, and then presents the 

AESC design and the parameter estimation algorithm following the design procedure 
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provided in [43]. Simulation results are given in Section 5.3 with performance 

comparison to those of the dither ESC. 

5.1. Photovoltaic System Model 

There are two kinds of PV models used in this study for different purposes. First, a 

detailed physics based model is built as the virtual plant for simulation. Then a state-

space model of PV-buck system is obtained based on an approximate PV model, which is 

intended for AESC controller design. The detailed physics based model is presented in 

the remainder of this section, while the state-space model will be presented in Section 

5.2. 

For detailed PV modeling, the equivalent circuit of PV system in Fig. 5.1 [176] is 

adopted. Its current-voltage relation can be modeled as [176, 208]:  

 0 exp 1s s
PV

t if p

V R V R
I I I

V a

I I

R

   
         

 (5.1) 

where V and I  are the output voltage and current, respectively. PVI  is the light generated 

current that is proportional to the irradiance and 0I  is the reverse saturation (or leakage) 

current of the diode. /t sV N kT q  is the thermal voltage of the array with sN  cells 

connected in series. q  is the electron charge with the value of 1.60217646 1910 C, k   

1.3806503   2310 J/K is the Boltzmann constant, ifa  is the ideality factor, and pN  is the 

number of parallel connections of cells. sR  and pR  are the equivalent series and shunt 

resistances of the array, respectively.  
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PVI  is also to be influenced by the temperature [176]: 

  ,PV PV n I
n

I I
G

K T
G

    (5.2) 

where ,PV nI  is the light generated current at the nominal condition (25oC and 1000W/m2) 

, and nT T T   . T  and nT  are the actual and nominal temperatures, respectively. G  

and nG  are the actual and nominal irradiance rate on the device surface, respectively. IK  

is the short-circuit temperature coefficient. The diode saturation current 0I  is given by 

[176] 

 
3

0 0,

1 1
exp gn

n
n

qET
I

T ak T
I

T

 


  
  

 




 

  (5.3) 

where gE  is the bandgap energy of the semiconductor, and 0,nI  is the nominal saturation 

current. 

 

Figure 5.1: PV cell equivalent circuit 

The simulation study in this paper adopts a PV array with 152 modules, and each 

module has 54 cells in series [41]. The I-V and P-V characteristics at 25 C under 

different irradiance rates are shown in Fig. 1.6. The generated current is shown to 

increase with the irradiance level. Similarly, the I-V and P-V characteristics under 

nominal irradiance rate 1000W/m2 at different temperatures are shown in Fig. 1.7. The 
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power output decreases with the device temperature. Notice that the MPP voltage varies 

for all the cases in Figures 1.6 and 1.7, while temperature change leads to more 

pronounced changes of the MPP voltage. This suggests that MPPT can yield more benefit 

under temperature change. 

The PV output can be connected to DC load (e.g. battery or DC motor) or AC load 

(e.g. grid or AC motor). For either case, DC-DC converter is normally needed for the 

conversion between different voltage levels. As this study aims to evaluate an MPPT 

control algorithm, a simple scenario of DC resistive load is adopted, as shown in Fig. 5.2. 

The duty ratio D of the pulse-width modulator (PWM) is used to adjust the input voltage 

of the DC-DC converter (also the output of the PV array) to achieve MPPT. The DC-DC 

converter, such as buck, boost and buck-boost types, is chosen in a case-dependent 

fashion. In this study, a buck converter is used in order to step down the voltage, also 

shown in Fig. 5.2. The analysis in Section 5.2 can be easily applied to the cases of using 

other types of DC-DC converters. In this circuit, the inductance is set as L = 5 mH, the 

capacitor as C = 1 mF, and the resistive load as R = 10 Ω. 

 

Figure 5.2: PV array with front-end buck converter 
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5.2. AESC Based MPPT Design for PV Systems 

5.2.1. Analytical Modeling of PV Dynamics 

For control oriented modeling of PV system, Fig. 5.2 can be described by two sets of 

differential equations based on ON/OFF position of the MOSFET switch [167]. The state 

equations with switch on (State 1) is given as:  

 
  L

i V idV

dt C C
   (5.4) 

 L Ldi iV

dt L R
   (5.5) 

where  i V  represents the nonlinear mapping between the output current and the 

terminal voltage of the PV array, Li  is the inductor current. If the switch is turned off 

(State 0), the state equations become: 

 
 i VdV

dt C
  (5.6) 

 L Ldi i R

dt L
   (5.7) 

To obtain a unified system dynamics, Eqs. (5.4) to (5.7) are combined into a pair of 

state equations via a typical averaging method for PWM based switching circuits [209]:  

 
  L

i V idV

dt C
D

C
   (5.8) 

 L Ldi i R V

dt L L
D    (5.9) 

where duty ratio D  is defined as the portion of State 1 within a period of PWM 

operation. To ensure a better approximation of the nonlinear relation  i V  in the 



99 
 

 
 

parameter updating process, the ranges of the PV output voltage (V ) and the inductor 

current ( Li ) are normalized (divided by 100 Volt and 10 Amp, respectively, for the 

simulation case) into the following state and output equations: 

 1kdx R

dt L
x su

L
    (5.10) 

  2

1 1

1kds

dt k C
s u

k C
x   (5.11) 

  1 2ky k s s  (5.12) 

where  0,Lx i    is the inductance current,  1 10,/ /MVs V k k  is a scaled PV 

terminal voltage with 1 100k  , MV  is the maximum voltage of the PV system. 

   2 2// 0, Mi V kk I    with 2 10k  , MI  is the maximum current,  y P iV   is the 

power output of the PV array, and  0,1u D   is the control input to be designed for 

MPPT control. The objective of AESC is to search for the maximum power output y . 

5.2.2. Design of AESC Based PV MPPT  

The steady-state PV power output can be expressed by 

  1 2e e esy k k s  (5.13) 

where subscript e  stands for equilibrium or steady-state value. The unknown nonlinearity 

 s  can be approximated with certain kernel functions. In this dissertation study, the 

RBFNN is adopted [43, 88]. The RBFNN can uniformly approximate the continuous 

nonlinearity  s  on a compact set [88], i.e. 

      *T
ls t W S s t t          (5.14) 
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with  l t  as the approximation error. The basis function vector is given by 

        1 2, ,...,
T

lS s t s s t s s t s s t                  (5.15) 

The ideal weight *W  is obtained by  

     * : arg min sup
wW

TW S s sW 


   (5.16) 

where  |w mW wW  . mw  is a positive constant representing the upper bound of 

the weights, which is to be chosen at the design stage.  Substituting Eq. (5.14) into Eq. 

(5.13) yields  

     *
1 2

T
e e l ey k k W S s t s   (5.17) 

In (5.13),  s  represents the value of   2/i V k , which is bounded and in the range of 

 20, /MI k . The term of  *TW S s  is bounded by construction. So we can have the 

assumption that the radial basis function neural network approximation error is bounded, 

i.e.  l lt   over a compact set with constant 0l  . 

Taking the first- and second-order derivatives of Eq. (5.17) yields 

      *
1 2 1 2

Te
e e e l

e

dS s s
y

k k W
s

S s k k t   


  (5.18) 

    
2

* 2
1 22

2Te
e e e

e

y
k k W d S s s dS s

s

    
 (5.19) 

where /dS S s    and 2 2 2/d S S s  . The basis function vector  S s  is given by 

        1 2 ... lS s b s b s b s     (5.20) 

and Gaussian kernels are adopted, i.e. 
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      
2

exp , 1,2,...,
T

i i
i

i

s s
b s i l


    

  
  

 (5.21) 

where i  and i  are the center and the width of the Gaussian function, respectively. The 

derivatives of the basis function in (5.21) are 

 
   2

2 2
2 expi ii

i i

s sS

s

 
 
  

   
   


 (5.22) 

 
   2 22

2 2 4 2
2 4 p

1
exi ii

i

s s

s

S  
  

   
         

 

 
 (5.23) 

The objective of the PV MPPT problem is to design a controller and parameter 

estimation law such that the maximum steady-state power output *y  can be found, and 

the ideal weight *W  can be obtained to achieve the ideal approximation. The AESC 

design in this study mainly follows the procedure given in [43].  

With the substitution of Eq. (5.14), Eqs. (5.10) and (5.11) become 

 1x x
k

L L
su

R
    (5.24) 

    *2

1 1

1T
ls W S s

k

k
x

C C
t u

k
      (5.25) 

Let Ŵ  denotes the estimate of the true weights *W . Let ŝ  and x̂  denote the predictions 

of s  and x , respectively. The dynamics of these predicted states can be derived as 

  1
1

ˆˆ
T

x xx x su k
k

Wc t
L

e
R

L
      (5.26) 

  2
2

1 1

ˆ 1 ˆˆ
TT

s ss W x
k

S e c t
k C

u k
k

W
C

   (5.27) 



102 
 

 
 

where xk , sk ,  1c t  and  2c t  are parameters and design variables to be designed. 

Subtracting Eq. (5.26) and (5.27) from Eq. (5.24) and (5.25) yields the dynamics for the 

state estimation errors ˆxe x x   and ˆse s s   as 

  1
ˆT

x x x te e Wck     (5.28) 

    2 2
2

1 1

ˆTT
s l s s

k k
S t e c t

k C k C
e W k W     (5.29) 

with * ˆW W W  . In Eq. (5.18), the gradient tracking error is defined as the difference 

between the estimated gradient and 0 (the gradient corresponding to the optimum): 

    1 2
ˆ Tz dS sk k s s SW     (5.30) 

To drive the parameter and state estimations towards their respective desired values, a 

dither signal  d t  is added, i.e. 

