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Asymptotic Distributions for the Performance
Analysis of Hypothesis Testing of
|solated-Point-Penalization Point Processes
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Abstract—The performance of the likelihood ratio test is a special case of the more general pairwise interaction point
considered for a many-point interaction point process featuring processes for which the joint probability density function (pdf)
a reduced number of isolated points. Limit theorems are proved of the points isonly a function of the distances between pairs
that establish the Poissonian asymptotic distribution of the log- - . S . . .
likelihood function for point processes with the isolated-point- of points [1]'. In C_erta'n applications, the 'r?ter_aculon mec,hamsm
pena”zation joint probabmty density function. The asymptotic betWeen pOIntS IS more Comp|ex than palrW|Se interaction. The
distribution is used to approximate the detection probability joint pdf in such cases not only depends on the distances
associated with the likelihood ratio test. The approximation is petween points in pairs of points but also on the distances
compared to empirical results generated using Markov-chain between points in larger groups of points (e.g., groups of three

Monte Carlo simulation. The reported results provide an efficient Il th ints). Such point ft f d
alternative method to simulation in assessing the performance of or even all the points). Such point processes are often referre

hypothesis testing for the point-process model considered. to as ma_n)"POim interaction point processes. For.eX_ample,
Index Terms—Detection probability, hypothesis testing, iso- certain minefield models [5], [6], assume that the likelihood

lated points, many-point interaction, point process, Poisson ap- of f'”d'”g an isolated minge 1s _IOW_' The Correfspondlng Jo_mt
proximation. pdf for this isolated-point-penalization (IPP) point process is a
function of distances between points in all groups of points [6].
It is often of interest to determine whether the points in
an observed point pattern are totally random. In minefield
ATIAL point processes are natural models for signatdetection, for example, totally random patterns are potentially
rising in many applications such as forestry, seismologglassified as clutter. If an alternative model (e.g., pairwise or
image analysis, and statistical minefield detection, where imany-point-interaction point processes) to the total random-
formation is represented by the number and the location méss hypothesis is available, then statistical hypothesis testing
points in Euclidean space [4], [11]. The simplest of all pointan be performed. Due to the complex nature of the joint pdf
processes is the Poisson process, for which, conditional @hinteraction point processes, exact performance analysis of
the number of points, the constituent points are independentlypothesis testing is generally intractable even in the simple
and uniformly distributed in a given region. The points, thugase of the Strauss process. Monte Carlo simulation and
exhibit no interaction, and the point pattern is often referred &pproximation theory have been extensively used in estimating
astotally random An important feature that may distinguishthe performance of hypothesis testing problems involving
one point process from another is whether the points exhibiteraction point processes [3], [9].
mutual interaction. For example, certain models for the spatialln this paper, we present an approximation to the detection
distribution of trees in a forest or the distribution of minegrobability for the IPP point process. In Section Il, we briefly
in a minefield assume that the presence of a point resultsdescribe the IPP process and indicate its applications in
an inhibition effect reducing the likelihood of the presence ahinefield modeling. In Section Ill, we present and prove a
other points in its vicinity. The Strauss process is a simptew theorem that establishes the Poisson approximation of the
example of such a point process for which the likelihood afumber of isolated points when the points are totally random.
realizations containing many pairs of points that are withifhis result is then generalized to the IPP process which is used
a certain fixed range is reduced [12]. The Strauss processdsestablish that the distribution of the log-likelihood function

of an IPP point process can be approximated by a Poisson
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Fig. 1. A 50-point realization of a totally randonY in the regionB = [0,10] x [0,10]. Isolated points are designated by circles. There are ten

isolated points(d = 1.0) in this realization ofX.

vector X can be thought of as a conditional point procesEhe penalization strengttd <~ < 1 is responsible for pe-
given that each realization of the point process has exactlynalizing realizations with many isolated points, aads a
points. By selecting the form qf, various interaction schemesnormalizing constant making a pdf. Clearly, wherc = 1,
between points can be generated. The pdf's consideredttie random variableX’;,i = 1,2,---,n, are independent and
this paper correspond to IPP many-point interaction poighiformly distributed in B, and the resulting point pattern
processes. Throughout the examples, we will assume tiatotally random. The parametefis called theinteraction

