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Then, for two arbitrary integers i1, i2 in 1 � i1; i2 � bn
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If we perform the above reordering and averaging process repeatedly,
then the difference of two arbitrary elements in the set eventually re-
duces to zero. This completes the proof.

E. Proof of (23)

E[Pp(�pj���)] can be regarded as the PEP when all the eigenvalues
are equal to (�p)

1=n . Substituting each �i by (�p)
1=n in (5), we

get

E[Pp(�pj���)] =
1

�

�=2

0

1 +
(�p)

1=n 
s

4 sin2 �

�n n

d�: (41)

In addition, Jm(c) in (8) can be rearranged into [12]

Jm(c) =
1

�

�=2

0

1 +
c

sin2 �

�m

d�: (42)

Therefore, combining (41), (42), and (7), we can easily show that
E[Pp(�pj���)] = PB(�p).
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Detection of Constrained Subspace Signals in Additive
Infinite-Dimensional Interference and Noise

John A. Gubner, Member, IEEE, and Louis L. Scharf, Fellow, IEEE

Abstract—The detection of constrained subspace signals in additive
infinite-dimensional interference and noise is motivated by consideration
of multipath-Doppler channels subject to interference from partially
overlapping frequency bands of other sources. Since the interference lies
in an infinite-dimensional subspace, the standard method of projecting
onto the subspace containing the signal plus interference does not yield a
finite-dimensional detection problem. However, an alternative approach
may be used to extract the appropriate finite-dimensional problem.
Moreover, an energy constraint may be imposed on the desired signal.
The generalized likelihood-ratio receiver for this problem is obtained,
and expressions for its average probability of error are given.

Index Terms—Energy constraints, magnitude constraints, matched sub-
space detector.

I. INTRODUCTION

Consider a communication system in which the received waveform
is

y(t) = a(t) + b(t) + n(t)

where a contains the desired signal, b is an interfering signal, and
n is additive white Gaussian noise. Detectors based on waveform
observations are usually derived by extracting a finite-dimensional
coefficient vector based on the projection of the receivedwaveformonto
the subspace containing the desired signal as well as the interfering
signal. This is straightforward if the interfering signal lies in a
finite-dimensional subspace, as in the decorrelating detector for a
code-division multiple-access (CDMA) system [2] or the matched
subspace detector [7], [8]. Suppose, however, that the interfering
signal b is known only to lie in a frequency band which partially
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overlaps that of the signal a. In this case, the subspace containing
a and b is infinite dimensional, and the standard approach will not
result in a finite-dimensional coefficient vector.

In an M -ary communication system, the sender transmits a signal
si(t) to convey message i. If si is band limited to W and subject to
multipath, then the signal a at the receiver may be modeled as

a(t) =

D

l=0

hlsi(t� l=2W )

whereD is proportional to the product ofW and the channel multipath
spread, and the hl are the delay coefficients [6]. When the coefficients
hl are unknown, we can view the modulator-plus-channel as a subspace
modulator. In other words, from the receiver’s point of view, to send
message i, the modulator transmits an arbitrary waveform from the ith
signal subspace

spanfsi(� � l=2W ); l = 0; . . . ; Dg:
In this context, the arbitrariness of the coefficients hl is imposed by the
channel. On the other hand, randomization of the coefficients has been
proposed as an intentional part of the modulation process under the
names “stochastic process shift keying” [4] and “stochastic multipulse
PAM” [5].

To simplify the notation and to emphasize that the analysis here is not
specific to the case of a band-limited signal subject to multipath and to
overlapping-frequency-band interference, we use the generic subspace
signal model

a(t) =

p

k=1

uk ai;k(t)

where ai;1; . . . ; ai;p are linearly independent waveforms. Although
the coefficients uk are unknown, we assume that they satisfy an energy
constraint; e.g.,

k
jukj2 � E . Constraints of the form maxk jukj �pE are considered in Appendix A.