      ˆ T
sz dSW s s S s d t      (5.31) 

for which 1 2 0k k   are removed for simplicity. The tracking error dynamics can be 

given as 

 
      

         2

ˆ

ˆ ˆ 2

T
s

T T

z W

W W S ss dS s d

d
dS s s S s d t

dt

dS s s S s d s s t

    

        



  
 (5.32) 

Let    1 dS s s S s   and    2
2 2d S s s dS s   , we have  
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   

1 2
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  

 

 

 
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 
 (5.33) 
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By defining  

  1 1

T

xe c t W     (5.34)  

  2 2

T

se c t W     (5.35) 

  3 3

T

sz c t W     (5.36) 

the following Lyapunov function candidate can be constructed, 

 2 2 2
2 31

1 1 1 1

2 2 2 2
TV          (5.37) 

Take the time derivative of V yields 

 

   

   

 

      

1 1 2 2 3 3

1 1 1 1

2 2
2 2

1 1

2
1 2 2 2

2

3
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2

3

3

ˆ
ˆ ˆ

ˆ

T T

x x

T TT
l s s

T
T T T

l

T T

k k c t t

k k

V

W c W

W W cS k k c t t
k C k C

k k S k

W

W
W W S s xu W

d c W c t W

k C

t t

    

 

  

 







    

 

    
 

    
 
  











   

 

  

 

 

 (5.38) 

By setting the dither signal as 

        3 1 2
ˆ ˆ ˆT T T

dd t c t kW W t tWd a      
 (5.39) 

with 0dk   and external signal  ea t  to be assigned. Then the control law is 

          1 2
2 2

1

ˆ ˆ ˆ/ /z
T T T

e d s

k C k
u W S s a t k W d t k W z

kx C

 
     

 
 (5.40) 

In order to secure the convergence of the system,  a t  need to be designed to provide 

persistent excitation. Equation (5.38) can then be reduced into 
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   

   

   

1 1 1 1

2 2
2 2

3

2 2
1 1

2 2
3 3 2

1
3

1

ˆ

T T

x x

T TT
l s s

T TT T
z z l

k k c t t

k k
S k k c t t

V W c W

W W c W

k W W W

k C k C

k k
k c t S t

k C k
c

C
W

 

  

  

 

 
  

 
 

  

   

  

 
    

 


 

  

  

  

 (5.41) 

To eliminate the terms with W , let 

 1 1
T T

xcc k   (5.42) 

 2
2 2

1

T T
s

k
c k c

k C
S    (5.43) 

 2
3 3 2

1

ˆT T T T
z

k
c Wk c

k C
S    (5.44) 

Substituting Eqs. (5.42), (5.43) and (5.44) into (5.41) yields 

 

 

2 2 22 2
1 2 2 3 3 2

1 1

2 2 2 2 22 32
1 2 2 3

1 1

2
2 22 4 2

2 3

3

1 4 1

2

ˆ

ˆ

2

2 2

T
x s l z l

x s l z

T
l

k k
k k

k
V k W

k k

C k C

k kk
k

k k C k C

k k k

k Ck k C
W

      

    

 

   

 

  

  





 



 (5.45) 

where 3k  and 4k  are positive constants. To cancel the positive terms in (5.45), xk , sk  and 

zk  can be designed as 

 0x xk k  (5.46) 

 2 3
0

12s s

k k
k k

k C
  (5.47) 

  2
4 2

0 2
1

ˆ
2

T
z z

k k
k

k C
k W    (5.48) 

where 0xk , 0sk  and 0zk  are positive constants. Finally, Eq. (5.45) becomes  
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    2 21 2 2
1

1 1 22 2 2
Tm

l m l
m

k k k
t V t

k Ck k Ck
V k          (5.49)  

where  1 0 0 02 min , ,m x s zk k k k  and  2 3 40.5m ,inmk k k . Reference [43] derived an 

explicit bound for   as 

    1 0

0

2
1

1 2

sup
2

t t

t
l

tm

k
e

k k C



   

 

   (5.50) 

with  1 0V t   and  1 11/ 2 mk  . Equation (5.50) assures the convergence of   to a 

small neighborhood of the origin. To show the convergence of the error signals xe , se  

and sz , we still need to ensure the convergence of the parameter estimation errors W  and 

also  1c t ,  2c t ,  3c t  are bounded. 

The boundedness and the convergence of the parameter estimates Ŵ  can be ensured 

by setting an appropriate parameter update law and assigning the proper external signal 

 a t  to provide the persistent excitation [43]. The parameter update law is designed as 

  ˆ ˆProj ,W t e W   


 (5.51) 

where 

  
 

 
   
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ˆ ˆ 0ˆ

ˆ ˆ
ˆ

ˆ ˆ

Proj ,

otherwise 
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w TT
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w T

q
t e

q t e
t e

W w

I q t e

W w W
W

WW
W

W W




 

 
         

  
   

 











 (5.52) 

with w  being a positive gain. Vector  t  is defined as  

        1 2 3t c t c t c t      (5.53) 
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The function  ˆq W  is given by 

     2 2ˆ ˆ /m mW Wq M w w 
      (5.54) 

where mw  and   are positive constants. The idea of barrier function is used in defining 

the convex function  ˆM W : 

     
2 2

ˆ ˆ ˆ ˆ ˆln diag ln diagT
c c c cM W W W IW I a I b IW                     

 (5.55) 

with 0ca  , 0cb  , 0c  . The   in Eq. (5.52) is defined via the gradient  ˆgrad Wq 
  : 

          

 

   

ˆ ˆ

ˆ ˆ ˆ
ˆ ˆdiag

grad

d g

1 1

ia

T

T T T

c c c c

W W

W W W
IW I a I b IW

q

     

   

  








  (5.56) 

The upper bound of the parameter estimates is guaranteed by the properties of the 

projection algorithm and the construction of  ˆq W  as ˆ
c kW b N [43, 210], where kN  

is the number of kernels used in the RBF neural network. 

To evaluate the boundedness of  1c t ,  2c t  and  3c t , we can combine Eq. (5.42)-

Eq. (5.44) and Eq. (5.53) into 

        
.

t K t t B t      (5.57) 

with 

  
0 0

0 0

0 0

x

s

z

k

K t k

k

 
   
  

 (5.58) 
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   2 2
2

1 1

ˆ0
T

T Tk k
B t

k C k C
S W S

 
  
 

  (5.59) 

As xk , sk  and zk  are positive as shown in (5.46)-(5.48), so the resultant dynamics  

      t K t t     (5.60) 

is globally exponentially stable. 

Based on [43], to show  t  is bounded, one needs to show the elements of  B t  are 

bounded functions of time with 

    2

2 2 22 2 2
22 2

1 1
2

ˆT T Tk k
B t S

k C
S S

k C
W S   (5.61) 

For the operation of a practical PV system, the scaled terminal voltage s  is finite and 

thus bounded. From Eqs. (5.20) and (5.21), kS N  can be easily satisfied, and further 

from Eqs. (5.22) and (5.23), we have 
2

1

2 k M

m

N V
dS

k
  and 2

2 2
1

2 4k M
k

m m

N V
d S N

k 
  . 

So the bound of 2  can be given by  

 2
2 2 2 2

1 1 1

2

2
1

2 4
2 4Mk k MM M

k
m m m

N N VV V V
S N

k k
d d

k k
S

  
      (5.62) 

So the bound of the norm of  B t  can be given by 

  
2

2
2 2

2 2
1 11 1 1

42 4k M k M
k m k

m

M

m m

N V N Vk k V
B t

k k C k k k
N w N

C   


 
  


 


  (5.63) 

which leads to the boundedness of  t . 

Furthermore, the external signal  a t  needs to be designed to satisfy the following 

assumption: 0T   and 0Nk  , s.t.     N

T Tt

t Nkd I  


  , where  t  is the 
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solution of (5.57) and NI  is the N-dimensional identity matrix. The convergence of the 

parameter estimation error W , the state errors xe  and se , and the tracking error sz  to a 

small neighborhood of the origin can then be guaranteed. The detailed derivation and 

proof can be find in [43]. 

5.3. Simulation Study 

The simulation study is carried out for the PV system with buck converter described in 

Section 5.1, and the AESC controller designed in Section 5.2.2. The simulation platform 

is Simulink® 7.3 SimPower-SystemsTM with Matlab® R2009a. The initial condition of 

the system state variables and their estimated values were set to 

        0 0.1 , 0 0.1 , ˆ ˆ0 0.1, 0 0.1Li A V x sV    

The design parameters in the adaptive controller (5.40) and the parameter update law 

(5.51) are chosen as:  

 0 0 0 3 4100, 0.1, 1, 1000, 1, 1, 0.1w d z x skk k kk k        

A 5-term RBFNN is selected, with the centers and width as 

 0.6 4.8 1 / 4i i     and 0.6i  ,     1, 2,3, 4,5i   

to cover the rang of [0, 6]. The initial conditions for the parameter update weights are set 

as 

 ˆ 0 0.1iW       1, 2, , 5 i  

The external signal  ea t  is designed as 

      
0

1 2

1

1

410 sin cose i i i i i
i

a t A t A t  


      



109 
 

 
 

1iA and 2iA  are randomly chosen from a unit normal distribution. The frequencies are 

chosen as 

 310 1 1 10 / 9i i             1, 2,...,10i   

 1c t ,  2c t ,  3c t are initialized as  zero vectors, while for the dither signal  d t ,   

 0 0d  . 

To evaluate the performance of the AESC MPPT controller, a dither ESC controller 

shown in Chapter 6 has also been simulated for the same simulation examples. The 

performances of AESC and dither ESC MPPT with nominal conditions are compared in 

Fig. 5.3, with the same initial conditions as iL(0) = 22.1 A and V(0) = 300 V. The 

controllers are set with the sampling period of 1104 second. The theoretical maximum 

power is 5884W at T = 25oC and G = 1000W/m2. The steady-state MPPT result given by 

dither ESC is 5874W and 5838W by the AESC, which differ trivially. The AESC leads to 

small steady-state error (about 0.78%) due to the approximation error of nonlinear 

relation i(V) in the parameter updating process, compares to  0.17% for the dither ESC. 

The AESC demonstrates a much quicker transient time, with the 1% settling time of 

0.035s compared to 0.4s for the dither ESC.  
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Figure 5.3: Comparison of PV MPPT results with AESC and dither ESC 

Figure 5.4 shows the case of AESC MPPT with a step change of temperature from 

25oC (0~0.1s) down to 17oC (0.1~0.2s). The steady-state power outputs of the PV array 

are 5838W and 6061W, respectively, with the theoretical optima of 5884W and 6082W, 

respectively, plotted as the dotted line. The bottom plot shows the profile for the 

corresponding control input u (duty ratio). Figure 5.5 shows the case of dither ESC 

MPPT with a step change of temperature from 25oC (0~1.5s) down to 17oC (1.5~3s). The 

bottom plot shows the performance of the PV power output as 5874W and 6048W, 

respectively, with the theoretical optima (dotted line) of 5884W and 6082W, respectively. 

The setting time for this change differs dramatically: 2.5 ms for the AESC and 220 ms for 

the dither ESC.  
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Figure 5.4: AESC MPPT with a step change of temperature from 25oC to 17oC 

Figure 5.6 shows the case of AESC MPPT with a step change of irradiance rate from 

1000W/m2 (0~0.1s) to 500 W/m2 (0.1~0.2s). The PV power outputs are 5838W and 

2501W, respectively, with the theoretical optima (the dotted lines) of 5884W and 2576W, 

respectively. The bottom plot shows the corresponding control input u. Figure 5.7 shows 

the case of dither ESC MPPT with a step change of irradiance rate similar to Fig. 5.6, 

from 1000W/m2 (0~1.5s) to 500 W/m2 (1.5~3s). The PV power outputs are 5874W and 

2527W, respectively, with the theoretical optima (the dot lines) being 5884W and 

2576W, respectively. The settling time was 4 ms for the AESC versus 320 ms for the 

dither ESC. 
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Figure 5.5: Dither ESC MPPT with a step change of temperature 25oC to 17oC 
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Figure 5.6: AESC MPPT with a step change of irradiance rate from 1000 to 500W/m2 
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Figure 5.7: Dither ESC MPPT with a step change of irradiance rate from 1000 to 

500W/m2 

Figure 5.8 shows the case of AESC MPPT with a simultaneous step change of both 

temperature (from 25 oC to 17oC) and irradiance (from 1000 W/m2 to 800 W/m2) at 0.1s. 

