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Abstract—The performance of the likelihood ratio test is
considered for a many-point interaction point process featuring
a reduced number of isolated points. Limit theorems are proved
that establish the Poissonian asymptotic distribution of the log-
likelihood function for point processes with the isolated-point-
penalization joint probability density function. The asymptotic
distribution is used to approximate the detection probability
associated with the likelihood ratio test. The approximation is
compared to empirical results generated using Markov-chain
Monte Carlo simulation. The reported results provide an efficient
alternative method to simulation in assessing the performance of
hypothesis testing for the point-process model considered.

Index Terms—Detection probability, hypothesis testing, iso-
lated points, many-point interaction, point process, Poisson ap-
proximation.

I. INTRODUCTION

SPATIAL point processes are natural models for signals
arising in many applications such as forestry, seismology,

image analysis, and statistical minefield detection, where in-
formation is represented by the number and the location of
points in Euclidean space [4], [11]. The simplest of all point
processes is the Poisson process, for which, conditional on
the number of points, the constituent points are independently
and uniformly distributed in a given region. The points, thus,
exhibit no interaction, and the point pattern is often referred to
as totally random. An important feature that may distinguish
one point process from another is whether the points exhibit
mutual interaction. For example, certain models for the spatial
distribution of trees in a forest or the distribution of mines
in a minefield assume that the presence of a point results in
an inhibition effect reducing the likelihood of the presence of
other points in its vicinity. The Strauss process is a simple
example of such a point process for which the likelihood of
realizations containing many pairs of points that are within
a certain fixed range is reduced [12]. The Strauss process is
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a special case of the more general pairwise interaction point
processes for which the joint probability density function (pdf)
of the points isonly a function of the distances between pairs
of points [1]. In certain applications, the interaction mechanism
between points is more complex than pairwise interaction. The
joint pdf in such cases not only depends on the distances
between points in pairs of points but also on the distances
between points in larger groups of points (e.g., groups of three
or even all the points). Such point processes are often referred
to as many-point interaction point processes. For example,
certain minefield models [5], [6], assume that the likelihood
of finding an isolated mine is low. The corresponding joint
pdf for this isolated-point-penalization (IPP) point process is a
function of distances between points in all groups of points [6].

It is often of interest to determine whether the points in
an observed point pattern are totally random. In minefield
detection, for example, totally random patterns are potentially
classified as clutter. If an alternative model (e.g., pairwise or
many-point-interaction point processes) to the total random-
ness hypothesis is available, then statistical hypothesis testing
can be performed. Due to the complex nature of the joint pdf
of interaction point processes, exact performance analysis of
hypothesis testing is generally intractable even in the simple
case of the Strauss process. Monte Carlo simulation and
approximation theory have been extensively used in estimating
the performance of hypothesis testing problems involving
interaction point processes [3], [9].

In this paper, we present an approximation to the detection
probability for the IPP point process. In Section II, we briefly
describe the IPP process and indicate its applications in
minefield modeling. In Section III, we present and prove a
new theorem that establishes the Poisson approximation of the
number of isolated points when the points are totally random.
This result is then generalized to the IPP process which is used
to establish that the distribution of the log-likelihood function
of an IPP point process can be approximated by a Poisson
distribution. The performance analysis of the likelihood ratio
test using the Poisson approximation is compared to empirical
results generated using Markov-chain Monte Carlo simulation.

II. PRELIMINARIES

Let be a bounded subset of the plane. For any integer,
let be a -valued random vector
with joint pdf The vector represents the location of

points in distributed based on the pdf The random
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Fig. 1. A 50-point realization of a totally randomX in the regionB = [0; 10] � [0; 10]: Isolated points are designated by circles. There are ten
isolated points(d = 1:0) in this realization ofX:

vector can be thought of as a conditional point process
given that each realization of the point process has exactly
points. By selecting the form of, various interaction schemes
between points can be generated. The pdf’s considered in
this paper correspond to IPP many-point interaction point
processes. Throughout the examples, we will assume that

All simulations are generated using the
Markov-chain Monte Carlo algorithm reported in [8]. We will
now give a brief description of the IPP process.

A. Isolated-Point-Penalization Point Processes

We first give a precise definition of the number of isolated
points. For a given and the
number ofisolated pointsin is defined by

(1)

where is the closed disc
of radius centered at denotes the cardinality of the set

and is the Euclidean norm. In words, represents
the number of isolated points in that are at least within a
distance away from the boundary of The IPP pdf on

is defined by

(2)

The penalization strength is responsible for pe-
nalizing realizations with many isolated points, andis a
normalizing constant making a pdf. Clearly, when ,
the random variables are independent and
uniformly distributed in , and the resulting point pattern
is totally random. The parameter is called theinteraction
distanceand it plays an important role in the hypotheses of
the approximation theorems of Section III.