B =[0,10] x [0, 10]. All simulations are generated using thejistanceand it plays an important role in the hypotheses of
Markov-chain Monte Carlo algorithm reported in [8]. We willthe approximation theorems of Section lI.

now give a brief description of the IPP process. ) ) o
Example 1: Fig. 1 shows a 50-point realization of a totally

random pattern (i.e., drawn from the IPP pdf with= 1),
and Fig. 2 shows a 50-point realization &fsampled from an
We first give a precise definition of the number of isolategpp pdf withc = 0.3 andd = 1.0. Note that the number of
points. For a givend>0 andz = (x1,---,2,) € B", the jsolated points is reduced from ten in the case of the totally
number ofisolated pointsin z is defined by random pattern to only one in the case of the IPP pattern.
. L It is interesting to note that, as a result of the reduction of
I():=[{e: |lwi — 5|l > d, V5 # 4, i € A} (1) isolated points, there is a tendency for points to cluster. The

where A = {¢ € B: D(¢,d) C BY, D(¢,d) is the closed disc IPP model has therefore the potential for use in situations

of radiusd centered at, | E| denotes the cardinality of the Setwhen clustering is desirable. Note that it is always possible to

E, and||- || is the Euclidean norm. In wordg(x) represents define a function on the space of all point configurations whose

the number of isolated points in that are at least within a restriction to the space ot-point configurationgn > 1) is i
distanced away from the boundary aB. The IPP pdff on the IPP pdf. A point process with a random number of points

A. Isolated-Point-Penalization Point Processes

B" is defined by can then be defined by defining its distribution as the product
of the above function and a Poisson measure. Note that for
Flz) = 171(,;) + € B 2 ¢ < 1, a distribution defined in the above sense is always

z dominated by the Poisson measure. Therefore, an IPP point



HAYAT et al. ASYMPTOTIC DISTRIBUTIONS FOR THE PERFORMANCE ANALYSIS OF HYPOTHESIS TESTING OF POINT PROCESSES 179

10 T T T T T I T T T

++ |

units of distance
w
T
+
+

0 1 2 3 4 5 6 7 8 9 10
units of distance

Fig. 2. A 50-point realization of an IPR with ¢ = 0.3 andd = 1.0. The processX again takes values i® = [0, 10] x [0,10]. Isolated points are
designated by circles. Note that the number of isolated points is reduced from ten in Fig. 1 to one.

process with a random number of points is always well-definéilelihood ratio test for the hypothesis testing problem can
in a sense that its density with respect to the Poisson meadoeesimplified to

is integrable. This integrability feature is not inherent in many o
pairwise-interaction clustering densities [1], [7]. Iz")zy 4)
Hy

[ll. HYPOTHESISTESTING AND PERFORMANCE ANALYSIS where y is a specified detection threshold. For performance

In this section we consider the problem of binary hypothesiyaluation, we need to compute probabilities of the form
testing when the obs_e_zrved signal is a point process drawn P{I(X™) >y} (5)
from the IPP probability density function. We present two
limit theorems which are used to approximate the detectivhen X™ is either an IPP process or a totally random
probability under certain asymptotic conditions. Since thgrocess. The difficulty of this problem is due to the fact that
asymptotic results are established in the limit when the siggaluating the distribution of (X") is generally intractable.
of the region and the number of points both increases Tdis difficulty can be alleviated by determining the asymptotic
infinity, it is necessary to replace the observation regidn distribution of/(X™) and using it to approximate the detection
with a sequence of bounded sd8s,n = 1,2,---. EachB,, probability (5). We now proceed to establish the Poisson
is assumed to contain points. Furthermore, the set is approximation of/(X™).
replaced by the sequence

A. Poisson Approximation df( X"
A, = {€ € B,: D(¢,d) C B} 3) pp (X™)

It is intuitive to suspect that the asymptotic behavior of
Now let X™ = (X}, X%,---,X7") be a random vector I(X"), asn — oo, is ultimately governed by the way the
in B, and letH, denote the hypothesis thaf™ is totally area ofB,, increases as a function of the number of points
random. LetH; denote the hypothesis tha&™ is an IPP n it contains. In the case of a totally random process, for
point process. Note that the pdf in (2) along with the associatedample, if the area grows at a much faster rate thatihen
normalizing constant are dependentoriHowever, to simplify it is clear that7(X™) will diverge to oo since almost every

notation, this dependence is not explicitly expressed. Tpeint will eventually become isolated. On the other hand, if
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Fig. 3. The empirical estimate (dashed line) and the Poisson approximation (solid line) of the probability in (6)=fob0 andd = 1 when X™

is totally random, i.e.c = 1.