The steady-state power outputs are 5838 W and 4692 W, respectively, with the 

theoretical optima (the dot lines) of 5884W and 4695W, respectively. The bottom plot 

shows the corresponding control input u. Figure 5.9 shows the case of dither ESC based 

MPPT with a similar simultaneous step change of both temperature (from 25 oC to 17oC) 

and irradiance (from 1000 W/m2 to 800 W/m2) at 1.5s. The PV power outputs are 5874W 

and 4679W, respectively, with the theoretical optima (the dot lines) being 5884W and 

4695W, respectively. The settling time was 3.3 ms for the AESC versus 420 ms for the 

dither ESC. 
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Fig. 5.8. AESC MPPT with a simultaneous step change of both temperature (25oC to 

17oC) and irradiance rate (1000 to 800 W/m2) 
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Fig. 5.9. Dither ESC MPPT with a simultaneous step change of both temperature (25oC 

to 17oC) and irradiance Rate (1000 to 800 W/m2) 

For all the above cases, it reveals that the AESC can achieve much fast transient with 

very small degradation in terms of steady-state convergence accuracy.  The dither-based 

ESC only observes the power output change and does not gain the knowledge of the 

system structure information, the tuning parameters of the controller must be selected 

carefully to safely secure the system stability when encounter different intrinsic or 

environmental conditions, which means the controller cannot always stay with the best 

speed option. On the other hand, design of AESC requires the basic knowledge of the 

system, and RBF NN is used to approximate the major system nonlinearity. Lyapunov 

theory is used to secure the stability of the controlled system with observed system states 

feedback. However it is still a very plain explanation, a mathematical explanation and 

proof of the convergence speed is still desired. 
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The AESC MPPT framework performance is then evaluated by some more extremal 

scenarios in order to evaluate the transient performance achievable. Three different 

scenarios are studied. First, simulation is performed with a step change of irradiance rate 

from 1000 W/m2 (0~0.1s) to 300 W/m2 (0.1~0.2s). The upper subplot of Fig 5.10 shows 

the PV power output trajectory searched by AESC. The steady-state power outputs of the 

PV array are 5838 W and 1322W, respectively, with the theoretical optima of 5884 W 

and 1329 W, respectively. Notice that the PV array power output with former control 

input (duty ratio) is 755.6 W. A 566.4 W difference is gained by AESC MPPT method 

with the 1% setting time of about 0.024 sec. The control input duty ratio signal is shown 

in the lower subplot of Fig. 5.10. Observable variation of the steady-state output is due to 

the fluctuation in a(t) which sustains the persistence excitation condition for parameter 

estimation. 

 

Figure 5.10: AESC MPPT with a step change of irradiance rate from 1000 to 300W/m2 
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Then for a more realistic scenario, a ramp change of temperature from 298K (0~0.1s) 

down to 290K (0.2~0.3s) with a 0.1sec ramp period (0.1~0.2s) is tested. The amplitude of 

the external signal  a t  is reduced due to the smaller change of temperature comparing 

to the irradiance change. The upper subplot of Fig 5.11 shows the PV power output by 

the AESC MPPT. The steady-state power outputs of the PV array are 5859 W and 

6049W, respectively, with the theoretical optima of 5884 W and 6052 W, respectively. 

The zoomed control input duty ratio signal is shown in the lower subplot of Fig. 5.11. 

 

Figure 5.11: AESC MPPT with a ramp change of temperature from 25oC to 17oC 

Finally, the effectiveness of the AESC controller is tested with a combined 

environmental change of irradiance rate and temperature as shown in the upper subplot of 

Fig. 5.12. The middle subplot of Figure 5.12 shows the AESC searched PV power output 

performance. The steady-state power outputs of the PV array are 5838W, 1365W and 

5841W, respectively, with theoretical optima of 5884W, 1366W and 5884W, 



119 
 

 
 

respectively. The control input duty ratio signal is shown in the lower subplot of Fig. 

5.12. 

 

Figure 5.12: AESC MPPT under a combined change of irradiance rate and temperature 
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For all the above cases, the AESC also achieve very fast transient with good steady-

state convergence accuracy. In summary, the above simulation results under various 

condition changes show significant improvement in transient performance using the 

AESC over the dither ESC, with only slight increase of steady-state error.  
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Chapter 6. Detection of Internal Resistance Change for 

Photovoltaic Arrays Using Extremum Seeking Control MPPT 

Integrated Signals 

A serially connected group of PV modules forms a PV string. The PV strings can be 

grouped into a PV array with parallel and/or serial connections. MPPT and fault 

diagnosis are two important aspects for reducing the COE for PV array system. In this 

study, the dither based ESC is applied to achieve the MPPT control and simultaneously to 

detect the change of internal resistance for fault detection purpose. There are two kinds of 

modeling described in this Section, one is the simulation model used as a virtual plant, 

with more involved physics of photovoltaic generation. The other model is a simplified 

model for the transfer function analysis to illustrate the impact of internal resistance on 

the transient behavior of the dithered PV responses. Under square dither perturbations, 

the steady-state output of PV output signals consist of a number of small-amplitude step 

responses. The transient characteristics of such step responses are affected by the PV 

internal resistance. The internal resistance, especially the shunt resistance, is an important 

indicator for the degradation of the PV device. A small-signal transfer function analysis is 

performed for the PV buck system, which validates such impact.  

A simulation study is first conducted for single-string PV systems, and the simulation 

results show that ESC can achieve satisfactory MPPT under a square-wave dither input. 

Typical transient characteristics, such as integrated absolute error (IAE), show a strong 

correlation with the internal resistance. Applicability of this scheme to multi-string PV is 
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then demonstrated with a multi-input ESC based on the total power feedback, with the 

internal resistance of individual module detectable from one output signal. A serially 

connected multi-string PV system is considered in this chapter. 

The simulation model of PV system adopted in this study will be described in Section 

6.1. Section 6.2 presents the dither ESC based PV MPPT, with both the single-input ESC 

MPPT for the single-string PV system and the multi-input ESC MPPT for multi-string 

PV system. The investigation of ESC integrated detection of change of internal shunt 

resistance is presented in Section 6.3, and the summary will be given in Section 6.4.  

6.1. Simulation Model of Photovoltaic System 

This chapter involves two different models of the PV system with buck converter. This 

section describes the simulation model with more involved physics of photovoltaic 

generation, which is used as a virtual plant. Section 6.3 presents the other model, which is 

a simplified one for the transfer function analysis to illustrate the impact of internal 

resistance on the transient behavior of the dithered PV responses. 

The PV module model used for the simulation study follows the one by Villalva et al. 

[176] which is same as described in Section 5.1. In this study, constant terminal voltage is 

assumed, as shown in Fig. 6.1. The input voltage of the DC-DC converter is controlled by 

adjusting the duty ratio D of the pulse-width modulator (PWM) with a proportional-

integral (PI) control. A simple buck converter is used for a voltage step-down scenario, 

with inductance 0.1L   mH, capacitor 5C  mF, and the terminal voltage 5oV  V. 
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Figure 6.1: PV device with voltage control using a buck converter 

6.2. Extremum Seeking Control Based PV MPPT 

6.2.1. Single-Input ESC MPPT for Single-String PV System 

The dither ESC MPPT is first designed for the single-string PV system with buck 

converter, based on the design guidelines in [75], as shown in Fig. 6.2. The PV power 

output is chosen as the performance index, and the output of the ESC controller is the 

reference voltage of the inner-loop PI voltage controller. The input dynamics is governed 

by the DC-DC converter based voltage regulation with PI control.  

 

Figure 6.2: Block diagram of dither ESC based PV MPPT 
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Figure 6.3: Step responses of PV full simulation model and the 2nd –order estimate 

A normalized step response of the power output is shown in Fig. 6.3, with which the 

input dynamics is approximated as a 2nd –order system: 

  
2

2 2

508

833.12 5
ˆ

08I s
s s

F 
 

 (6.1) 

As the cutoff frequency c  of the input dynamics is 430 rad/sec, the dither frequency 

d  is then selected as 115.2 rad/sec. The high pass filter  HPF s  and low pass filer 

 LPF s  are chosen as  

  
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s
F s
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 (6.2) 
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The dither amplitude is selected as 0.05 V. The dither phase angle is selected as 0.72 

radian. 

To evaluate the performance of the dither ESC controller, a single-string PV module 

is tested under nominal condition (i.e. 25oC and 1000W/m2). The simulation starts at a 
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fixed voltage reference of 10 V, and the ESC controller is turned on at t = 0.1 sec. Figure 

6.4 shows the power-voltage curve of the PV system, the simulation starts at point A, 

with voltage fixed at 10 V and the estimated corresponding power is 81.43 W. The 

estimated maximum achievable power output as 209.1 W and the corresponding optimal 

voltage as 27.15V (point B). The potential improvement of the power output is 127.67 W, 

156.8% comparing to the initial point. The ESC search results are shown in Fig. 6.5. The 

average steady-state voltage is 27.11 V, and the average power output is 208.9 W. The 

1% settling time is about 0.21 sec. Compared to the optimum in the P-V characteristic in 

Fig. 6.4, the steady-state errors are about 0.15% and 0.096% for the input voltage of the 

DC-DC converter and the PV power output, respectively. 

 

Figure 6.4: P-V characteristic of single PV module under nominal conditions 
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Figure 6.5: ESC simulation results for single-string PV under nominal conditions 

6.2.2. Multi-Input ESC MPPT for Multi-String PV System 

Multi-string configuration has been considered as a more cost effective topology for a 

grid connected PV systems [211-214]. The PV strings can be connected in series and/or 

parallel to meet the voltage/current requirements. Serial connection leads to larger 

voltage while parallel connection leads to larger current. As illustrated in Fig. 6.6, n  PV 

strings are connected in series, with each string equipped with a DC/DC converter. All 

the DC/DC converters are connected to outside device via a common DC link. The major 

advantage of this multi-string structure lies in the fact that the mismatch issue for serial 

connection and the partial shading problem can be significantly relieved [215, 216]. 

In this study, instead of developing individual MPPT controllers for each string, the 

multi-input dither ESC is considered for the MPPT of the multi-string PV array, where 

the feedback (i.e. the performance index) used is the total power of the PV array. This 

can significantly reduce the number of system output measurements. 
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Figure 6.6: Schematic illustration for series connected multi-string structure 

The PV string is represented by a group of series connected PV modules, and a PV 

array consists of N  strings in series is considered as shown in Fig. 6.6. Each string is 

assumed to be equipped with its own DC/DC converter, and all the DC/DC converters are 

connected to a common DC bus with series configuration. 

The buck converter is considered for the simulation example, with 1S  through NS  

being the switches for each converter. The terminal voltage at the DC bus is the sum of 

all the string’s voltages. The current flowing through the load is the overall output current 

of the converters. As a simple treatment, a resistive load 10oR    is used. 

The ESC control strategy is investigated for the maximum power point tracking 

purpose of the multi-string PV system, to find its maximum achievable power output at 

given temperature and irradiation.  