Example 1: Fig. 1 shows a 50-point realization of a totally
random pattern (i.e., drawn from the IPP pdf with ),
and Fig. 2 shows a 50-point realization ofsampled from an
IPP pdf with and Note that the number of
isolated points is reduced from ten in the case of the totally
random pattern to only one in the case of the IPP pattern.
It is interesting to note that, as a result of the reduction of
isolated points, there is a tendency for points to cluster. The
IPP model has therefore the potential for use in situations
when clustering is desirable. Note that it is always possible to
define a function on the space of all point configurations whose
restriction to the space of-point configurations is
the IPP pdf. A point process with a random number of points
can then be defined by defining its distribution as the product
of the above function and a Poisson measure. Note that for

, a distribution defined in the above sense is always
dominated by the Poisson measure. Therefore, an IPP point
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Fig. 2. A 50-point realization of an IPPX with c = 0:3 and d = 1:0: The processX again takes values inB = [0; 10] � [0; 10]: Isolated points are
designated by circles. Note that the number of isolated points is reduced from ten in Fig. 1 to one.

process with a random number of points is always well-defined
in a sense that its density with respect to the Poisson measure
is integrable. This integrability feature is not inherent in many
pairwise-interaction clustering densities [1], [7].

III. H YPOTHESISTESTING AND PERFORMANCE ANALYSIS

In this section we consider the problem of binary hypothesis
testing when the observed signal is a point process drawn
from the IPP probability density function. We present two
limit theorems which are used to approximate the detection
probability under certain asymptotic conditions. Since the
asymptotic results are established in the limit when the size
of the region and the number of points both increases to
infinity, it is necessary to replace the observation region
with a sequence of bounded sets Each
is assumed to contain points. Furthermore, the set is
replaced by the sequence

(3)

Now let be a random vector
in , and let denote the hypothesis that is totally
random. Let denote the hypothesis that is an IPP
point process. Note that the pdf in (2) along with the associated
normalizing constant are dependent onHowever, to simplify
notation, this dependence is not explicitly expressed. The

likelihood ratio test for the hypothesis testing problem can
be simplified to

(4)

where is a specified detection threshold. For performance
evaluation, we need to compute probabilities of the form

P (5)

when is either an IPP process or a totally random
process. The difficulty of this problem is due to the fact that
evaluating the distribution of is generally intractable.
This difficulty can be alleviated by determining the asymptotic
distribution of and using it to approximate the detection
probability (5). We now proceed to establish the Poisson
approximation of

A. Poisson Approximation of

It is intuitive to suspect that the asymptotic behavior of
, as , is ultimately governed by the way the

area of increases as a function of the number of points
it contains. In the case of a totally random process, for

example, if the area grows at a much faster rate than, then
it is clear that will diverge to since almost every
point will eventually become isolated. On the other hand, if
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Fig. 3. The empirical estimate (dashed line) and the Poisson approximation (solid line) of the probability in (5) forn = 50 and d = 1 when X
n

is totally random, i.e.,c = 1:

the area grows at a much slower rate than, then we suspect
that will converge to zero since the points will be
become tightly packed in the region. Interestingly, there is an
intermediate growth of the area for which the mean of
converges to a constant. We refer to the latter form of growth
as thedenseness conditionto be formally defined next. Let
be Lebesgue measure in the plane.

Definition: For a fixed , we say that the sequence
of subsets satisfies the denseness condition with
parameter if

1) ;
2) , where is defined in

(3); and
3) as , the number of disjoint discs of radius

contained in diverges to infinity.

Remark: The denseness condition is satisfied if is a
square with area

Remark: The denseness condition is analogous to the
sparseness condition introduced by Saunders and Funk [10]
in the context of pairwise interaction (PI) point processes.
Under the sparseness assumption, the mean number of pairs
of points (from a PI process) that are within a certain fixed
distance converges to a constant. Furthermore, the asymptotic
distribution of the number of pairs is Poisson. The sparseness

and denseness conditions cannot be simultaneously satisfied
in practical cases.

The following Theorem (see Appendix for proof) asserts
that if is totally randomly distributed and the denseness
condition is satisfied, then the distribution of the random
variable is asymptotically Poisson.

Theorem 1: Suppose that the random variables
are independent and uniformly distributed

in and that the sequence satisfies the
denseness condition with parameter Then, the random
variable converges in distribution, as , to a
Poisson random variable with mean

In the examples to follow, is taken to be the
square. The parameter can be evaluated using

The factor accounts
for the reduced area of in comparison to

Example 2: Figs. 3 and 4 compare the Poisson approxima-
tion of the probability in (5) to the empirical estimate using
5000 samples of the totally random process for and

, respectively. The interaction distance The
values for for the cases and are and

, respectively. These values of are found to be large
enough to show good approximation.
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Fig. 4. Same as Fig. 3 but withn = 75:

The next theorem extends Theorem 1 to the case when
has an IPP pdf.