the area grows at a much slower rate tharthen we suspect and denseness conditions cannot be simultaneously satisfied
that I(X™) will converge to zero since the points will bein practical cases.
become tightly packed in the region. Interestingly, there is an

intermediate growth of the area for which the mead @X")

converges to a constant. We refer to the latter form of growmat ir X"

as thedenseness conditici be formally defined next. Lek
be Lebesgue measure in the plane.

Definition: For a fixedd >0, we say that the sequence Theorem 1:Suppose

of subsetsBy, B>, - -
parameteri if

1) lim,, ..o log (n/MN)u(B,,)/n = nd?;

2) lim, oo (An)/1(By) = 1, where A,, is defined in
(3); and

3) asn — oo, the number of disjoint discs of radius
contained inB,, diverges to infinity.

Remark: The denseness condition is satisfieddf, is a
square with areard’n/log (n/\).

., satisfies the denseness condition with1"s -

The following Theorem (see Appendix for proof) asserts
is totally randomly distributed and the denseness
condition is satisfied, then the distribution of the random
variable I(X™) is asymptotically Poisson.

that the random variables
-,X» are independent and uniformly distributed
in B, and that the sequendg,,,n = 1,2,---, satisfies the

denseness condition with paramet®r Then, the random
variable I(X™) converges in distribution, a8 — oo, to a
Poisson random variable with mean

In the examples to followp,, is taken to be thg0, 10] x
[0,10] square. The parameter can be evaluated using =
nexp (—mwd*n/100)-(1—d/5)2. The factor(1—d/5)? accounts
for the reduced area od,, in comparison taB,,.

Remark: The denseness condition is analogous to the Example 2:Figs. 3 and 4 compare the Poisson approxima-
sparseness condition introduced by Saunders and Funk [ti@ of the probability in (5) to the empirical estimate using
in the context of pairwise interaction (PI) point processe8000 samples of the totally random process /o= 50 and
Under the sparseness assumption, the mean number of pairs 75, respectively. The interaction distande= 1. The
of points (from a PI process) that are within a certain fixedalues for\ for the cases: = 50 andn = 75 are 6.65 and
distance converges to a constant. Furthermore, the asymptdties, respectively. These values af are found to be large
distribution of the number of pairs is Poisson. The sparseneswugh to show good approximation.
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The next theorem extends Theorem 1 to the case w¥fen As n — oo, Theorem 1 dictates that
has an IPP pdf Q?L(S) N exp{—)\(l _ GS)}
Theorem 2: Suppose thak™ = (X7, ---, X}}) has the IPP the mgf of a Poisson random variable with mearherefore,

pdf given in (2) and that the sequendg,,n = 1,2,---, Q% (s +log c)
satisfies the denseness condition with parameéteiThen, lim Qn(s) = lm ——"—="
I(X™) converges in distribution to a Poisson random variable e n—eo Qploge)
with meancA. = exp{—cA(1 —¢”)}
Proof: For eachn, let Q%(s):=E[¢*X")|Hy] denote which is the mgf of a Poisson random variable with mean
the moment-generating function (mgf) of the random variabte. O

I(X™) under the hypothesig/y, i.e., To illustrate the above result, the probability in (5) when

Q%(s) = u(B )—n/ NN the alternative hypothesis is an IPP pdf is computed using
™ HAEn B ' the above approximations and compared to empirical results

obtained using Markov-chain Monte Carlo simulation.
H,] denote the mgf of the

n
n

Similarly, let Q,,(s) :=E[e"!(X™)

random variable/ (X™) under hypothesig{,. Observe that Example 3: Consider the IPP model with parameters-
0.61, and d = 1.0. Figs. 5 and 6 compare the empirical
Qn(s) = i/ @) A=) g estimate of the probability in (5) using 5000 samples of the
#n JBp IPP process with the estimate obtained using the Poisson
_ 1 / d@lsHose] 7. approximation for the cases= 50 andn = 75, respectively.
Zn Jpn The values of the parametarare4.06 and2.78 for the cases
n n = 50 andn = 75, respectively.
:MQg(s—i—bgc) P Y
/ @ dg IV. SUMMARY
’33 Since direct evaluation of the performance of hypothesis
- M testing for the majority of interaction point processes is not