The multi-input ESC scheme as shown in Fig. 6.7 is constructed as multi-loop (N 

channels), each input channel for each PV string. The dither frequencies are distinct from 

different loops. The control inputs are the voltage references for individual strings. The 
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input voltage for each channel is regulated by respective inner PI controller. With series 

connection, the outputs of buck-converters are connected to the terminal DC bus, With 

converter losses ignored, the total power can be approximated as the sum of the converter 

power outputs. The overall power at the DC bus is used as the feedback signal. A single 

high-pass filter is utilized to filter out the DC component of the dithered cost function 

output signal and keep the harmonics part. The first harmonic signals which represent the 

ˆ
dl

du
 gradient are then converted into DC terms by multiplying N different demodulation 

signals. Different low-pass filters are designed separately to remove the high frequency 

term of the signals, and keep the DC terms. The online optimal searching is then achieved 

by using the integrators to eliminate the extracted gradient signals.  

 

Figure 6.7: Multi-input ESC scheme for multi-string PV system  
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For simplicity and the idea-proof purpose, a two-string PV array is then considered 

for the simulation study. The PV array consists of two serially connected PV strings; each 

string has four serially connected PV cells. Simulations are conducted with Matlab® 

R2009a Simulink® 7.3 and SimPowerSystems.  

To introduce more string-to-string difference, String 1 is set with 25oC and 1000 

W/m2, while String 2 is set with 25oC and 500 W/m2. The P-V curves are shown in Fig. 

6.8. For String 1, the maximum power and the corresponding voltage are estimated 761.6 

W and 110.1 V (shown as point C), respectively. For String 2, the maximum estimated 

achievable power and the corresponding voltage are 334.1 W and 104.1 V (shown as 

point D), respectively. Therefore, the maximum total power is 1095.7 W by adding up the 

two string power outputs. Accordingly, the power map can be shown as the 3D surface in 

Fig 6.9. 

 

Figure 6.8: P-V curves for two-string PV array: String 1 with 25oC and 1000 W/m2, 

String 2 with 25oC and 500 W/m2 
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Figure 6.9: 3-D power map for the two-string PV system in Fig. 6.8 

The ESC design mainly follows the dither based ESC design guidelines presented in 

Section 4.2. As stated above, the objective of the multi-input ESC strategy is to maximize 

the total power output from the DC bus. Due to the relation between the maximum power 

output and the corresponding voltage, and the quick response from the PV cell (without 

the buck converter), so the dynamics of the corresponding voltage is considered instead. 

From the corresponding voltages step responses, the input dynamics is estimated as 

   2

92500ˆ
570 92500IF s

s s


 
 (6.4) 

for which the cut-off frequency is about 212 rad/sec. The dither frequencies of the two 

input channels are selected as 31.4 rad/sec and 25.1 rad/sec, respectively.  The high-pass 

filter is selected as  

  
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s
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s s
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 (6.5) 



131 
 

 
 

The low-pass filters are selected as 
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To compensate for the phase shift due to the input dynamics and the high-pass filter 

 HPF s , the dither phase angles are selected as 1 0.609 radian   and 2 0.713 radian   

respectively. A 90 phase difference is also reinforced between the two channels. 

During the first second of simulation, the PV operates in open loop with reference 

voltage set at 90 volts. Then the ESC with sinusoidal dither is turned on. Figure 6.10 

shows the front-end (converter input) voltage trajectories. The ESC searching process 

demonstrates a 1% settling time of 0.35 second. The voltages searched by the ESC are 

109.6 V and 103.5 V, with steady-state errors about 0.45% and 0.58%, for Channels 1 

and 2, respectively. 

 

Figure 6.10: Voltage profiles for two-input ESC MPPT with sinusoidal dither: String 1 

with 25oC and 1000 W/m2, String 2 with 25oC and 500 W/m2 
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Figure 6.11: Power profiles for two-input ESC MPPT with sinusoidal dither: String 1 

with 25oC and 1000 W/m2, String 2 with 25oC and 500 W/m2 

The ESC searched power profiles are shown in Fig. 6.11. The ESC searched 

maximum total converter front-end power is 1095.2 W, which is very close to the 

estimated power output of the MPP (1095.7 W), with the steady-state error only about 

0.05%. The DC-bus terminal power is about 26 W lower than the front power due to the 

power loss within the circuit. 

6.3. ESC Integrated Detection of Change of Internal Shunt Resistance 

In this section, the relation between the change of the internal shunt resistance and the 

transient characteristics in the steady-state ESC signals under square-wave dither 

perturbation will be investigated. First, in order to evaluate the impact of the internal 

shunt resistance on the transient characteristics in small-amplitude step responses (e.g. 

the steady-state dithered output), a small-signal transfer function analysis is conducted 

based on linear model in Fig. 6.12, derived from the generic PV circuit model by [177]. 
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Figure 6.12: PV array linear circuit model current source ( PV mpv V ) 

Applying the typical averaging method to the PV-buck system in Fig. 6.1, yields the 

following state-space model [209]: 

 D ovd
t

V
di

L
d

   (6.8) 

 eq
D

eq

V vdv
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d


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where Dd  is the duty ratio, eq pv pV I R  and eq p sR R R   are the Thévenin equivalent 

voltage and resistance, respectively. The capital-letter variables represent the steady-state 

values, while variables with symbol “~” represent the small-magnitude perturbations. The 

key variables in Eqs. (6.8) and (6.9) are [177, 209]: 

 , , Dv i DV I i dv d      (6.10) 

Substituting (6.10) into (6.8) and (6.9) and neglecting products vd  and id  of higher-

order terms of small amplitude, we have 
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Performing the Laplace transform on (6.11) and (6.12) yields 

      s i s Dv s Vd sL      (6.13) 
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The small-signal transfer function from the duty-ratio change to the voltage can thus be 

obtained as  
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Assume that all other parameters in Eq. (6.15) constant. eq p sR R R   appears in the 

damping term of the denominator in the transfer function (6.15), which will affect the 

transient characteristics of the step responses. Since in general, p sR R , the change of 

the shunt resistance will thus have stronger impact on the transient characteristics, which 

can potentially be used for detecting the change of the shunt resistance associated with 

the PV degradation. Since the change of damping related parameters can be better 

reflected from the step responses, square-wave dither is adopted for the proposed ESC 

integrated detection of change in shunt resistance. The ESC design in Section 6.2 can be 

applied with duty ratio d as the control input.  

As shown in Fig. 6.13, the ESC search results in the average steady-state voltage of 

27.08 V and the PV power output of 207.3 W, respectively, with 1% settling time of 

about 0.44 sec. Compared to the estimated optimum in the P-V characteristic shown in 

Fig. 6.4, the steady-state errors are about 0.26% and 0.86% for the input voltage of the 

DC-DC converter and the PV power output, respectively.  
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Figure 6.13: ESC simulation results for single PV module under nominal conditions with 

duty ratio as control input: upper subplot: power; middle subplot: voltage; lower subplot: 

duty ratio 
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Figure 6.14 compares the voltage profiles for several different shunt resistances, with 

a zoomed view for about ½ cycle of a square-wave dithered output. It reveals that at the 

rising edge of the voltage transient signal, the PV module with lower shunt resistance 

value experiences a longer settling time. Among all typical transient characteristics, the 

integral performance indices have shown better separation as the shunt internal resistance 

changes (e.g. ISE, IAE, ITSE and ITAE). Table I summarizes the four integral 

performance indices which are calculated with the first half period (starting from the 

rising edge) of the ESC voltage signal (about 0.06 sec) after reaching the steady state, 

with the respective steady-state values removed. 

 

Figure 6.14: Comparison of ESC searched voltage with different shunt resistances 

The integral performance indices are computed by  
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where  1 2,t t  is the selected dither period, iV  is the voltage signal, and isV  is the mean 

value of the steady-state voltage signal. ih  is the amplitude of the square-wave dithered 

voltage signal, i.e. half of the difference between the steady-state values of the rising 

edge and falling edge of the square-wave dithered signal, which is included to reduce the 

influence of voltage amplitude change, e.g. due to power loss or irradiance change. 

TABLE 6.1 

ESTIMATED MAXIMUM ACHIEVABLE POWER AND INTEGRAL PERFORMANCE INDICES OF 

SQUARE-WAVE DITHER OUTPUT UNDER DIFFERENT SHUNT RESISTANCE pR  

Rp (Ω) Pmax (W) ISEi IAEi ITSEi ITAEi 

601.34 209.14 6.037 19.471 0.0106 0.0567 

100 203.33 6.118 19.484 0.0109 0.0573 

50 196.10 6.189 20.506 0.0114 0.0678 

20 175.53 6.668 21.747 0.0125 0.0776 

10 139.95 9.670 28.313 0.0206 0.1254 

8 123.90 12.470 34.166 0.0295 0.1778 

6 97.04 20.729 61.817 0.0845 0.9479 

5 80.63 34.437 113.211 0.4558 2.8137 

4 65.05 89.402 224.285 2.2765 6.4818 

As shown in Table 6.1, the maximum achievable power of the PV module decreases 

when pR  decreases, but have notable change only when pR  reduces down to 20 Ω or 

lower. Meanwhile, the integral performance indices values increase significantly while 
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the internal shunt resistance decreases below 20 Ω, and especially when pR  is lower than 

6 Ω. Therefore, the integral performance indices evaluated at the rising edge of the 

voltage transient signal can be a promising detection probe for avoiding the severe 

degradation in PV power generation due to the significant change in internal shunt 

resistance. 

Meanwhile, it is noteworthy that shunt resistance pR  also changes with temperature 

and irradiation level which are not degradation factors. Banerjee and Anderson [217] 

showed the temperature dependence of the shunt resistance above a threshold 

temperature by experimental analysis, and also investigated the irradiation induced 

impact on shunt resistance. Bouattour et al. [44] investigated the dependence of the shunt 

resistance on the illumination intensity. These studies showed that the change of shunt 

resistance is limited due to these degradation irrelevant environment factors. According 

to [188], the PV device degradation may cause far more significant reduction of pR  

value, which can reduce as low as 0.2 Ω with significant decrease of the PV output 

power. For the PV module in Section 6.2.1, the estimated P-V and I-V curves under 

different pR  values are shown in Fig. 1.8 and Fig. 1.9.  

The power curve does not change too much when  50,601.34pR   Ω, but will show 

significant change when 10pR   , e.g. the maximum achievable power is reduced by 

over 60% when pR  drops to 5 . The simulation results show significant change in 

transient characteristics for pR  value below 20 . In this range, the change of internal 

resistance is little affected by the degradation irrelevant environmental factors such as 

temperature and irradiation. Therefore, under the square-wave dither, degradation related 
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change of internal resistance can be detected when the ESC steady-state transient 

characteristics demonstrate significant changes. 

For the multi-string case, the ESC integrated detection of internal shunt resistance 

change is simulated with two strings in parallel connection, under the nominal 

environment conditions as aforementioned, i.e. 25oC and 1000 W/m2. Each string 

contains only one single module, and the respective duty ratio signals are control inputs. 

The internal shunt resistance of Channel 1 is of the nominal value 601.34 Ω, while that of 

Channel 2 is valued from the nominal 601.34 Ω, 10 Ω, 8 Ω, 6 Ω and 5 Ω. Figure 6.15 

shows the simulation results for the case of Channel 2 internal resistance being 8 Ω. The 

multi-string ESC searched powers are 208.9 W and 122.8 W, respectively, as shown in 

the upper subplot, which are very close to the estimated optima (209.14 W and 123.9 W 

as shown in Table 6.1). The corresponding voltage profiles are shown in lower subplot.  