To summarize, although the detection of subspace signals in sub-
space interference and noise has been studied previously, what is new
here is the fact that there is an energy constraint on the signal coeffi-
cients and the fact that the interference subspace is allowed to be infi-
nite-dimensional. In this context, we derive the generalized likelihood
ratio detector, and we analyze its average probability of error. Thus,
our results generalize all prior results on M -ary subspace detection in
subspace interference and noise.

II. PROBLEM FORMULATION

LetX be a complex inner product space equipped with inner product
h�; �i and corresponding norm k � k. Consider the following M -ary de-
tection problem. For i = 1; . . . ;M , the ith hypothesis is

Hi : y = a+ b+ n; kak2 � Ei; a 2 Ai; b 2 B (1)

where Ai � X is the ith signal subspace, B � X is the interfer-
ence subspace, andn is zero-mean, white Gaussian noise. (Throughout
the correspondence, Gaussian random vectors and processes are under-
stood to be complex valued and proper (circularly symmetric) [3].) The
notation we use subsumes the following cases.

• When X = N , we assume that n is a zero-mean Gaussian
random vector with covariance matrix �2I ; i.e., the components
of n are independent random variables with zero mean and vari-
ance �2.

• When X = `2, we assume that n is a sequence of independent
Gaussian random variables with zero mean and variance �2.

• When X = L2, we assume that n is a zero-mean, wide-sense-
stationary Gaussian noise process with correlation function

Rn(t1; t2) := E[n(t1)n(t2)] = �2�(t1 � t2)

where � is the Dirac delta function, and the overbar indicates the
complex conjugate.

Remark 1: By allowing Ei to vary with i, the model can accommo-
date different subspaces subject to different amounts of attenuation as
in frequency-shift keying over a frequency-selective channel.

It is convenient to generalize the constraint as follows. For each
hypothesis Hi, let ai;1; . . . ; ai;p be any basis for Ai, and define the
operator Ai : p ! X by

Aiu :=

p

k=1

uk ai;k; u = [u1; . . . ; up ]0 2 p :

The operator Ai establishes a one-to-one correspondence between
every a 2 Ai and every u 2 p . This suggests the new hypothesis
testing problem

Hi : y = Aiu+ b+ n; kuk2Q � Ei; u 2 p ; b 2 B (2)

where kuk2Q := uHQiu, and Qi is any pi � pi positive-semidefinite
matrix.

Remark 2: The adjoint of the operator Ai : p ! X is the oper-
ator A�i : X ! p defined by [1, p. 161]

A�i x =

hx; ai;1i
...

hx; ai;p i
2 p : (3)

Then A�iAi can be identified with the matrix whose j k entry is
hai;k; ai;ji. Since kAiuk2 = kuk2A A , taking Qi = A�iAi shows
that the original problem (1) is a special case of (2).

Remark 3: Constraints of the form max1�k�p jukj �
pEi are

considered in Appendix A.

III. ELIMINATING THE NUISANCE PARAMETER AND MAKING THE

PROBLEM FINITE DIMENSIONAL

The problem in (2) suffers from two difficulties. First, it involves the
nuisance parameter b (possibly belonging to an infinite-dimensional
subspace), and second, the measurement y is in general an element of
an infinite-dimensional space, e.g., L2. If B were finite dimensional,
then the standard way to convert the infinite-dimensional measurement
y into an equivalent, finite-dimensional coordinate vector would be to
project y onto the finite-dimensional subspace

A1 + � � �+AM + B

and to work with the coordinate vector of the projection. In our case,
since we allowB to be infinite dimensional, the standard approach does
not work. The standard approach also suffers from the defect that it does
not eliminate the nuisance parameter b. In the following, we present
a way around both of these difficulties at the same time. In order to
accomplish this, we first need a few facts about orthogonal projections.

For B a subspace of X , let PB denote the corresponding orthogonal
projection operator onto B. If B is infinite dimensional, we assume
it is closed, and we assume X is a Hilbert space. These assumptions
guarantee the existence of PB . Projection operators have two proper-
ties that we use repeatedly. First, they are self-adjoint, i.e., P �B = PB ,
and second, they are idempotent, i.e., PBPB = PB . The orthogonal
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complement of B is denoted by B?, and its corresponding orthogonal
projection operator is denoted by P?