Q5 (loge) feasible, this paper was devoted to developing limit theorems
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Fig. 5. The empirical estimate (dashed line) and the Poisson approximation (solid line) of the probability in (5) when the alternative hypothesis is a
IPP pdf withe = 0.61,n = 50, andd = 1.0.

that are used to approximate probabilities that arise in théferential error bound. Also note that the first limit of
performance analysis for hypothesis testing of the isolatettte denseness condition implies tha{B,,)/n — 0 and
point-penalization many-point-interaction point process. Thbat n/;(B,)?> — 0. (This second fact follows because for
asymptotic distribution function of the log-likelihood function0 < e < wd? and for largen, p(B,) > (md*—e)n/log (n/A).)

is shown to be a Poisson distribution under certain asymptoticNext, using the identity

requirements, called the denseness condition. The denseness s 1[d .y N

condition relates the growth of the area of the observation AT e = n a@\ 'eT7) + A"

region and the number of points contained. The reportedsim le calculation shows that for a Poisson random variable
approximation performs well and uses only a fraction o?/ E \ the (k - 1th PR

the computing time required by Markov-chain Monte Carlo \.N't. meana, t e_( * )t. momentmy.1(A) := E[ ]

: . : . . atisfies the recursive relation

simulation. For example, running the simulation for Exampl%

3 required approximately 150 min on a SUN SPARC-20 mi+1(A) = Ami(A) +mi (V). (7
Workstation while the Poisson approximation was executgg particular, it follows from (7) thatry.1 (\)

| is a polynomial
in a few seconds. in X of degree(k + 1)

APPENDIX M1 (A) = A+ app1007 + -+ appr s A® XL (8)
PROOF OF THEOREM 1 It follows from (7) and (8) that
We begin with some preliminary observations. We will need o L i—23 2 )
the fact that for any positive integer the first denseness et 10 = Q=L T+ 10k, A A
condition implies that Note thatar,1 = ari = 1 for all k > 1. The key step
.o\ m—i in proving the Theorem is to show that for eaé¢h> 1
. . tmd .
lim n* <1 — —) =X (6)
This can be derived by taking logarithms and noting that Jim E[IH(X™)] = ma(A).
|log (1 + z) — x| < 222, |z] <1/2

We then invoke the standard method-of-moments result [2,
which follows from the Taylor series folog (1 + z) with p. 390, Theorem 30.2] which establishes the convergence of
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I(X™) to Y in distribution, asn — oc. To this end, observe For eachl < k < n and0 < i < k, let tgk)(n) denote the

that

I(X™) =3 1a,(X7
i=1

) I x(Ixr—x7ll/d)  (10)

J=1,j#i

wherel,(-) is the indicator function of a set, andx(-) =

1(1700)(-). Then

n

E[IM(X™)] =E| >

i1=1

Y LA (X)L, (X))

ip=1

T xg, - X211/

J17i1

o T xdixg, - x201/d)

n

JrFik

n

=D Y E| 1 (X)L, (X))

i1=1

=1

T <X = xz1/d)

J1Fi

T xUlxy = X2 /d) |-

JeFir

(11)

number of terms inz; + - -- + x,,)* that consist of exactly
¢ distinct factors (e.g.:p’2“_4x5x2 is a term consisting of three
factors). Using a simple combinatorial argument, it can be

shown that
1y =it )+ (n—i+ D () (12)

where

159 (n) =0

t7(n) =n

t7(n) =n

for all £ > 1, and t]@(n) = 0 wheneverj >4. (The idea
behind (12) is that each term with exactiydistinct factors
in (1 4 --- +z,)* will result in ¢ terms each with distinct
factors oncdz+- - -+z,,)* is multiplied by(z;+- - -+z,); on
the other hand, each term with exacihy 1 distinct factors in
(x1+- - -+x,)* will generaten—i+1 terms each witti distinct
factors as a result of the multiplication.) It is also true that for
eachl <k <nandi <k, tgk)(n) is a polynomial of degregé
in n. (This can be proven inductively (if) using (12).) Using
(12) and (9), and the fact tha&k)(n) is a polynomial inn of
degreet, it can be easily shown inductively that