Similar to the previous simulation of single-string case, the integral error indices are 

calculated as shown in Table 6.2.  Please note that the dither frequencies of Channel 1 

and Channel 2 are different as required by the multi-input ESC design. So the integral 

error index of the nominal value (601.34 Ω) in Channel 1 has a slightly difference 

compared to the nominal value (601.34 Ω) in Channel 2. The changes of the internal 

shunt resistance pR  in Channel 2 do not affect much on the transient performance in 

Channel 1. The results of Channel 2 with different internal shunt resistance pR  show 

clearly monotonic increase of integral error indices. 
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Figure 6.15: ESC simulation for two-string PV array of different internal resistance 

 

TABLE 6.2 

INTEGRAL PERFORMANCE INDICES OF SQUARE-WAVE DITHER OUTPUT UNDER DIFFERENT 

RP WITH MULTI-STRING FRAMEWORK 

Channel 1: 

Rp (Ω) ISEi IAEi ITSEi ITAEi 

(601.34, 601.34) 5.765 24.013 0.0144 0.146 

(601.34, 10) 6.388 25.446 0.0163 0.155 

(601.34, 8) 6.400 25.495 0.0163 0.157 
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(601.34, 6) 6.407 25.689 0.0163 0.168 

(601.34, 5) 6.463 26.119 0.0163 0.184 

 

Channel 2: 

Rp (Ω) ISEi IAEi ITSEi ITAEi 

(601.34, 601.34) 6.627 29.514 0.0182 0.347 

(601.34, 10) 10.726 44.291 0.0424 0.720 

(601.34, 8) 13.315 57.537 0.0845 1.231 

(601.34, 6) 25.007 127.714 0.7874 4.293 

(601.34, 5) 44.601 164.995 1.2771 5.476 

 

6.4. Summary 

The proposed dither ESC integrated detection of the change in internal resistance is 

investigated from both analysis and control implementation standpoints. The small-signal 

transfer function analysis justified the impact of the internal resistance on the transient 

characteristics of step responses. The simulation study consists of two parts: single-string 

case and multi-string case. For both cases, the monotonic relationship between integral 

error indices and the shunt internal resistance is clearly demonstrated, which strongly 

validates the proposed scheme.  For the multi-string case, the integral error indices results 

showed that the coupling effect is rather weak, which indicates that the detection 

performance would be quite consistent even under multi-string operation. The proposed 

ESC integrated detection scheme achieves online monitoring of the internal resistance of 
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individual PV string with relatively simple computation, and does not require the use of 

any additional sensor. For PV health monitoring, consistent prognostic features can thus 

be developed based the integral error indices of the steady-state signals of the dither ESC 

outputs.    
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Chapter 7. Conclusion and Future Work 

In this chapter, this dissertation research will be summarized. An overview of the 

achievements in this dissertation research is given, along with a conclusion of the 

contributions. Finally, some possible future work is suggested that may be followed by 

further research. 

7.1. Summary of Research Work and Contribution 

As described in Chapter 1, development of net-zero energy buildings is anchored on two 

pillars: enhancing the generation and reducing the consumption.  This dissertation study 

can be deemed as three control related case studies that endorse such understanding: 1) 

minimize the power consumption of the chilled-water plant that consists of a screw 

chiller and cooling tower; 2) maximize the power generation of PV system; 3) control 

integrated monitoring of internal resistance of PV system which would facilitates 

prognostic health monitoring and in turn avoid the power loss and reduce the O&M cost.  

All the three pieces of work are imprinted with the same background: extremum 

seeking control. The unanimous choice of self-optimizing control is not coincidence, but 

reflecting the realistic challenge in controls of net-zero energy buildings. Building HVAC 

systems are inherently complex, nonlinear and time-varying dynamic processes mingled 

with the ambient conditions and occupancy variations. However, HVAC practice expects 

as low as possible investment for control design and implementation. HVAC controllers 

are desired to be simple, easy to tune, and easy to maintain. In parallel, the on-site (or 

building integrated) renewable generation for the net-zero energy buildings shares some 
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similarities. For photovoltaic systems, although the electrical systems are model-wise 

more tractable than the thermofluid systems in HVAC, the intrinsic and environmental 

conditions change dramatically. Finally, control and monitoring of both HVAC and 

renewable generation systems are desired to rely on fewer measurements and if possible, 

more reliable and more cost-effective measurements. The research approaches adopted in 

this dissertation study have reflected these considerations.   

 In this dissertation study, the following aspects of research have been covered for both 

self-optimizing control of chiller water system and PV system MPPT and fault detection. 

For dynamic modeling and optimization control of chilled water system, the major 

milestones accomplished are 

 Development of Modelica based dynamic simulation models for a chilled-water 

system, with major efforts paid to a counter flow cooling tower and a screw chiller.  

 Implementation and simulation of dither ESC based self-optimizing control scheme 

for chilled water system operation. 

For the PV MPPT and fault detection, the major accomplishments are: 

 Investigation and implementation of MPPT control of PV system using the adaptive 

ESC. 

 Investigation and implementation of the dither ESC based single- and multi-string 

PV MPPT with integrated degradation detection. 

The major contributions of this dissertation research are summarized as follows. 

1) Modeling of Chiller-Tower Cycle Plant. In this dissertation study, the Modelica 

based chilled water system components are developed including the mechanical 

draft counter flow wet cooling tower and the screw compressor. The dynamic 
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model of cooling tower is developed by utilizing the finite-volume method and 

one dimensional heat and mass transfer analysis with the assumptions follow 

[104]. The steady-state performance of the proposed cooling tower model is 

evaluated with the experimental data from [195]. The transient behavior is 

evaluated via benchmarking against the case studies in [107] and investigation 

through tower cell performances with the changes of tower inlet conditions. A 

static screw compressor model is developed with assumed polytropic compression 

process due to its relatively small thermal inertia. The entire chiller-tower cycle 

test plant including two liquid cycles as shown in Fig. 1.5: one is the chiller-tower 

water cycle, and the other is the chiller refrigerant cycle. The model of chiller-

tower cycle can benefit not only the ESC design in this dissertation study, but 

would facilitate many other tasks, e.g. modeling and control of plants with 

multiple chillers and cooling towers, fault detection and diagnosis. The cooling 

towers are also widely used in power and chemical industry. The evaporative 

cooling process is also adopted in the home evaporation air coolers. The Modelica 

based model developed in this study can be easily extended to such applications.  

2) Self-optimizing Operation of Chilled Water System using Dither ESC:  Dither 

ESC is implemented to achieve the self-optimizing operation on the chilled water 

model developed with Dymola and TIL library. As the cooling tower inlet water 

mass flow rate assumed to be constant, the variable part of the total power 

consumption (tower fan + chilled compressor) of the chilled water system is taken 

as the feedback to the ESC controller. The cooling tower fan speed is set as the 

control input. The effectiveness of the ESC controller is evaluated through 
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simulation study with different condition changes. The anti-windup ESC scheme 

[156] is applied to avoid the potential integral windup problem may be caused by 

the operation limitation of the cooling tower fan (actuator saturation). The inner 

loop evaporator superheat and chiller leaving temperature controls are also 

achieved by regulating the valve flow area and the compressor slide-valve 

opening. 

3) MPPT Control for PV System Using Adaptive ESC: The adaptive ESC [43] is 

applied to the PV MPPT problem using Simulink. A single PV array [176] is 

treated as a whole to evaluate the control scheme. The state-space model of PV-

buck system is derived with averaging analysis for AESC design. The I(V) 

nonlinearity is treated as an unknown term and it is estimated by the RBFNN 

based adaptive update law. The duty ratio of the PWM of the DC-DC buck 

converter is used as the control input. The convergence of the controlled system is 

ensured by Lyapunov based inverse optimal design technique [43]. 

4) Dither ESC Based MPPT for Integrated Detection of PV Internal Resistance 

Change. The key consideration behind this work is that the internal resistance of 

PV module affects the transient characteristics of step changes, while the dither 

ESC MPPT with square-wave dither has its steady-state signals being effectively 

trains of small-amplitude step responses. The small-signal transfer function 

analysis is performed to demonstrate such impact. The idea is demonstrated with 

both single- and multi-string PV systems using single- and multi-input dither 

ESC. For multi-string PV systems, the total power signal of the PV system at the 

DC bus is used as the feedback, and the PV output voltages of individual PV 
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modules are used as the control input. The simulation results reveal the 

qualititative relationship between the internal shunt resistance and the integral 

error indices.  An encouraging observation is that the coupling between different 

channels seems weak, which implies the possibility of consistent monitoring 

using the proposed idea for multi-string scenarios.  

7.2. Recommended Future Work 

This dissertation study has developed the Modelica based dynamic modeling of the 

mechanical draft counter flow cooling tower and the chiller-tower cycle test plant. A 

major missing work is that no field test data are available to sustain the proposed models. 

Experimental validation of the proposed detailed physical based models would be a great 

benefit in the future. The effectiveness of the Dither ESC based self-optimizing operation 

of the chilled water system is only evaluated through simulation. The experimental 

studies on a realistic chilled water system would be desirable in the future with possibly 

improved parameter tuning and control design.  

In this study, the chiller-tower cycle treats the air handling unit (AHU) part only as a 

variable load. As the AHU model has already been developed by [153], it is desirable to 

involve the AHU part into the chilled water system plant. Multiple-loop optimization 

control could be investigated on the entire chilled water system by involving economizer 

control, cooling tower fan control and cooling tower inlet water mass flow rate control 

(water pump control). With the proven effectiveness and the advantage of model-free 

feature, ESC is still recommended in the future work. 



148 
 

 
 

As in [79, 85], the adaptive ESC has been discussed with state constrained system, it 

could be interesting to investigate the state constraint within PV system, i.e. the current or 

voltage limitation on the PV array output. And also, in the proposed AESC control 

scheme on PV MPPT, the duty ratio of the converter PWM is selected as the control 

input, which is definitely limited in the range of [0, 1]. The input constraint problem of 

adaptive ESC is also interesting to consider. 

For the MPPT and the ESC integrated detection, it would be beneficial to perform 

experimental studies to validate and improve the proposed strategies.  
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Appendix A. Calculation of Merkel’s Number 

The calculation of the Merkel’s number follows the method described in Kröger 

[198]. The specific heat of the dry air pac  from 220K to 380K under the standard 

atmospheric pressure (101325Pa ) is determined by [218]: 

3 1 4 2 7 3 1 11.0454 10 3.1618 10 7.0838 10 2.705 10 ( )pac T T T J kg K              (A.1) 

where T is the local temperature of dry air. 