B . Note that P?
B = I �PB , where

I is the identity operator.
Write y in (2) as

y = Aiu+ b+ n = P
?

B Aiu+ PBAiu+ b+ n:

Since PBAiu 2 B, and since b 2 B is arbitrary, (2) is equivalent to

Hi : y = P
?

B Aiu+b+n; kuk2Q � Ei; u 2 p
; b 2 B: (4)

Observe that P?
B Aiu is an element of the ith interference-free signal

subspace,

Gi := fP?

B a : a 2 Aig: (5)

The sum of all the interference-free signal subspaces is

G := G1 + � � �+ GM :

Since P?
B Aiu 2 Gi � G, and since G � B?, applying PG to y in

(4) yields PGy = P?
B Aiu+PGn; i.e., the operator PG zero forces the

interference b. Next, observe that the signals

y := PGy = P
?

B Aiu+ PGn and y := y � y = b+ P
?

G n

have the following three properties:

i) y is a function of y;
ii) y and y are independent under all hypotheses (since the noise

terms are Gaussian and uncorrelated);
iii) the distribution of y does not depend on the hypothesis.

It then follows that the optimal detector depends only on y [10,
pp. 299–300].

A further simplification is possible. Let g1; . . . ; gp be an or-
thonormal basis for G, and define the operator G: p ! X by

Gu :=

p

j=1

uj gj ; u = [u1; . . . ; up]
0 2 p

: (6)

The adjoint of G is the operator G� : X ! p given as in (3), and
PGy = G(G�G)�1G�y [1, pp. 160–161]. Furthermore, since the gi
are orthonormal, G�G = I and PG = GG�. If we put y := G�y, then
y := PGy = Gy. SinceG�y = y, we see that y and y are equivalent in
that each is a function of the other. Hence, rather than design the optimal
detector based on the waveform y, we base it on the coordinate vector
y. If we put n := G�n, then (4) is equivalent to the coordinate-vector
detection problem

Hi : y = G
�
P
?

B Aiu+ n; kuk2Q � Ei; u 2 p (7)

where n is a p-dimensional, zero-mean, Gaussian random vector with
covariance matrix R := �2G�G = �2Ip.

This completes our conversion of the waveform channel (2) into the
coordinate-vector channel (7). In the coordinate-vector channel, the in-
terference b has been zero forced by the projection PG . The signalAiu
has been projected onto B? and resolved onto the basis fg1; . . . ; gpg
of G.

Example 1: For i = 1 and 2, take Ai to be the one-dimensional
subspace Ai = spanfaig, where the complex waveforms a1(t) and
a2(t) are the inverse Fourier transforms of a1(f) and a2(f) shown at
the top in Fig. 1. Observe that h a1; a2i = 0, and by Parseval’s equa-
tion, ha1; a2i = 0 too. Thus, the signal subspaces A1 and A2 are or-
thogonal. For the interference subspace B, we take the set of high-pass
waveforms whose Fourier transform is zero for jf j � 1. Then B? is

Fig. 1. Fourier transforms of signals (top) and of their projections (bottom) in
Example 1.

the set of low-pass waveforms that are band limited to jf j � 1; i.e.,P?
B

is just a low-pass filter. It follows that (P?
B a1)(t) and (P?

B a2)(t) are
the inverse Fourier transforms of (P?

B
a1)(f) and (P?

B
a2)(f) shown

at the bottom in Fig. 1. Observe that

hP?

B a1; P
?

B a2i = h(P?
B
a1); (P?

B
a2)i = 1

and so G1 = spanfP?
B a1g and G2 = spanfP?

B a2g are not orthogonal
subspaces, although they are linearly independent; i.e., G1\G2 = f0g.
Furthermore, since the Gi are one-dimensional, computation of PG is
trivial. We have

PG y = y;
P?
B ai

kP?
B
aik

P?
B ai

kP?
B
aik

:

Because kPG yk2 appears later, we also note that

kPG yk2 =
hy; P?

B aii
2

kP?
B
aik2

where kP?
B a1k

2 = 2 and kP?
B a2k

2 = 1 in this example. The inner
product hy; P?