Theorem 2: Suppose that has the IPP
pdf given in (2) and that the sequence
satisfies the denseness condition with parameterThen,

converges in distribution to a Poisson random variable
with mean

Proof: For each let E denote
the moment-generating function (mgf) of the random variable

under the hypothesis , i.e.,

Similarly, let E denote the mgf of the
random variable under hypothesis Observe that

As , Theorem 1 dictates that

the mgf of a Poisson random variable with meanTherefore,

which is the mgf of a Poisson random variable with mean

To illustrate the above result, the probability in (5) when
the alternative hypothesis is an IPP pdf is computed using
the above approximations and compared to empirical results
obtained using Markov-chain Monte Carlo simulation.

Example 3: Consider the IPP model with parameters
, and Figs. 5 and 6 compare the empirical

estimate of the probability in (5) using 5000 samples of the
IPP process with the estimate obtained using the Poisson
approximation for the cases and , respectively.
The values of the parameterare and for the cases

and , respectively.

IV. SUMMARY

Since direct evaluation of the performance of hypothesis
testing for the majority of interaction point processes is not
feasible, this paper was devoted to developing limit theorems
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Fig. 5. The empirical estimate (dashed line) and the Poisson approximation (solid line) of the probability in (5) when the alternative hypothesis is an
IPP pdf with c = 0:61; n = 50; and d = 1:0:

that are used to approximate probabilities that arise in the
performance analysis for hypothesis testing of the isolated-
point-penalization many-point-interaction point process. The
asymptotic distribution function of the log-likelihood function
is shown to be a Poisson distribution under certain asymptotic
requirements, called the denseness condition. The denseness
condition relates the growth of the area of the observation
region and the number of points contained. The reported
approximation performs well and uses only a fraction of
the computing time required by Markov-chain Monte Carlo
simulation. For example, running the simulation for Example
3 required approximately 150 min on a SUN SPARC-20
Workstation while the Poisson approximation was executed
in a few seconds.

APPENDIX

PROOF OF THEOREM 1

We begin with some preliminary observations. We will need
the fact that for any positive integer, the first denseness
condition implies that

(6)

This can be derived by taking logarithms and noting that

which follows from the Taylor series for with

differential error bound. Also note that the first limit of
the denseness condition implies that and
that (This second fact follows because for

and for large
Next, using the identity

a simple calculation shows that for a Poisson random variable
with mean , the th moment E

satisfies the recursive relation

(7)

In particular, it follows from (7) that is a polynomial
in of degree

(8)

It follows from (7) and (8) that

(9)

Note that for all The key step
in proving the Theorem is to show that for each

E

We then invoke the standard method-of-moments result [2,
p. 390, Theorem 30.2] which establishes the convergence of
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Fig. 6. Same as Fig. 5 but withn = 75:

to in distribution, as To this end, observe

that

(10)

where is the indicator function of a set , and

Then

E E

E

(11)

For each and , let denote the
number of terms in that consist of exactly

distinct factors (e.g., is a term consisting of three
factors). Using a simple combinatorial argument, it can be
shown that

(12)

where

for all , and whenever (The idea
behind (12) is that each term with exactlydistinct factors
in will result in terms each with distinct
factors once is multiplied by ; on
the other hand, each term with exactly distinct factors in

will generate terms each with distinct
factors as a result of the multiplication.) It is also true that for
each and is a polynomial of degree
in (This can be proven inductively (in) using (12).) Using
(12) and (9), and the fact that is a polynomial in of
degree , it can be easily shown inductively that

(13)

where is a polynomial of degree at most in
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Using the independent and identical distribution (i.i.d.)
assumption of the sequence along with the above
notation, (11) can be simplified to

E E

(14)

We now introduce some events to be used in the calculation
of (14). The event that the firstpoints are in is

The event that is isolated from for is
denoted by

Note that and depend on This dependence is not
indicated in the notation here and below. The event that each
of the first points is isolated with respect to all of the other

points is written as

which can be simplified to

(15)

In any case, theth expectation in right-hand side of (14) is
simply P , i.e.,

E P (16)

The term is

P P

Since is an event depending only on ,
we can write

P P P

Next, since

P P

P

Now, since the above integral is over , we
only need to consider For such we have

P

and thus

P

From this last expression, it follows that

P

To generalize the above limit to the case , we partition
the set and write

P P P

where is defined below. We also rewrite the first term on
the right as

P P P P

In particular, the above partition and conditioning becomes
useful in estimating the probabilityP if we let
be defined as except that is replaced by ; i.e.,