9 (n) = ain’ + 1, (n) (13)

Wherelgf)]L is a polynomial of degree at most- 1 in n.
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Using the independent and identical distribution (i.i.dand thus
assumption of the sequende”}”_, along with the above

nd® \"T" p(An)
notation, (11) can be simplified to P(TLNFM) = <1 — m) LERAn)
w(By

(X)L (X H From this last expression, it follows that
J1#l lim nP(7y NFT') = A =my (k).

k

ELF(x™] =Y tM(mE |1

=1
x(IXG, = X{l/d)
n To generalize the above limit to the case 2, we partition
.. H x(|| X7 — X"||/d)]] (14) the setZ; N F*, and write
Ji ? :
dirti P(TNFP) =P(LNFF NF) +P(TNF N (FH)

We now intr me even in th Iculation
€ no troduce some events to be used in the calcu at\c/)vherej’-“Z is defined below. We also rewrite the first term on

of (14). The event that tiie firgtpoints are in4,, is the right as
Tii= ({X} € Au}. P(T; N FI A F) = P(EN|T; 0 FOP(ET)P(T,).
"o - " . . In particular, the above partition and conditioning becomes
The event thatX;" is isolated fromXy; for k < j, k # ¢ s useful in estimating the probability(Z; N F}*) if we let FY
denoted by be defined ag’/ except that is replaced by2d; i.e.,
{IXE — X2 > d} o o on
k§Q¢i F = ﬂ X — X7 > 2d}.

k<g, ki
Note that7; and £ depend onn. This dependence is not ﬂen fori = 2,---,k, put
indicated in the notation here and below. The event that eac
of the firsté points is isolated with respect to all of the other F=Fn---NF.

n — 1 points is written as ] ]
Recall that the evenf}" is the event that each of the first

Fl=F'n--NEY points is isolated (distancé) with respect to the remaining
n — 1 points, whereasF’ is the event that each of the first
1 points is isolated (distanced) with respect to the other

ﬂ < ﬁ R X"||>d}> (15) ¢+ — 1 points. (The idea is that the conditional probability
T Nk . I

which can be simplified to

P(FP|T:NF") is easy to calculate since it is, roughly speaking,
o . _ the probability of randomly scattering—¢ point in the region
In any case, théth expectation in right-hand side of (14) is4,, with i disjoint discs, each with radiug removed from it.)

k=0+1

simply P(Z; N F7), i.e., Of course,P(7;) = [u(An)/(B,)]) — 1 asn — co. For
1 > 2, we show a little later that a8 — o~
E[I*(X™)] Zt(k) P(T; N F7). (16) P(FT) — 1
n'P(FPTGNF) — X\

The i = 1 term is

P(FFNT N (F)) —0. 17
K9 (P(T (1 F7) = nP(Ty 0 7). REERT) =0 0

] ) i Using these limits, it further follows that for < ¢
Since7; = {X}' € A,} is an event depending only oK7, ‘
we can write lim #/P(T;NF7) = lim n'P(TiNF})

S =0 ()
P(TL N ) = / P(FLIX]) dP
Ty

Upon substituting (13) into (16), and applying the limit results
in (17) and (18), we conclude that

k

Next, sinceF] = Fr° —ﬂZ ANXE — X7 >d}

ol as desired.

= H P(||X3 — || > d). The final step in the proof of the Theorem is to establish
k=2 the limits in (17). This is quite lengthy, and it requires the

Now, since the above integral is ovér = {XI' € A,}, we remainder of this appendix. The convergenceP(F|7;) to
only need to consider € A,,. For suchz we have 1, for ¢ = 2, can be proven by conditioning on the location

2\ of X1, and the convergence feér> 3 is proven by induction
P(FRIXP =) = <1 — 7r_> and by conditioning on the number of points that have no
1(Bn) neighbors within a distancad.
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With respect toP(F?*|Z; N F'), observe that fom large We can now write(F?)° as the disjoint union
enough so thaB,, can contairi disjoint discs each of radius

d (ie., 7' # @), the independence and uniformity of the (F) = U Viveii-
distributions of of X;, 1, ---, X,, imply that Jiredingisiel
P(FI|T; mjzvz) Note that it is ‘not possible to havi; :_i_— 1, since_then
there would be — 1 clusters, each containing one point. The

course, can contain at most one point, contradicliig= i—1.
Hence, the above union can be simplified to