B aii can be realized by sampling at time t = 0, the
output of the matched filter whose transfer function is the complex con-
jugate of (P?

B
ai)(f).

IV. THE DETECTOR DECISION RULE

Let f denote the complex, proper (circularly symmetric), zero-mean,
multivariate normal density with covariance matrixR; i.e., for complex
Gaussian random vectors [3, p. 122]

f(y) =
e�y R y

�p detR
; y 2 p (8)

where the superscript H denotes the complex conjugate transpose. The
density of y under hypothesisHi in (7) is f(y�G�P?

B Aiu), whereu 2
p and kuk2Q � Ei. Since the value of u is unknown, we replace it

by its maximum-likelihood estimate underHi. We denote this estimate
by ui, and put

g
i
:= G

�
P
?

B Aiui:
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We now decide in favor of Hi if i is the smallest integer among
1; . . . ;M such that

�if(y � g
i
) � �jf(y � g

j
); j = 1; . . . ;M

where �i is the a priori probability that message i is sent. This is a
generalized likelihood-ratio test (GLRT), or empirical Bayes test.

Because of the Gaussian form of f , and because the covariance
matrix R = �2Ip is proportional to the identity matrix, the above
inequality is equivalent to

Li � Lj + �ij

where

Li := Reh y; g
i
i �

kg
i
k2p

2
(9)

k � kp is the Euclidean norm on p, and

�ij := (�2=2) ln(�i=�j):

In the case �i = 1=M for all i, �ij = 0 for all i and j.
To gain further insight into the structure of Li, it is convenient to

rewrite it in terms of the original observation y. With regard to the inner
product in (9), write

h y; g
i
i = hG�y; G�P?B Aiuii

= hy; PGP
?
B Aiuii; since GG� = PG

= hy; P?B Aiuii; since P?B Aiui 2 G

= hPG y; P?B Aiuii; since P?B Aiui 2 Gi:

Similarly, kg
i
k2p = kuik

2

A P A
. Hence,

Li = RehPG y; P?B Aiuii �
kuik

2

A P A

2
: (10)

We next turn to the problem of computing ui, the maximizer of
f(y � G�P?B Aiu). Due to the Gaussian form of f and the fact that
its covariance matrix is R = �2Ip, ui is the solution of

min
kuk �E

ky �G�P?B Aiuk
2

p: (11)

In general, there is no closed-form solution. However, this is a quadrati-
cally constrained least squares problem that is readily solved by numer-
ical methods once the orthonormal basis used to constructG� is given.
However, as we now show, ui can be found without constructing G�

and without computing y = G�y. Write

ky �G�P?B Aiuk
2

p = kG�(y � P?B Aiu)k
2

p

= kPG(y � P?B Aiu)k
2

= kPGy � P?B Aiuk
2

= kPGy � PG PGyk
2

+ kPG PGy � P?B Aiuk
2

=kPGy � PG PGyk
2

+ kPG y � P?B Aiuk
2 (12)

where we have used the fact that P?B Aiu 2 Gi � G. Since only the
last term involves u, solving for ui is equivalent to solving

min
kuk �E

kPG y � P?B Aiuk
2: (13)

This shows that ui depends on y only through PG y. Combining this
fact with (10) yields the following result.

Theorem 1: The statistic Li depends on y only through PG y, the
projection of y onto the ith interference-free signal subspaceGi. Hence,
the receiver statistic is a zero-forcing or decorrelating detector.

Formula (13) is again a quadratically constrained least squares
problem that is easily solved by numerical methods. For example, the
Lagrangian for the quadratically constrained least squares problem in
(13) is

Lagr(�; u) = kPG y � P?B Aiuk
2 + �(kuk2Q � Ei)

where the scalar � is the Lagrange multiplier. Using the Kuhn–Tucker
sufficiency theorem [9, p. 60], it is easy to see that

u = [�Qi +A�iP
?
B Ai]

�1A�iPG y (14)

solves (13) if � � 0 is chosen so that

kuk2Q � Ei and �(kuk2Q � Ei) = 0: (15)