Then for put

Recall that the event is the event that each of the first
points is isolated (distance) with respect to the remaining

points, whereas is the event that each of the first
points is isolated (distance ) with respect to the other

points. (The idea is that the conditional probability
P is easy to calculate since it is, roughly speaking,
the probability of randomly scattering point in the region

with disjoint discs, each with radius, removed from it.)
Of course,P as For

, we show a little later that as

P

P

P (17)

Using these limits, it further follows that for

P
P

(18)

Upon substituting (13) into (16), and applying the limit results
in (17) and (18), we conclude that

E

as desired.
The final step in the proof of the Theorem is to establish

the limits in (17). This is quite lengthy, and it requires the
remainder of this appendix. The convergence ofP to
, for , can be proven by conditioning on the location

of , and the convergence for is proven by induction
and by conditioning on the number of points that have no
neighbors within a distance
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With respect toP , observe that for large
enough so that can contain disjoint discs each of radius

(i.e., ), the independence and uniformity of the
distributions of of imply that

P

P

(Note how the lower limit of the inner intersection has
changed compared with (15). This simplification follows be-
cause the omitted sets have conditional probability one; note
that .) Using (6),
we obtain

P

We now show that for

P (19)

For a given set of points we say that
the points are related by the relation
if either , or there exist distinct points

such that

and We write to express the
above relation. Clearly, defines an equivalence relation on
the set and hence, it induces a partition of
the set. Let be the collection of equivalence classes induced
by (i.e., if , then for any , and
furthermore, and for all ). It may
be helpful to think of an equivalence classas a “cluster” of
points. Note that Now for let

i.e., is the number of equivalence classes that contain
exactly points. Clearly

(20)

Note that if we now repeat the partitioning process with the
set replaced with the set of random variables

then the quantity becomes
a random variable. By recalling that the event is the event
that each of the first points are -isolated with respect to
the other points, we observe that and

We now introduce some events which will be useful in
the calculation ofP For and

let

We can now write as the disjoint union

Note that it is not possible to have , since then
there would be clusters, each containing one point. The
remaining point would belong to some other cluster, which of
course, can contain at most one point, contradicting
Hence, the above union can be simplified to

We can now write

P P

(21)

We now turn to the calculation of

P (22)

Write

P P P

ConsiderP where for the pur-
poses of bounding the above integral, we can restrict attention
to the case where each belong to

and for
It now follows thatP

is upper-bounded by

P

To get an upper bound on this last expression, we need a
lower bound on the probability of the union. By partitioning

according to the equivalence classes intro-
duced previously, we can write the above probability of the
union as

P

Note that if and belong to different equivalence classes,
then and are necessarily disjoint. Hence, we
can write

P

P

where for is some equivalence class con-
taining points. Note that in the case where there is more
than one equivalence class for a given, it is not important
which of the equivalence classes (each withpoints) actually

is. (Also note that since all the discs have centers in,
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the discs lie entirely in .) We can now write the probability
of the union as

We now lower-bound the area For ,
this area is simply For , we use the fact the centers
of the two discs are at least units apart to obtain a lower
bound which is strictly greater than For the case ,
the area of the union of the three discs is minimum when the
centers of the discs are the vertices of an equilateral triangle
of side length This triangle can be circumscribed by a larger
equilateral triangle of side length , where the midpoints of
the sides of the larger triangle are the centers of the three
discs. The area of the three discs is then the area of the larger
triangle plus ; i.e., the area is For
the case observe that is a proper
subset of , and hence

where for In fact, the above lower bound also
holds for and if we put where

, and Hence

P

We can now write

P

P

Combining this result with (21), we see that to establish the
last limit in (17), it suffices to prove that

P

To begin, write the expression on the left as

P (23)

The product on the left is bounded (it converges to
). Furthermore, we will show that

P (24)

Note that since , the above exponent is equal to
Using this fact and by substituting (24) in (23)

and using (20), we can upper-bound (23) by

(25)

Using the fact that for
and that we conclude that ,
which guarantees the convergence of (25) to zero, as desired.

We now establish (24). If , we let
denote the event that is a cluster; i.e., for

and for Now fix
We say that a partition of is -admissible

if the partition contains exactly sets of cardinality for
Let denote the set of all-admissible partitions.

Then

and

P P

The next step is to observe that , where denotes
the event that for all either or there
exist indices with

and
Now we can further write , where

With this notation, we can write

P P

Since the in are disjoint, it is easy to see that the
are independent. Hence, the probability on the right is equal to
a product of probabilities of the formP We claim that
P The claim then implies
(24). Now suppose (of course, ). Without loss
of generality, take and observe that

P P

As noted at the beginning of the appendix, for large

This establishes the claim.
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