The specific heat of the saturated water vapor pvc  from 273.15K to 380K is 

determined by [219]:  

3 10 5 13 61.3605 10 2.31334 2.46784 10 5.91332 10 ( / )pvc T T T J kg                (A.2) 

The specific heat of saturated water liquid pwmc  from 273.15K to 380K is [220]: 

3 2 2 13 68.156 10 2.8063 10 5.1128 10 2.1758 10 ( / )pwmc T T T J kg K           (A.3) 

The vapor pressure of the saturated water vapor vp from 273.15K to 380K is 

determined by [219]: 

 210 ( / )z
vp N m  (A.4) 

where 

      

 

8.297 /273.15 14
10

4.76955 1 273.16/4

10.8 1 273.15 / 5.028log 273.15 / 1.505 10 1 10

4.2873 10 10 1 2.78612

 



       
     

T

T

z T T
  

(A.5) 

The humidity ratio of moist air ω is determined by [221]:  
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 
   

 
   

2501.6 2.3263 273.15 0.62509

2501.6 1.8577 273.15 4.184 273.15 1.005

1.00416
( / )

2501.6 1.8577 273.15 4.184 273.15


    

          
 

       

wb vwb

wb abs vwb

wb

wb

T p

T T p p

T T
kg kg dryair

T T

  (A.6) 

where wbT is the local wet bulb temperature. vwbp is the vapor pressure using wet-bulb 

temperature, and absp is the local station pressure.  

The humidity ratio for the saturated air ωs is determined by [221]: 

 
0.62509

1.005
vwb

s
abs vwb

p

p p


 
   

 (A.7) 

The latent heat of vaporization for the saturated water liquid fgwh  from 273.15K to 380K 

is determined with [218] 

 
6 3 2

2 3

3.4831814 10 5.8627703 10 12.139568

1.40290431 10 ( / )

    

 
fgwh T T

T J kg
 (A.8) 

The enthalpy of  the air-vapor mixture per unit mass of dry air mah  is determined by 

[198]: 

    273.15 273.15 ( / )ma pa fgwo pvh c T h c T J kg dryair         (A.9) 

where fgwoh is the latent heat of vaporization for the saturated water liquid evaluate at 

outlet water temperature. 

The formula for obtaining the Merkel’s number MMe  is [198] 

            
 

  1 1

2

wi

wo

T
pw w pwm wi wo

M
masw ma maswo mai maswi maoT

c dT c T T
Me

h h h h h h

  
       
  (A.10) 

where maswh  is the enthalpy of  the air-vapor mixture per unit mass of dry air at the local 
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water temperature. maswoh  and maswih  are the enthalpy of  the air-vapor mixture per unit 

mass of dry air estimated at the outlet and the inlet water temperatures, respectively. wiT  

and woT are the inlet and outlet water temperatures, respectively. maih  and maoh  are the 

enthalpy of  the air-vapor mixture per unit mass of dry air estimated at the inlet and outlet 

air temperatures, respectively.  The specific heats can be evaluated at  273.15 / 2T   and 

the latent heat fgwoh  is evaluated at 273.15K. 
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Appendix B. Parameters for Steady-State Evaluation of 

Cooling Tower Model 

The steady-state evaluation of the mechanical-draft counter-flow wet cooling tower 

model uses the experimental data from [195], the simulation model layout for the cooling 

tower body (evaporative cooling process) is shown in Fig. 3.5. The geometric parameters 

of cooling tower used in the steady-state evaluation are listed in Table B.1. 

TABLE B.1 

GEOMETRIC PARAMETERS USED IN STEADY-STATE EVALUATION OF COOLING TOWER 

MODEL 

 Description Values 

Moist air tube  

Inner Diameter 1.0494 m 

Length 0.9033 m 

Cell number 7 

Liquid tube 

Inner Diameter 1.0494 m 

Length 0.9033 m 

Cell number 7 

NTU fitting parameter in 
Eq. (3.21) 

c 1.684 

n -0.391 
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The initialization conditions for the water and the moist air are given in Table B.2. 

TABLE B.2  

INITIAL CONDITIONS FOR WATER AND MOIST AIR 

 Description Values 

Moist air  

Initialization method Constant temperature 

Initial value for 
temperature 

303.15 K 

Water 

Initialization method Constant temperature 

Initial value for liquid 
temperature 

300 K 

The parameters of collection basin model used in the simulation are: sump volume is 

0.1 m3 and inlet water temperature is 295.15 K. 
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Appendix C. Modeling Details for Chiller-Cycle Components 

The chiller cycle modeling described in Chapter 3 mainly adopted the work in [31]. 

The dynamic modeling of condenser, evaporator and expansion devices from [31] are 

included here for reference.  

C.1. Condenser and Evaporator 

C.1.1. Finite Volume Method Based Modeling 

The modeling of condenser and evaporator requires quality heat exchanger models since 

they can capture the major transients in the chiller system. There are mainly two methods 

for heat exchangers modeling: 1) the finite volume (FV) method and 2) the moving 

boundary (MB) method [124]. The FV method is based on discretizing the heat 

exchanger into a number of fixed control volumes and integrating the balance equations 

over each volume. The MB method is based on dividing the heat exchanger into variable-

length control volumes that correspond to each phase region. The number of control 

volumes and the length of each control volume depend on the actual system operation. 

For shell-and-tube heat exchanger modeling in centrifugal chiller systems, the 

comparison between the FV and MB methods has been extensively studied by Bendapudi 

et al. [124]. For simulation of both individual components and the whole chiller system, 

the FV method was found to be more robust for scenarios of start-up and transient load 

change. The MB method was also found to be less accurate for charge prediction. 

Although the FV method amounted to about 20% increase in computation time, the trade-
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off is worthwhile considering the improvement in the modeling accuracy. Therefore, the 

FV method was adopted in this study. 

 Shell- and Tube-Side Geometry 

According to Bendapudi [222], assumptions of concentric, tube-in-tube and counter-

flow can be applied to the shell-and-tube heat exchanger modeling in chillers. For both 

condenser and evaporator, the water flows at the tube-side and the refrigerant flows at the 

shell-side. The shell-side heat transfer area is computed from the outer surface area of the 

water tubes and a surface enhancement factor. In this study, the condenser and evaporator 

were modeled based on the TubeAndTube heat exchanger model in TIL. Figure C.1 

shows the Dymola layout of the condenser model developed in the TIL library. 

 

Figure C.1: Modelica model layout of the condenser model (reproduced and modified 

with permission from TIL’s TubeAndTube heat exchanger model) 

To adapt the above model to the flooded type shell-and-tube heat exchangers, some 

modifications are needed. The difference in geometric dimensions between a shell-and-

tube heat exchanger and a tube-by-tube heat exchanger mainly lies at the shell side. As 
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the refrigerant flows at the shell side, the face flow area fA  and the volume of the 

refrigerant totV  can be computed as [222]: 

 2 21
( )

4f s oA D Nd   (C.1) 

 tot totfV A L  (C.2) 

where sD is the shell diameter, N is the total number of tubes, od is the tube outer 

diameter, and totL is the total tube length. 

The Reynolds number Rer  in each refrigerant cell is determined based on the average 

velocity meanv : 

 meanRe o
r

v d


  (C.3) 

where 

mean
mean

r f

m
v

A



                                                 (C.4) 

 mean r,in r,out( ) / 2m m m     (C.5) 

 is the kinetic viscosity, r is the mean density in each refrigerant cell, meanm , ,r inm  and 

,r outm  are the mean, inlet and outlet mass flow rates of each refrigerant cell, respectively.  

 Mass and Energy Balance Equations  

With the FV method, both the refrigerant and water sides are discretized into a fixed 

number of control volumes (called “cells” in TIL). For the refrigerant side, a single-cell 
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model named as RefrigerantCell1 is modified from TIL.Cells; while for the water side, 

the same model of LiquidCell is adopted from TIL.Cells. Both the mass and energy 

balance equations are formulated in these two single-cell models, respectively. An integer 

parameter “nCells” (number of cells) can be used to duplicate multiple instances of the 

RefrigerantCell and LiquidCell and construct a finite volume based heat exchanger 

model.  

In the RefrigerantCell, the mass balance equation is given as [196]:  

 r,in r,out
r

r

d
V m m

dt


    (C.6) 

where rV  is the Volume in each refrigerant cell.  

The energy balance is derived by applying the first law of thermodynamics for an 

open control volume [196]: 

 r,in r,in r,out r,out

1
( ) ( )r

r r r r
r

dh dp
m h h m h h Q V

dt M dt
       
 

   (C.7) 

where rh , ,r inh  and ,r outh  are the mean, inlet and outlet specific enthalpies in each 

refrigerant cell, respectively. rM is the mass in each refrigerant cell. rQ is the rate of heat 

transfer to each refrigerant cell.  

To avoid automatic differentiation in Dymola, the time derivative of density ( /rd dt ) is 

manually transformed in terms of the state variables [196]: 

 
r

r r r r

r hp

d dh dp

dt h dt p dt

      
       

 (C.8) 

                                                 
1 The modified RefrigerantCell model includes phase-dependent heat transfer calculations for 

condenser and evaporator. 
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Note that a Modelica tool such as Dymola includes algorithms to symbolically transform 

differential equations in terms of their states. In the Modelica.Media Library, to transform 

differential equations into desired state variables, one needs to set the flag 

“preferredMediumStates = true” when declaring the medium model BaseProperties. Such 

option is also available in TILMedia by setting the flag “stateSelectPreferForInputs = 

true” when declaring thermodynamic variables. 

It is important to note that /dp dt 2 is assumed invariant for each pressure level3. This 

is a key assumption originally proposed by Lemke [223] with experimental validation 

and later implemented into TIL by Richter [196]. A recent work by Li et al. [224] 

justified the assumption on the refrigerant based vapor compression cycle. As illustrated 

in Fig. C.2, the assumption can be expressed as [223]:  

 outin dpdp

dt dt
  (C.9) 

where inp  and outp  are the inlet and outlet pressures, respectively. 

According to Richter [20], the key benefit of this assumption is that /dp dt  would 

become known quantities instead of unknowns in Eqs. (C.8) and (C.9), which would 

improve the numerical efficiency and robustness of refrigerant cycle simulations. 

                                                 
2  The subscript “r” is not placed on dp/dt because dp/dt is only defined at the 

refrigerant side and neglected at the water side. 

3 By neglecting pressure drops, chillers have two pressure levels: 1) condenser-side 

pressure, and 2) evaporator-side pressure. 
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Figure C.2: Illustrative diagram for the dp/dt assumption 

However, there is a limitation in Lemke’s experimental validation. The experiments 

were conducted on a gas cooler from a transcritical refrigeration system, where the 

refrigerant is in the supercritical state only. Thus, it is not appropriate to draw a quick 

conclusion that this assumption can also be applied to typical vapor compression 

refrigeration systems such as chillers in this study, which would undergo phase 

transitions rather than the supercritical state only. This concern is addressed in this study 

with experimental investigation on a vapor compression chiller. 

In LiquidCell, the state variable includes temperature only. Thus, the calculation of 

time derivative of pressure (dp/dt) is neglected. Similar to RefrigerantCell, the mass and 

energy balance equations are manually transformed to the state variable. 