B (1 - M—;f)) Fr=" U Vi

Jisdi 1 Si—2

. P<ﬁ < ﬁ (IXr = X7 > d}) T mﬁ) remaining point would belong to some other cluster, which of
- T Ak

f=1 \k=i+1

(Note how the lower limit of the inner intersection has .
changed compared with (15). This simplification follows belVe can now write

cause the omitted sets have conditional probability one; nOtB(T nFr N (Jf,_—Z) )= P(Z;NFrOV),..))
that {|| X7 — X7[|>2d} C {||Xp - Xp||>d}.) Using (6), o Z Z e
we obtain T 21)
nlgr;on PIFIITNF) =A% We now turn to the calculation of
We now show that for > 2 P(T, NF N Vj,..))) (22)
g i R E
nh_I)IOlOTL P(FINT;N(FH))=0. 19 \write

For a given set of > 2 points{z1,zo,---,z;}, we say that P(TiNFr AV ) :/ P(FRIXT, -, XI) dP.
the pointsze, z.,, 1 < ¢, m < i, are related by the relation Lo i, T

if either ||z, — z,»|| < 2d, or there exist distinct points .
ConsiderP(F| X = 1, -+, X]* = z;), where for the pur-

Ty, @y, €@, 2 P\ @, T poses of bounding the above integral, we can restrict attention
to the case where,---,z; each belong ta4,,, N, = 7.,
such thatl|z; — ;[ < 2d 1<7r<i,Ny <i—2,5_ rj, =14, and||z¢ — zp|| > d for
g, — 2l < 2d, -, ||, — ;.|| < 2d 1<4, m<i. It now foIIows thatP(j’-""|X1 =z, -, X'=x;)

) is upper-bounded by
and ||z;. — z,|| £ 2d. We write z; ~ z,, to express the

above relation. Clearly;- defines an equivalence relation on T
the set{z1,x2,---,2;}, and hence, it induces a partition of [ <U{X7+1 € D( xé’d)}ﬂ

the set. LeC be the collection of equivalence classes induced

by ~ (i.e., if C € C, then for anyz;, x,, € C, x5, ~ xr, and To get an upper bound on this last expression, we need a
furthermore,z; # x; andz,, # =; for all z; ¢ C). It may lower bound on the probability of the union. By partitioning

be helpful to think of an equivalence claSsas a “cluster” of {X7 ... X"} according to the equivalence classes intro-
points. Note thatl < |C| < é. Now for1 < j < ¢ let duced previously, we can write the above probability of the
union as

=H{C e |0 =}

i.e., V; is the number of equivalence classes that contain p Xr, € U U <U D(x,d)})

exactly j points. Clearly (=1 cecCl=t \weC
i: IN = (20) Note that if- and«’ belong to different equivalence classes,
J thenD(z,d) and D(2’, d) are necessarily disjoint. Hence, we
can write

Note that if we now repeat the partitioning process with the
set{z1,z2, -+, x; } replaced with the set of random variables P<U{X7+1 e D( xz,d)}>
{X7,X%,---, X7}, then the quantityv;, 1 < j < ¢, becomes
a random variable. By recalling that the evéfitis the event i
that each of the first points are2d—isolgted with respect to = Zﬂp<{ S U })
the otheri — 1 points, we observe that” = {N; = 4} and
(FOYe = {N; <i—1}.

We now introduce some events which will be useful
the calculation ofP(F N7; N (F¥)¢). For1 < £ < 4 and
1< je <ilet

zCCy

”){vhere foré = 1,---,i, Cy is some equivalence class con-
taining ¢ points. Note that in the case where there is more
than one equivalence class for a givénit is not important
which of the equivalence classes (each withoints) actually
Vieso ={N1 =71, -, N; = j; }. Cy is. (Also note that since all the discs have centersijn
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the discs lie entirely irB,,.) We can now write the probability Using the fact thab; = 3,6, > 4,63 >5,6,>0for1 < £ < ¢,

of the union as and thatj; < ¢, we conclude thati_, [1 —0.25(¢+6;)]j, <0,
i N(U D d)) which guarantees_the convergence of (25) to zero, as desired.
Z‘” 2€CY L We now establish (24). IV C {1,---,i}, we let Ew
—1 1(Bn) denote the event thaf X' ,» € W} is a cluster; i.e., for