We assume here that either Qi > 0 or Ai \ B = f0g. Note that since
ai;1; . . . ; ai;p is a basis, A�iAi > 0; hence, this natural choice for Qi

is positive definite. When � = 0 and Ai \ B 6= f0g, u is understood
to be the minimum k � kQ -norm solution of P?B Aiu = PG y. We also
point out that since PG Ai = P?B Ai, (14) can be rewritten as

u = [�Qi + A�iP
?
B Ai]

�1A�iP
?
B y: (16)

Remark 4: Equation (16) suggests some simplification is possible
if we choose Qi = A�iP

?
B Ai. This choice of Qi amounts to con-

straining only the signal energy that lies in interference-free subspace
B?. We show later that for Qi of this form, u can be found by in-
spection. It is important to note two situations in which the assumption
Qi = A�iP

?
B Ai entails no loss of generality.

i) If Ai is one dimensional, then Qi and A�iP
?
B Ai are positive

constants, and kuk2Q � Ei can always be rewritten as

kuk2A P A � Ei(A
�
iP

?
B Ai)=Qi = EikP

?
B ai;1k

2=Qi:

ii) If the ith constraint is inactive (Ei = 1), then in (13)

fu : kuk2Q <1g = p

no matter how Qi is chosen.

V. THE AVERAGE PROBABILITY OF ERROR

A. Notation and Preliminary Observations

Let

G
i
:= G�(Gi)

denote the image of Gi under the mapping G�. Then instead of the
calculations in (12), use the fact that G�P?B Aiu 2 G

i
to write

ky�G�P?B Aiuk
2

p = ky�PG yk2p + kPG y�G�P?B Aiuk
2

p: (17)

Observe that the first term on the right does not depend on u. Hence,
the solution of (11), ui, depends on y only through PG y.

Next, construct a matrix Gi whose columns are given by any or-
thonormal basis for G

i
. Then PG = GiG

H
i , andGH

i Gi is the identity
matrix of size equal to dimG

i
.

Lemma 2: We have dimG
i
= dimGi, and dimGi � pi, with

equality if and only if Ai \ B = f0g.

Notation: Rather than introduce a new symbol fordimG
i
, we abuse

notation and denote dimG
i
by pi.
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Proof of Lemma 2: We first argue that dimG
i
= dimGi. Since

Gi � G, it is easy to see that for x 2 Gi,G�x = 0 implies x 2 G\G?
and is therefore the zero vector. Hence, any linearly independent set in
Gi is mapped by G� into a linearly independent set in G

i
.

Similarly, since fai;kgpk=1 is assumed to be a basis for Ai,
fP?

B ai;kgpk=1 are linearly independent if and only ifAi\B = f0g.
Theorem 3: The statistic Li depends on y only through GH

i y.
Proof: Since PG y = GiG

H
i y, it now follows that ui is a func-

tion of GH
i y. Furthermore, writing the inner product in (10) as

hPG y; P
?
B Aiuii = hPGPG y; P

?
B Aiuii

= hGG�
PG y; P

?
B Aiuii

= hG�
PG y; G

�
P
?
B Aiuii

and using the easily verified fact that G�PG = PG G�, we have

Li = RehPG y;G
�
P
?
B Aiuii �

kuik2A P A

2
:

Since ui is also a function of PG y = GiG
H
i y, Li depends on y only

through GH
i y.

B. Calculations

Let PCji denote the conditional probability of a correct decision
given that message i is sent. Then the average probability of error is

Pe =

M

i=1

(1� PCji)�i = 1�
M

i=1

PCji �i:

Hence, it suffices to compute

PCji = P Li � max
j 6=i

[Lj + �ij ]

where each Lj is a function of GH
j y and y is given by (7); i.e., y is

a p-dimensional, Gaussian random vector with mean G�P?
B Aiu and

covariance matrix �2Ip. Since each Lj is a function ofGH
j y, we write

Lj(G
H
j y) to make this dependence explicit. We then have

PCji := P Li(G
H
i y) � max

j 6=i
[Lj(G

H
j y) + �ij ] :

Let fi denote the density ofGH
i y, which is a pi-dimensional, Gaussian

random vector with meanGH
i G

�P?
BAiu and covariance matrix �2Ip .