 Water and Refrigerant Sides’ Heat Transfer 

The convective heat transfer coefficients are implemented in the basic cell models of 

both RefrigerantCell and LiquidCell. Figure C.3 shows the schematic for the water and 

refrigerant sides’ heat transfer in the basic cell models. 
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Figure C.3: Illustration of water and refrigerant sides’ heat transfer in basic cell models 

In Fig C.3, the convective heat transfer rates on the water and refrigerant sides can be 

determined from Newton’s law of cooling [196]:  

 wall( )w w w wQ A T T   (C.10) 

 wall( )r r r rQ A T T   (C.11) 

where wQ  is the rate of heat transfer to each liquid cell. w  and r  are the water side and 

refrigerant side local convective heat transfer coefficients, respectively. wA  and rA  are 

the heat transfer area in each liquid and refrigerant cells, respectively. wallT , wT  and rT  

are the mean temperature in each wall cell, liquid cell and refrigerant cell, respectively.  

Neglecting axial conduction, the energy storage at the wall cell can be modeled as [225]: 

 wall
wall p,wall r w

dT
M c Q Q

dt
    (C.12) 

where wallM  is the mass in each wall cell. ,p wallc  is the specific heat capacity of wall 

material. 
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 Water Side Heat Transfer 

For the water side, the flow region is turbulent mainly due to high water flow rates. 

Thus, the Gnielinski correlation [226] can be applied:  

 
1/2 2/3

( / 2)(Re 1000) Pr
Nu

1 12.7( / 2) (Pr 1)
f w w

w
f w

C

C




 
 (C.13) 

where wNu is the water side Nusselt number. fC is the fanning friction factor in smooth 

pipes. Rew is the water side Reynolds number. Prw is the water side Prandtl number. 

The Fanning friction factor developed by in [224] is applied: 

 
2 3

0.0015702 0.3942031 2.5341533

ln(Re) ln(Re) ln(Re)fC


    (C.14) 

Finally, the water side connective heat transfer coefficient can be determined as [225]: 

 
Nuw w

w
i

k

d
   (C.15) 

where wk  is thermal conductivity of water. id  is the tube inner diameter. 

 Refrigerant Side Heat Transfer 

Compared to the water side, the heat transfer at the refrigerant side is more complex 

due to the two-phase flow situation. For condenser, suitable convective heat transfer 

correlation is needed for describing condensation process in the two-phase region; while 

for evaporator, a suitable correlation is needed for the boiling process in the two-phase 

region. In addition, smooth transitions between the single-phase and two-phase heat 

transfer correlations are necessary for implementation. 

For condensation in the two-phase region, extensive study has been reported for 

condensation inside tubes. Also, there have been good models for condensation over a 
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single tube. However, the condensation over tube bundles is much more complicated. 

The presence of neighboring tubes brings forth additional complexities. As described in 

[227], “In the idealized case, the condensation from a given tube is assumed to drain by 

gravity to the lower tubes in a continuous and laminar sheet. In reality, depending on the 

spacing-to-diameter ratio of the tubes and whether they are arranged in a staggered or 

inline configuration, the condensate from one tube many not fall on the tube directly 

below it, but instead may flow sideways. In addition, experimental study has shown that 

condensate does not drain from a horizontal tube in a continuous sheet but in discrete 

droplets along the tube axis. When these droplets strike the lower tube, considerable 

splashing can occur, causing ripples and turbulence in the condensate film. Perhaps most 

important of all, large vapor velocities can create significant shear forces on the 

condensate, stripping it away, independent of gravity.”  

For laminar film condensation on a horizontal tube, Dhir and Lienhard [228] 

proposed a correlation based on Nusselt’s analysis [229]. It is also widely used to 

correlate the heat transfer for the condenser model with tube bundle on the shell side. 

This model does not consider the condensation inundation effect, heat transfer coefficient 

increase in a tube bundle, or the surface enhancement effect. Belghazi et al. [230] 

conducted a study on condensation on the exterior of a bank of smooth tubes for pure 

fluid and for zeotropic binary mixture HFC23/HFC134a. For the test of pure HFC134a, 

the experimental data on the first tube deviate from the Nusselt theory [229] by 5%. The 

effect of heat flux to the condensation inundation was considered by modifying Chen’s 

correlation [231] based on the exponent in Kern’s correlation [232]. However, the 

method proposed in this paper cannot predict the increase of heat transfer coefficient in 
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the tube bundle since it is difficult to determine the pattern of condensate falling from the 

upper rows. Later, Belghazi et al. [233] studied the film condensation of downward vapor 

flowing on staggered bundles of horizontal finned tubes, using HFC134a and the binary 

zeotropic mixture HFC23/HFC134 as the refrigerants. Experimental study was conducted 

based on five commercial tubes with dissimilar fin pitches. Experimental results indicated 

that the condensation curve method underestimated the heat transfer coefficient for the 

first row. A modified condensation curve method was then proposed by adding the effect 

of Lewis number. This method has good agreement (within ±10%) with the experimental 

data in terms of the total heat flux prediction. This method also improved the prediction 

of heat transfer coefficient for the first row, but still it cannot accurately predict the heat 

transfer coefficient all other rows because it is difficult to calculate the increase of heat 

transfer coefficient due to the upper rows.  

For the condenser side, Dhir and Lienhard’s correlation [228] is adopted with a 

surface enhancement factor to account for the effect of surface enhancement and the 

increase of heat transfer coefficient in tube bundles due to particular patterns of the 

condensate. For the evaporator side, the boiling heat transfer correlation is adopted from 

Bendapudi’s work [222] based on an empirical correlation from the manufacturer.  

The geometries of the condenser and evaporator in this work follow the models from 

Bendapudi et al’s experimental study [124]. The heat transfer coefficients in their model 

were determined with some empirical correlations from the manufacturers, and the 

surface enhancement factors were determined with experimental data. This study adopts 

the empirical heat transfer models and the surface enhancement factors from Bendapudi 

et al’s work [124] for the idea-proof purpose. 
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In general, refrigerant flow in the evaporator undergoes transitions between two-

phase and superheat regions, as illustrated in Fig. C.4. For detailed flow patterns of 

forced convection boiling in a tube, refer to [225]. In Fig. C.4, the boiling heat transfer 

coefficient boil  is given by [222]: 

 boil
boil 1

2

Q
e

e



 


 (C.16) 

where boilQ  is boiling heat flux in kW/m2. 1e  and 2e  are the manufacture’s coefficients 

for heat transfer calculation in evaporator. 

 

Figure C.4: Illustrative diagram of heat transfer regions in the evaporator 

The superheat heat transfer coefficient sup  is given by Bendapudi et al. [124]: 

 sf,sup
sup

Re Prr r r

o

C k

d
   (C.17) 

where ,sf supC  is the surface enhancement factors for superheat refrigerants. Prr is the 

refrigerant side Prandtl number. rk is the thermal conductivity of refrigerant.   

The schematic in Figure C.5 shows the heat transfer regions in the condenser. The 

heat transfer coefficient of condensation is given by [228]: 

 

1/43
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g k h
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


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  
  

 (C.18) 
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where cond  is the condensation heat transfer coefficient. ,sf condC  is the surface 

enhancement factor for condensation heat transfer. l  and v  are the density of saturated 

refrigerant liquid and saturated refrigerant vapor, respectively. lk  is the thermal 

conductivity of saturated refrigerant liquid. l is the is the dynamic viscosity of the 

saturated refrigerant liquid. 

 

Figure C.5: Illustrative diagram of heat transfer regions in the condenser 

Note that 'fgh is the modified latent heat of vaporization [234]. The same correlation 

for superheat heat transfer described in Eq. (C.17) is adopted except for a different 

surface enhancement factor. The subcooling heat transfer coefficient is also given in 

Bendapudi et al. [124]: 

 sf,sub
sub

Re Prr r r

o

C k

d
   (C.19) 

where sub  is the sub-cooling heat transfer coefficient. ,sf subC is the surface enhancement 

factor for sub-cooling refrigerant. 

For condenser, smooth transition of heat transfer coefficients among different phase 

regions is reinforced and implemented as follows. Implementation for the evaporator side 

is very similar. 



190 
 

 
 

 

Code Segment C.1: Implementation of heat transfer coefficients at the condenser side 

C.1.2. Variable Refrigerant Level (VRL) Based Modeling 

Recently, TLK-Thermo proposed a simplified method of heat exchanger modeling [235], 

i.e. the so-called variable refrigerant level (VRL) modeling approach. The basic idea of 

VRL modeling is to connect a large tank of refrigerant with a bank of water tubes via a 

heat port. The liquid level of the refrigerant, or equivalently the volume ratio of liquid 

refrigerant to the total volume of the tank, is varied depending on the magnitude of heat 

transfer between the water tubes and the refrigerant in the tank. 

In particular, the large tank has two outlet fluid ports, i.e. the liquid port and the gas 

port. Same tasks are performed as for a phase separator, i.e., when the liquid port is 

connected, the outlet flow will be liquid refrigerant; when the gas port is connected, the 

outlet flow will be refrigerant vapor. The bank of water tubes can be realized by 

multiplying the heat transfer area of a single liquid tube by the number of tubes (i.e. the 

parameter “nParallelTubes”). Heat transfer from the water tubes to the refrigerant in the 

equation 

…… 

if noEvent(properties.x < 0.5) then 

// Handle transitions between two-phase and subcooling 

alpha=CF_alpha_condenser*spliceFunction(alpha_twophase,alpha_subcool,properties.x - 

0.02,0.0001) “CF_alpha_condenser is the overall surface enhancement factor of condenser”; 

else 

// Handle transitions between two-phase and superheat 

alpha=CF_alpha_condenser*spliceFunction(alpha_superheat,alpha_twophase,properties.x - 

0.98,0.0001); 

end if; 



191 
 

 
 

tank is realized by the interface of a heat port placed on the liquid tube and the tank 

models. 

The volume of the tank is fixed, but the volume ratio of refrigerant in the tank can be 

easily monitored. In this modeling approach, the heat transfer coefficient in the liquid 

tubes can be tuned to match the experimental results for the outlet refrigerant and liquids.   

Compared to detailed formulation such as the finite volume method, which requires 

extensive experimental data as well as detailed geometric information to calibrate, this 

approach has the advantage in model validation when there are not enough information 

and experimental data available to calibrate the model with details. 

This approach is implemented with existing component models in TIL. For the 

modeling of shell-and-tube heat exchangers, the component model IdealSeparator can be 

adopted together with LiquidTube model to formulate dynamic models of condenser and 

evaporator. Figure C.6 shows the implementation of condenser model with variable 

refrigerant level in TIL. The construction of an evaporator model is very similar. In Fig. 