7, s € W X!~ XP and fors € W, X' + X7. Now fix
We now I_owe_r-boungl the argaUsec, D(z,d)). For&=1, ;. \ve say that a partition ofl,-- -, i} is j-admissible
this area is simplyrd”. For £ = 2, we use the fact the centersit y,o natition contains exactly, sets of cardinalityr for
of the two discs are at least units apart to obtain a lower . _ | " .| ot S denote the set of af-admissible partitions.
bound which is strictly greater thanswd?. For the casé = 3, tpenq

the area of the union of the three discs is minimum when the

centers of the discs are the vertices of an equilateral triangle Vigi = U ﬂ Ew

of side lengthd. This triangle can be circumscribed by a larger oS Wek

equilateral triangle of side lengtkd, where the midpoints of

the sides of the larger triangle are the centers of the thré@d

discs. The area of the three discs is then the area of the larger
triangle plus3 - § 7d?; i.e., the area iv/3 + 1.57) d?. For PWVjeg) < D PL () &w -
the casel < ¢ < ¢, observe that,cc, D(z,d/2) is a proper Kes  \wek

subset ofUzecc, D(z,d), and hence
The next step is to observe th&y C &£;,, where&j;, denotes

2 the event that for alt, s € W, either|| X?—X7|| < 2d or there
”( U D(x’d)> 2 (E+dgmd"/4 existindices,---,r, e W, p< |W|!2, with ||)|(|,’}—X,,"1 || <2d,
e |15 —Xp || <2d, o 1K) X0 || <2d, and||X X7 <
where for/ > 4, 6, > 0. In fact, the above lower bound also2d. Now we can further writetj,, C &, where
holds for¢ = 1,2, and3 if we put §; = 3,62 = €(d) where

e(d) >4, andés = 3 + 4v/3/7. Hence &= () {IX} = X2 < (W] - 1) - 2d}.
. . r,sCW
¢ n EZ: ]é(f —+ 64)7rd2/4
P<U{Xi+1 € D(xbd)}) > == 1(B,) . With this notation, we can write
[zl n

We can now write P< ﬂ 5W> < P< ﬂ 5{4/)'
P(ZiNFE N Vi) rer rer

n—i

i ‘ ad? Since theW in X are disjoint, it is easy to see that tig,
1= [ >t +80)/4 s) P(Z:NVj,..;)- are independent. Hence, the probability on the right is equal to
t=1 " a product of probabilities of the forma(&jj,). We claim that

Combining this result with (21), we see that to establish tH{€i-) < consts [(logn)/n]"I=t. The claim then implies
last limit in (17), it suffices to prove that (24). Now suppos¢W| = r (of course,r < ). Without loss

‘ of generality, takéd? = {1,---,r}, and observe that
. ! wd?
= (>0 4 —
K [ < jelt+d0)f ) 1(Br)

{=1

<

n—i

P(I N V'1 7) — 0 r—1
o P(&w) SP(ﬂ{IlX.?—X,’fII S2d(r—1)}>
s=1

To begin, write the expression on the left as

i . @ d?
n2emy (/4 [1 —~ <Z Je(€ + 65)/4> —u7(rB ]
=1 "

i St O R(T A V). (23)

As noted at the beginning of the appendix, for large

1(Bp) > n(rd? — €)/log (n/\).

The product on the left is bounded (it converges to ) )
ATi—uie(6+90)/4) | Furthermore, we will show that This establishes the claim. O

logn | e (¢~ ACKNOWLEDGMENT
P(Vj,...j;) < consty <—> . (24)
" The authors thank both reviewers for evaluating this lengthy

Note that sinceZi_, £j, = 4, the above exponent is equal tgnanuscript so quickly (about five months)! In particular, the
i— i e Using_this fact and by substituting (24) in (23)authors are grateful to the second reviewer for an unusually
and u[;hg (20), we can upper-bound (23) by careful and meticulous reading of the manuscript, which

_ ' _ ) ' revealed a number of typos and places where some clarification
consty (logn)e=e(Die it [1-0-25(480)]e (25) was in order.
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