Then

PCji= P max
j 6=i

[Lj(G
H
j y)+�ij]�Li(�) G

H
i y=� fi(�)d�: (18)

Since the GH
j y, j = 1; . . . ;M are jointly Gaussian, so is the condi-

tional distribution of the fGH
j y; j 6= ig given GH

i y = �, and it is
therefore straightforward to determine. Once the conditional density
of the fGH

j y; j 6= ig given GH
i y = � is known, it is possible in prin-

ciple to compute the conditional probability in (18).

VI. SPECIAL CASES

Example 2 (Orthogonal Subspaces): If the subspacesG
j
are orthog-

onal, then the random vectors GH
j y are independent. We then have

PCji =
j 6=i

FL ji Li(�)� �ij fi(�)d� (19)

where FL ji denotes the cumulative distribution function of the real-
valued random variableLj(GH

j y) under hypothesisHi. In general, the

GH
j y are not independent under Hi. However, if there is no interfer-

ence; i.e., B is the zero subspace and B? = X , and if the Ai are
orthogonal, then the desired independence can be easily arranged.

Example 3 (Binary Signaling): In this case, if i = 1 in (18), we get

PCj1 = P L2(G
H
2 y) � L1(�)� �12 G

H
1 y = � f1(�)d�: (20)

One of the difficulties with (18), and even (19) and (20), is that we
do not have an explicit formula for theLj(�). However, examination of
(16) and Remark 4 following it suggests we consider the special case
Qi = A�iP

?
B Ai. For this choice of the Qi, we do not need Lagrange

multipliers, and as noted in Remark 4, in some cases, this entails no
loss of generality.

Writing (13) with Qi = A�iP
?
B Ai, we have

min
kP A uk �E

kPG y � P
?
B Aiuk2

or equivalently

min
v2G :kvk �E

kPG y � vk2:

This is the problem of projecting the point PG y 2 Gi onto the closed
ball of radius

pEi in Gi. The optimal value of v is

vi =
PG y; if kPG yk2 � EipEi P y

kP yk
; otherwise.

Substituting g
i
= G�vi in (9) yields

Li =
kP yk

2
; if kPG yk2 � EipEikPG yk � E

2
; otherwise.

(21)

We thus have an explicit formula for the function of PG y asserted in
Theorem 1. In fact, Li depends on PG y only through its energy.

Remark 5: If the constraints are inactive, i.e., all Ei = 1, we have
the unconstrained matched subspace detection problem of [7], [8] gen-
eralized from 2 to M hypotheses. In this case, we decide in favor of
message i if

kPG yk2 � kPG yk2 + 2�ij ; for all j

which is the unconstrained matched subspace detector. We also note
that even with all Ei =1, our derivation here is more general than that
in [7], [8] because we allow the interference subspace B to be infinite
dimensional, and we do not assume Ai \ B = f0g.
Remark 6: Considering (21) as a function of the energy kPG yk2,

this function is strictly increasing, and for large argument, its slope is
decreasing; i.e., the function can be viewed as a compressor. Hence,
when constraints are active (the Ei are finite), the comparison Li �
Lj + �ij amounts to comparing compressed versions of the uncon-
strained matched subspace detector statistics kPG yk2 and kPG yk2
of the preceding remark.

Using (21), we can give an explicit formula for the function of PG y

asserted in Theorem 3. First, an orthogonality argument shows that
PG G�y = G�PG y. Using this result, it is then not hard to show that

kPG yk2 = kPG yk2p = kGH
j yk2p : (22)

We can now write

Lj =

kG yk

2
; if kGH

j yk2p � Ej
EjkGH

j ykp � E

2
; otherwise.

(23)
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Lemma 4: If Q2 = A�2P
?
B A2, then the conditional probability in

(20) can be expressed using the conditional cumulative distribution
function

P L2(G
H
2 y) � ` GH

1 y = � (24)

which is equal to

P kGH
2 yk2p � 2` GH

1 y = � ; for ` � E2=2;
and

P kGH
2 yk2p � (`+ E2=2)2=E2 GH

1 y = � ; otherwise:

Note that the conditional distribution of GH
2 y given GH

1 y = � is
Gaussian, with mean and covariance easily determined.

