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Synthesis and properties of  c-axis oriented epitaxial MgB 5 thin films

S. D. Bu, D. M. Kim, J. H. Choi, J. Giencke, E. E. Hellstrom, D. C. Larbalestier,
S. Patnaik, L. Cooley, and C. B. Eom®

Department of Materials Science and Engineering, and Applied Superconductivity Center,
University of Wisconsin-Madison, Madison, Wisconsin 53706

J. Lettieri and D. G. Schlom
Department of Materials Science and Engineering, Pennsylvania State University, University Park,
Pennsylvania 16802

W. Tian and X. Q. Pan
Department of Materials Science and Engineering, University of Michigan-Ann Arbor, Ann Arbor,
Michigan 48109

(Received 1 April 2002; accepted for publication 26 June 2002

We report the growth and properties of epitaxial MgBin films on(0001) Al,O; substrates. The

MgB, thin films were prepared by depositing boron films via radio-frequemby magnetron
sputtering, followed by a postdeposition anneal at 850 °C in magnesium vapor. X-ray diffraction and
cross-sectional transmission electron microscopy reveal that the epitaxial fillgB are oriented

with their c-axis normal to thé0001) Al,O5 substrate with a 30° rotation in tH6001) plane with
respect to the substrate. The critical temperature was found to be 35 K and the anisotropy ratio,
H.,/Hs,, was about 3 at 25 K. The critical current densities at 4.2 and 28K T perpendicular
magnetic fielgl are 5 10° and 1x 10° A/cm?, respectively. The controlled growth of epitaxial
MgB, thin films opens a new avenue in both understanding superconductivity in, NAgB
technological applications. @002 American Institute of Physic§DOI: 10.1063/1.1504490

The discovery of superconductivity at 39 K in MgB  achieved its epitaxial growtH:**Although MgB, has a mis-
offers the possibility of a new class of high-speed superconmatch with ALO; of ~23% along thg 1120] axis, which is
ducting electronic devices due to its favorable combinatiorunfavorable for epitaxial growth, a 30° in-plane rotation of
of higher critical temperature than conventional BCS superthe [1120] direction of the MgB film with respect to the
conductors and a symmetric order paramétetike HTS. It substrate results in a parallel orientation[df120] MgB,
also stimulated a flurry of activity to explore the phenom-and [1010] Al,O3. This provides a lattice mismatch of
enology and basic mechanism of superconductivity in this~11%.
surprising material. MgB possesses a number of attractive ~ The MgB,; thin films were prepared by depositing boron
properties, including strongly coupled grain boundafies. via rf magnetron sputtering, followed by a postdeposition
Several unusual phenomena, such as temperature-dependanheal at 850 °C in the presence of magnesium vapor. Depo-
electronic anisotropy and multiple superconducting gap sition was carried out at 5 mTorr argon at 500 °C using a
structures;® appear to distinguish MgBfrom a conven- pure boron target. The thickness of the boron films was 230
tional BCS superconductor, and remain to be explained. nm. The films were annealed in an evacuated quartz tube

A critical step for studying both intrinsic superconduct- using a tantalum envelope for 5 h. The quartz tube was filled
ing properties and the possibility of superconducting devicesvith 7—10 Torr of argon gas after evacuation to reduce the
based on MgB is the controlled growth of high quality ep- Mg loss. The film thickness increased by a factor of 1.8
itaxial MgB; thin film heterostructures. The growth of MgB  during the annealing, resulting in a final thickness of 400 nm,
films by means of botim situ andex situprocesses has been which was confirmed by cross-sectional transmission elec-
demonstrated;*® including (0001 fiber-textured MgB  tron microscopy(TEM). Atomic force microscopy(AFM)
films.” Kang et al. reported the growth of botl-axis and  imaging revealed a smooth surface morphology with a rms
(101D)-oriented MgB epitaxial thin films on (102) Al,O;  roughness of~3 nm. The chemical composition was ob-
and (100 SrTiO; substrate§.However, the reported x-ray tained using wavelength dispersive x-ray spectroscopy
data do not show in-plane epitaxy, and there is no clear reAn¥DS), showing a Mg:B:0:C atomic ratio of 34.1 : 58.4 :
lationship between the Mggfilm orientation and the orien- 4.3 : 3.2, respectively. By assuming that the carbon resides
tation of the substrate, which must be present if epitaxiabn boron sites and oxygen consumes magnesium to form

control over the film growth had been attained. MgO, the Mg:B ratio of film 1 was found to be 1:2.07, which
In this letter, we report the growth and properties ofis close to the MgB stoichiometry.
epitaxial MgB, thin films on(000) Al,O; substrates. In the The epitaxial relationships and the crystalline quality of

