Equiatomic Ni–Mn thin films are of interest to the magnetic storage industry for use in magnetoresistive sensors. In these sensors, exchange coupling between an antiferromagnetic film, such as NiMn, and a soft ferromagnetic film is required to hold or “pin” the magnetization within the ferromagnetic layer. However, the required to hold or “pin” the magnetization within the ferromagnetic film, such as NiMn, and a soft ferromagnetic film is these sensors, exchange coupling between an antiferromagnetic, L10-NiMn phase that is of considerable technological interest was found to exist continuously between 500 and 700 °C. No other intermediate phases were found in this study at low temperatures. These results are in contrast to the currently accepted phase diagram published in most handbooks. A hot-isobaric-pressing method was used to initially bond samples that were subsequently used to determine interdiffusion coefficients in the Ni–Mn system at 650 °C. The Boltzmann–Matano method [T. Heumann, Z. Phys. Chem. 201, 168 (1952)] allowed the calculation of these interdiffusion coefficients across the α-Mn, β-Mn, γ-Mn, L10-NiMn, and γ-Ni phases. © 2002 American Institute of Physics. [DOI: 10.1063/1.1450042]
The phase boundaries involving the L1₀-NiMn(L) phase were examined carefully with more than 20 samples in this study. These results are also shown in Fig. 1. The sizes of each phase region in the samples annealed at 650 °C and above are nominally larger than 3–5 μm, which is sufficiently large for accurate EMPA analysis. As the annealing temperature is decreased to 600 °C, the grain size of the L1₀ phase decreases, but phase boundaries can still be determined by careful EMPA analysis. However, determination of the phase boundaries involving the L1₀ phase at 550 and 500 °C was found to be very difficult.

Figure 2 shows the microstructure of a sample with 42 at. % Ni annealed at 500 °C for 220 days. Under a microscope one can see the grains clearly, with the accumulation of voids at the boundaries [Fig. 2(a)]. However, no second phase can be observed by optical examination. In backscattered electron (BSE) images of the sample [Fig. 2(b)] we can see the voids with lightly shaded regions surrounding them. However, since these light colored areas are very small in size (less than 1 μm wide), it is almost impossible to position the electron beam for composition determination with the precision necessary using typical EMPA techniques. In this case of very fine microstructure, precise positioning and acquisition are needed at scales finer than the stage mechanism is capable of producing. To achieve this precision, a beam deflection technique was used, in which the position of the beam is moved using magnetic fields rather than moving the sample stage. Using this technique, the L1₀/γ-NiMn phase boundaries were successfully measured and are shown in Fig. 1.

The sizes of the L1₀ and γ-Ni phases in Ni-rich samples are normally much smaller than the L1₀ and γ-Mn phases in Mn-rich samples annealed at the same temperature. Therefore, in the four Ni-rich samples annealed at 500 and 550 °C, no precipitate phases were found even with high-magnification backscattered images. X-ray powder diffraction analysis was performed on one such sample (59 at. % Ni, 500 °C), and only the L1₀-NiMn(L) phase was detected. It is noteworthy that, in our judgment, the equilibrium state may not have been reached in these four samples even after 220 days of annealing. Since very small amounts of a second phase may not be detected by XRD or EMPA, more work needs to be done in this region using other techniques.

Hot-isobaric pressing (HIP) was used to form diffusion multiples in the present study. A Ni[Mn]Ni₅₀Mn₅₀[Ni₅₀Mn₅₀]₄₄ diffusion multiple was made by placing four 4-mm-thick alloy disks (one of each composition) inside a pure Ni cylinder. These four alloys were previously homogenized and the size of the disks was designed such that the dimensions were significantly larger than diffusion distances. After electron-beam welding Ni end members to the cylinder, the diffusion multiple underwent a HIP run of 4 h at 950 °C under a 200 MPa (2000 atm) pressure to provide good contact between components. Following the HIP, the diffusion multiple was sealed in an evacuated quartz tube for further diffusion heat treatment. Diffusion annealing was performed at 650 °C for two months. Concentration profiles across the diffusion zones were measured by electron microprobe. NiMn alloys with a uniform composition of 50 at. % Ni were selected as calibration standards. After diffusion heat treatment, the diffusion multiple was mounted in epoxy, sectioned perpendicular to the interfaces, and polished. The composition profiles were determined via an EMPA line scan perpendicular to the interface. The line scan step that was used varied between 1 and 5 μm, depending on the width of the diffusion layers. Figure 3 shows the concentration profile obtained across the Ni/Mn interface within a diffusion multiple. Concentration profiles across other interfaces were also obtained. It is noteworthy that the concentrations at the phase boundaries within the diffusion zones are comparable to those found in the phase diagram analysis. As we can see from Fig. 3, intermetallic phases and solid solutions of Ni–Mn formed in the diffusion zone.

The Boltzmann–Matano method was used to compute...
the interdiffusion coefficients in such a multiphase system. Calculated interdiffusion coefficients, D_{β} in the β-Mn phase (10^{-8} cm2/s) is 3–4 orders larger than diffusion coefficients in the other phases, due to its relatively open bcc structure. The interdiffusion coefficient in the L_{10} phase was also calculated from a concentration profile measured across the Ni$_{50}$Mn$_{50}$Ni$_{56}$Mn$_{44}$ interface. The results from the multiphase system of the Ni|Mn diffusion couple are quite similar to those from the single-phase, Ni$_{50}$Mn$_{50}$|Ni$_{56}$Mn$_{44}$ diffusion couple.

The equilibrium phase diagram of the Ni–Mn system in the composition range between 25 and 70 at. % Ni was determined using EMPA with the aid of optical microscopy and x-ray diffraction. It was found that the L_{10}-NiMn(L) phase exists at temperatures up to 750°C. Intermediate phases NiMn$_2$ and Ni$_2$Mn reported by Tiuplakis4 were not found in this study. These results are more complimentary to the original work performed by Coles and Hume-Rothery,3 and are in stark contrast to the generally accepted Ni–Mn phase diagrams in most current handbooks.7 We are convinced that these diagrams do not reflect equilibrium conditions.

The HIP bonding method was used to create diffusion multiples in which interdiffusion coefficients could be measured at relatively low temperatures. Interdiffusion coefficients of the technologically important L_{10} phase were calculated at 650°C from single-phase and multiphase diffusion couples with good agreement. Interdiffusion coefficients for all equilibrium phases at 650°C were determined as well.

The authors wish to thank the Division of Materials Sciences, Office of Basic Energy Research of DOE for financial support through Grant No. DE-FG02-99ER45777.