Proof: Write (24) as the sum of

P L2(G
H
2 y) � `; kGH

2 yk2p � E2 GH
1 y = � (25)

and

P L2(G
H
2 y) � `; kGH

2 yk2p > E2 GH
1 y = � : (26)

From (23), it follows that (25) is equal to

P kGH
2 yk2p � min(2`;E2) GH

1 y = �

and (26) is equal to

P E2 < kGH
2 yk2p � (`+ E2=2)2=E2 GH

1 y = � :

Note that this last expression is zero for ` � E2=2. The lemma now
follows easily.

Lemma 5: When message i is sent

kGH
j yk2p
�2=2

is noncentral chi-squared with 2pj degrees of freedom and noncen-
trality parameter

kGH
j G

�P?
B Aiuk2p

�2=2
=2kPG G�P?

B Aiuk2p=�2

=2kG�PG P?
B Aiuk2p=�2

=2kPGPG P?
B Aiuk2=�2

=2kPG P?
B Aiuk2=�2: (27)

Remark 7: Observe that hypothesis i affects the distribution of
2kGH

j yk2p =�2 only via the noncentrality parameter. The noncentrality
parameter is determined by the amount of energy of P?

B Aiu 2 Gi
that falls in the subspace Gj . To put it another way, the noncentrality
parameter is proportional to the energy that “leaks” from subspace Gi
into subspace Gj . If the subspaces Gi and Gj are orthogonal, there is
no energy leakage, and the noncentrality parameter is zero for j 6= i.
For j = i, (27) reduces to 2kP?

B Aiuk2=�2, where kP?
B Aiuk2 is the

energy in the signal Aiu that lies in the interference-free subspace.

Proof of Lemma 5: According to (7), under Hi, y is a p-dimen-
sional Gaussian random vector with meanG�P?

B Aiu 2 Gi and covari-
ance matrix �2Ip. Thus, GH

j y is a pj -dimensional Gaussian random
vector with mean GH

j G
�P?

B Aiu and covariance matrix �2Ip . The
result now follows.

Lemma 6: If Qj = A�jP
?
B Aj , then FL ji in (19) is given by

FL ji(`) =
Fp (4`=�2); ` � Ej=2
Fp 2(`+ Ej=2)2=[�2Ej ] ; otherwise

where Fp is the cumulative distribution of a noncentral chi-squared
random variable with 2pj degrees of freedom and noncentrality pa-
rameter (27).

Proof: This is immediate from the proof of Lemma 4 and the
result of Lemma 5.

Lemma 7: Motivated by (23), put

Li(�) := �=2; 0 � � � EipEi� � Ei=2; otherwise

so that Li(GH
i y) = Li(kGH

i yk2p ). If Qi = A�iP
?
B Ai, then (19)

becomes

PCji =
j 6=i

FL ji Li(��2=2)� �ij fp (�)d�

where fp is the density of a noncentral chi-squared random variable
with 2pi degrees of freedom and noncentrality parameter

2

�2
kP?

B Aiuk2 = 2

�2
kuk2A P A :

Proof: The only point worth noting is that the noncentrality
parameter comes from (27) with j = i.

Example 4 (Binary Signaling With On–Off Keying): In this case,
A1 is the zero subspace. Then G1 is also the zero subspace, which is
automatically orthogonal to any G2. Since L1 � 0, we decide in favor
of message 2 if and only if L2 � �21. Assuming Q2 = A�2P

?
B A2, we

have

PCj1 = Fp 2L�12 (�21)=�
2

where in this case the noncentrality parameter is zero. On the other
hand

PCj2 = 1� Fp 2L�12 (�21)=�
2

where Fp is the cumulative distribution function of a noncentral
chi-squared random variable with 2p2 degrees of freedom and non-
centrality parameter

2

�2
kP?