time since we first reported the epitaxial growth of Mgl the MgB, thin films were assessed by four-circle x-ray dif-
thin films (0001 Al,O;' two other groups have also fraction. Figure 1a) shows ag-26 scan of an epitaxial MgB
thin film grown on a(0001) Al,O; substrate. The only sub-

dauthor to whom correspondence should be addressed; electronic maptantial MgB peaks are the 0001 and 0002 reflections,
eom@engr.wisc.edu which clearly shows that the MgBs oriented with itsc-axis
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FIG. 1. X-ray dffraction scans of an epitaxial Mgghin film grown on a
(0001 Al,O5 substrate(a) 6-26 scan and(b) ¢ scan of the 101 MgB,
reflection. The AJO; substrate peaks are marked*asp=0° is aligned to
be parallel to thg1120] in-plane direction of the AlO; substrate. The  FIG. 2. (a) Bright-field cross-sectional TEM image of a 4000 A thick MgB
FWHM of the 0002 MgB peak is 0.28° in 2 and 0.54° inw (rocking thin film grown on a(0001) Al,O; substrate(b) SAED of MgB, along the
curve). These scans indicate that the lattice constants of this,MigB (film [1120] zone axis(c) SAED of Al,O5 substrate along thel010] zone axis,
2) area=3.08+0.02 A andc=3.52+0.01 A. and(d) cross-sectional HRTEM micrograph of an epitaxial MgBin film
near the(0001) Al,O; substrate.

normal to the substrate. The rocking curve full width at half

maximum (FWHM) of the 0002 MgB reflection is 0.54°, inductive transitions for the best bulk and single crystal
which indicates that the crystalline quality of the film is samples made so f4f.

good. We also investigated the in-plane texture of the flm by  The resistance was measured by a standard four-point
scanning an off-axis peak. Figuréb] shows the azimuthab  technique in magnetic fields up to 9 T as a function of tem-
scan of the MgB 1011 reflection. The significant intensities perature. Figure 4 shows the zero field resistive transition,
every 60° of this reflection confirm that the film contains awhich indicatesp(40 K)=6.5 . cm and a residual resis-
single hexagonal texture in the film plane. Furthermore, thgance ratiod RRR) of ~2. We also measurend the infield tran-
MgB reflections are rotated 30° in the basal plane with resjtions for field applied parallel to the axis and to theab
spect to the AJO; lattice, resulting in a relationship between pjane of the film. The infield resistive transitions exhibit very
the substrate and MgHilm of [1120]MgB,lI[1010]Al,O03. |ittle broadening up to the highest field measut@dr), un-
The measured FWHM of the azimuthalscan of the 101 |ike our earlier measurements on fiber-textured fifnihe
reflection is 1.0°. Thec-axis lattice parameter determined upper critical field was defined for paraIIeIHtZ) and per-
from normal #-26 scans is 3.520.01 A, which is the same pendicular Héz) fields by extrapolating the steep part of the
as the bulk value. transition to the normal state resistaricEhe inset to Fig. 4

The microstructure has been studied by cross-sectionahows the upper critical field versus temperature. The anisot-
TEM. Figure 2a) is a low magnification bright field TEM ropy ratio,H',/H%, , is about 3 at 25 K, rather greater than
image of a 4000 A thick MgB film grown on a(0001  fjm318 and single crystal valuég.At low temperatures, the
Al,O5 substrate. Figures(B) and 2c) are the selected-area nearly parallel trends and similar slopes Hf,(T) and
electron diffraction(SAED) pattern taken from the film and HL,(T) suggest decreasing anisotropy with decreasing tem-

the substrate, respectively. Epitaxial growth of MgB evi-  nerature, a trend which is opposite to some recent d&fit
dent and no grain boundaries are seen in the film. The high-

resolution TEM(HRTEM) image in Fig. 2d) shows distinct
interface layers of MgAIO, and MgO between the MgB
and ALO;. The HRTEM image clearly shows that both
MgAIl,O4 and MgO grow epitaxially on th€000]) Al,O3,
with an orientation relationship of (11[1)10]MgQIl(111)
[110]MgAIl,0,4II(0001) 1010]AI,O4. Additional details of
TEM studies are given elsewhefe.

The transition temperature was measured with a SQUID
magnetometer in a magnetic field of 5 mT, applied parallel to 410 15 20 25 30 35 40 45 50
the film surface. Figure 3 shows an extremely sharp transi- Temperature (K )
tion with onset at 35 K with full shielding. The 10% t0 90% gig. 3. T, data obtained with a SQUID magnetometer utiligia 5 mT

width of the inductive transition is-1 K, which is similar to  magnetic field applied parallel to the film surface.
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14 - " - " " v controlled orientations and properties opens a new avenue to
’E‘ 12 ur)derstand the supercond_uctivit_y in Manq po_tential ap-
S 10 plications for both electronic devices and high field magnets.
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