C.6, a “Pressure State Element” is placed at the refrigerant side to compute the time 

derivative of pressures (dp/dt). The “Ideal Separator” is referred to the aforementioned 

big tank with two outlet fluid ports. For the case of condenser, the liquid port is 

connected to the outlet refrigerant flow. The “Heat Port” between the “Liquid Tube” and 

the “Ideal Separator” is connected to transfer thermal energy. Upon clicking the “liquid 

Tube” model, it is convenient to set up the number of liquid tubes to be included into the 

condenser via the parameter “nParallelTubes”, and the corresponding heat transfer area 

can be automatically updated.  
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Liquid Port

Cold Fluid Out

Hot Fluid Out  

Figure C.6: Modelica model of a VRL-based condenser in TIL 

C.2. Expansion Device 

The expansion valve is a key component for the refrigeration cycle, which is typically 

used to control the superheat at the outlet of the evaporator by adjusting the valve 

opening. The key functionality of the expansion valve is to regulate the refrigerant 

pressure to a lower level while roughly maintaining the enthalpy of the refrigerant. In 

centrifugal chillers, orifice plates or float valves are often used to throttle the pressures 

and thus control the flow rates [236]. In the current model development, an orifice plate 

model is adopted from TIL by assuming a quadratic relation of the pressure difference 

across the valve and the corresponding mass flow rate. The flow rate through the 
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expansion valve can be adjusted by the effective flow area (Aeff). The TIL.Chillers 

package also adopts the thermal expansion valve developed by Bendapudi  [222]. 

C.2.1. Orifice Plate 

Assuming one-dimensional flow, for the control volume drawn in Fig. C.7, the mass 

balance of an orifice plate is given by 

 v,in v,out 0m m    (C.20) 

where ,v inm  and ,v outm are the inlet and outlet refrigerant mass flow rates of expansion 

valve. 

 

Figure C.7: Control volume of an orifice plate 

Further assume that the throttle process is isenthalpic, i.e. 

 v,in v,outh h  (C.21) 

where ,v inh  and ,v outh are the inlet and outlet specific enthalpies of expansion valve. 

For compressible flow,  the orifice flow is characterized by [237]: 

 
 

out
v,in 2

out in1 /
D

A
m C x

A A



  (C.22) 

where inA and outA are the cross-sectional areas at the inlet and outlet of the orifice plate. 
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And  v,in v,in v,out2x p p  with ,v in represents the inlet refrigerant density of the 

expansion valve, ,v inp  and ,v outp are the pressures at the inlet and outlet of the expansion 

valve.  In Eq. (C.22), the expansion factor ε characterizes the degree of compressibility. 

When 1  , Eq. (C.22) becomes the orifice flow equation for incompressible flow. As 

Parr states [238], the difficulty is to determine the discharge coefficient (CD) and it is also 

very difficult to quantify the expansion factor ε since it is related to the specific heat ratio, 

the inlet and outlet cross-sectional areas, and the pressures. In TIL’s orifice valve model, 

these terms are lumped into a single parameter called effective flow area (Aeff). The mass 

flow rate through the orifice valve is thus simplified to 

 v,in effm A x  (C.23) 

In Eq. (C.23), it can be seen that v,in /dm dx   as 0x  , this would cause Newton-

like solvers to stop due to the infinite derivative. In order to avoid such difficulty, an 

alternative implementation of the valve equation is considered. For simplicity in the 

analysis followed, let us define 

 

2

smooth
0

eff _smooth

m
x

A

 
   
 


 (C.24) 

where _eff smoothA  is effective flow area for the smoothing function used in the orifice plate. 

smoothm is the valve mass flow rate for the smoothing function used in the orifice plate. 

In TIL’s implementation, the valve equation is approximated by a cubic polynomial  

 

3

v,in eff 0
0 0

5 1

4 4

x x
m A x

x x

  
    
   

  (C.25) 

within the interval  0 0,x x x  . As 0x  , it follows v,in 0m  , which gives the same 
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solution as Eq. (C.23). The cubic polynomial 
3

0 0

5 1

4 4

x x

x x

 
  

 
has finite derivatives over the 

whole interval  0 0,x x x  and the problem of division-by-infinite derivative is avoided. 

C.2.2. Thermal Expansion Valve 

Unlike the orifice plate, the opening of a thermal expansion valve (TXV4) is regulated by 

the pressure differential based on the temperature feedback at the evaporator outlet. As 

shown in Fig. C.8, the TXV operation is determined by the net effect of the following 

three pressures: 1) bulb pressure bulbp , 2) evaporator pressure ep , and 3) minimum 

opening pressure mindp .  

 

Figure C.8: Illustrative diagram of forces acting on a TXV 

The TIL.Chillers package adopts the TXV model developed by Bendapudi [222]. The 

key model equations are summarized as follows. Like the orifice plate, The TXV model 

is also modeled as a static device under the assumption of isenthalpic process. The heat 

                                                 
4 Some literatures also abbreviate thermal expansion valve as TEV.   
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transfer between the sensing bulb and the evaporator outlet temperature is modeled based 

on the lumped capacitance method with a time constant Cb [222], i.e. 

 e,out( )b
b b

dT
C T T

dt
   (C.26) 

where bT  and ,e outT are the temperature at heat port b and refrigerant temperature at 

evaporator outlet, respectively. 

The valve lift is computed with the net pressure shown in Fig. C.8. [222]: 

 lift spring bulb min( )ey k p p dp    (C.27) 

with kspring being the spring constant. lifty is the valve lift. For more details, refer to 

Bendapudi [222]. 

In the model implementation, the valve lift is numerically bounded to avoid a 

negative lift, and the corresponding Modelica codes are given below.  

 

Code Segment C.2: Numerical bounds for the thermal expansion valve model 

Notice that 

 bulb sat e,outP ( )p T  (C.28) 

where satP ( ) is a thermodynamic state function that computes the saturation pressure 

given the temperature. The valve flow area vA is approximated as a quadratic equation 

based on the valve lift [222]. 

equation 

…… 

dp_push = max(1e-5, (p_bulb - portB.p - dp_min)) “Lower bound”; 

// Upper bound 

lift = min(maxlift, k_spring*(dp_push/1e3)) “Divide by 1e3 to convert to kPa”; 
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 2
0 lift 1 liftvA f y f y   (C.29) 

Finally, the mass flow rate across the valve is determined as [222] 

 v,in d vm C A x  (C.30) 

where a constant discharge coefficient Cd is adopted. Again, similar to the 

implementation for the orifice plate model, the same numerical treatment is applied to 

avoid infinite derivative at x = 0. The parameters of the TXV model are summarized in 

Appendix D. 
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Appendix D. Component Parameters Used in Chiller-Tower 

Cycle Simulation 

The Dymola layout for the chiller-tower cycle simulation is shown in Fig D.1. 

 

Figure D.1: Dymola layout of chiller-tower cycle 
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The specific component parameters used in the simulation are listed below: 

TABLE D.1  

GEOMETRIC PARAMETERS OF THE CONDENSER AND EVAPORATOR [222] 

 Tube Shell 

Inlet diameter Outlet diameter Length Diameter 

Evaporator 0.01606 m 0.01960 m 2.4384 m 0.39288 m 

Condenser 0.01554 m 0.01905 m 2.4384 m 0.37760 m 

 

TABLE D.2 

PARAMETERS OF THE /dp dt  COMPONENTS 

 Parameter Value 

Initial value for 
pressure 

Inlet of condenser 0.80 MPa 

Outlet of evaporator  0.40 MPa 

 

TABLE D.3 

PARAMETERS OF THE ORIFICE VALVE 

Parameter Value 

Effective flow area 0.675104 m2 

Valve smooth mass flow rate 0.0005 kg/s 

  

TABLE D.4  

PARAMETERS OF THE SCREW COMPRESSOR 

Parameter Value 

Fixed compressor speed 50 Hz 
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Screw compressor displacement 0.0072 m3 

Adiabatic efficiency 0.8 

Motor efficiency  0.85 

Mechanical efficiency  0.95 

 

TABLE D.5 

PARAMETERS OF THE COOLING TOWER 

 Description Values 

Moist air tube  

Inner diameter 2.717 m 

Length 3.15 m 

Nominal mass flow rate 1 kg/s 

Nominal pressure drop 5Pa 

Cell number 8 

Liquid tube 

InnerDiameter 2.717 m 

Length 3.15 m 

Constant pressure drop 1000 Pa 

Cell number 8 

NTU fitting parameter in 
Eq. (3.21) 

CTc  1.684 

CTn  -0.391 

 

TABLE D.6 

PARAMETERS OF THE COOLING TOWER FAN 

 Parameter Value 

Fan characteristic at Pressure increase at 0flowV   500 Pa 
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nominal speed Nominal fan speed 50 Hz 

Volume flow rate at dp = 0 2 m3/s 

Fan efficiency settings 
Fan efficiency 0.4 

Drive efficiency 1.0 
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Appendix E. Controller Parameters Used in DESC Based 

Chilled Water System Optimization Simulation 

The Dymola layout for the simulation of dither ESC based optimization control of 

chilled water system is shown in Fig. E.1. The chilled-water system plant with inner loop 

controls of evaporator superheat control and chiller leaving water temperature control is 

shown in Appendix D.  

 

Figure E.1: Dymola layout for the simulation of dither ESC based optimization control of 

chilled-water system 
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The Dymola layout for ESC controller is shown in Fig. E.2. The Dymola layout for 

modified anti-windup ESC simulation is shown in Fig. E.3. and the Dymola layout for 

anti-windup ESC controller is shown in Fig. E.4. 

 

Figure E.2: Dymola layout of dither ESC controller 
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Figure E.3: Dymola layout for the simulation of anti-windup ESC based optimization 

control of chilled water system 
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Figure E.4: Dymola layout of anti-windup ESC controller 

The controller setting parameters are listed as: 

TABLE E.1 

PARAMETERS OF THE CONTROLLERS USED IN THE ESC BASED CHILLED WATER SYSTEM 

OPTIMIZATION  

 Parameter Value 

Evaporator superheat 
control 

Controller gain 0.008 

Time constant of integrator block 1.0 s 

Chiller leaving 
temperature control 

Controller gain 0.018 

Time constant of integrator block 0.66 s 

Dither ESC Control Sample time 30 s 
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ESC controller gain 0.031 

Back-calculation gain 0.12 
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Appendix F. Simulink Models for Adaptive ESC MPPT  

The Simulink layouts of the adaptive ESC based PV MPPT described in Chapter 5 

are too complicated to be shown as a whole figure here. Instead, the components for 

AESC controller are shown in Figs. F.1 through F.4 separately. 

 

Figure F.1: Simulink layout of adaptive ESC based PV MPPT, control law and PV 

system plant 
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Figure F.2: Simulink layout of adaptive ESC based PV MPPT, state and tracking error 

estimates 
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Figure F.3: Simulink layout of adaptive ESC based PV MPPT, design parameters 

 

Figure F.4: Simulink layout of adaptive ESC based PV MPPT, parameter learning and 

dither signal 

The detailed connection for “Plant” block in Fig. F.1, i.e. the yellow block, is shown in 

Fig. F.5. 
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Figure F.5: Simulink layout of PV array plant 

For, the detailed model structure, please refer to [176]. 
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Appendix G. Simulink Schematics for ESC MPPT Integrated 

Detection of Internal Resistance Change  

The Simulink schematics of the square-wave dither ESC based PV MPPT and 

internal resistance change detection on multi-string PV structure is shown in Fig. G.1. 

  

Figure G.1: Simulink layout of square-wave dither ESC on multi-string structure 
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The multi-string PV plant used in the simulation is shown in Fig. G.2. 

 

Figure G.2: Simulink layout of multi-string PV plant 
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