B A2uk2 = 2

�2
kuk2A P A :

VII. CONCLUSION

The detection of subspace signals in infinite-dimensional interfer-
ence and noise was motivated by consideration of multipath-Doppler
channels subject to interference from partially overlapping frequency
bands of other sources. Since the interference lies in an infinite-
dimensional subspace, the standard method of projecting onto the
subspace containing the signal plus interference does not yield a finite-
dimensional detection problem. However, we presented an alternative
approach to extract the appropriate finite-dimensional problem. An
additional feature of the model was the imposition of an energy
constraint on the desired signal. We then derived the generalized like-
lihood-ratio detector, and gave expressions for its average probability
of error.

Although we obtained closed-form expressions for the detector
statistics Li only in the case Qi = A�iP

?
B Ai ((21) and (23)), we
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emphasize that even in the general case, it is still practical to computeLi
numerically because it requires solving only a quadratically constrained
least squares problem. We also have the general structural result,
Theorem 1, which shows that each detector statistic Li depends on the
observation y only through PG y. In other words, the front end of the
detector takes the measurement y and passes it through a zero-forcing
or decorrelating linear filter matched to the ith interference-free signal
subspace.

The importance of Theorem 3 is that it allows us to obtain the general
expression (18) for computing the average probability of error. The
formula (18) can then be simplified in special cases as shown in the
examples in Section VI.

In Appendix A, the energy constraint kuk2Q � Ei is replaced by
the magnitude constraint maxk jukj � E1=2i . Thus, instead of having
a quadratic form subject to a quadratic constraint, we have a quadratic
form subject to a convex constraint. It is shown that the single convex
constraint is equivalent to pi quadratic constraints. This converts the
convex programming problem with one constraint into a quadratically
constrained least squares problem with pi constraints. When the coef-
ficient vector is real valued, the magnitude constraint is shown to be
equivalent to 2pi linear constraints. This converts the convex program-
ming problem into a quadratic programming problem.

APPENDIX

MAGNITUDE SIGNAL CONSTRAINTS

Suppose that in (13) we replace the constraint kuk2Q � Ei with

kuk1 := max
1�k�p

jukj �
pEi:

Then we must solve

min
kuk �E

kPG y � P
?
B Aiuk2: (28)

Although the objective function here is a quadratic form in u, the con-
straint kuk21 � Ei is no longer quadratic. However, since the constraint
is still convex, the overall problem is a finite-dimensional, convex pro-
gramming problem to which standard techniques apply.

We now point out that since the single nonquadratic constraint
kuk21 � Ei can be rewritten as pi quadratic constraints, we can
convert (28) into a quadratically constrained least squares problem. To
see this, rewrite the single constraint

max
1�k�p

jukj �
pEi

as the pi quadratic constraints

kDkuk2p � Ei; k = 1; . . . ; pi

where Dk := diag(0; . . . ; 1; . . . ; 0) with the 1 in the kth position.
Thus, we have converted (28) into a quadratically constrained least
squares problem to which standard methods apply. For example, the
Lagrangian for this problem is

Lagr(�; u) = kPG y � P
?
B Aiuk2 +

p

k=1

�k(kDkuk2p � Ei)

where � := [�1; . . . ; �p ]0 is now a vector of Lagrange multipliers.
Appealing again to the Kuhn–Tucker sufficiency theorem, if

u = [� + A
�
iP

?
B Ai]

�1
A
�
iP

?
B y

where

� :=

p

k=1

�kDk = diag(�1; . . . ; �p )

and the �k � 0 are chosen so that the components of u satisfy

jukj2 � Ei and �k(jukj2 � Ei) = 0; k = 1; . . . ; pi

then u solves the minimization problem.
We now briefly reconsider the optimization problem (28) under the

requirement that the uk be real instead of allowing them to be complex.
In this case, the condition kuk21 � Ei can be expressed as the pi
conditions

�pEi � uk �
pEi

or, equivalently, as the 2pi linear inequalities

uk �
pEi and � uk �

pEi:

Since the objective function kPG y � P?B Aiuk2 is quadratic in u, we
see that the required optimization is a quadratic programming problem,
for which various algorithms are available.
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