A Necessary and Sufficient Condition for High-Frequency Robustness of Non-Strictly-Proper Feedback Systems

Daniel Cobb
Department of Electrical Engineering
University of Wisconsin
Madison, WI 53706-1691
cobb@engr.wisc.edu

Abstract

We consider stability and robustness of feedback systems, where plant and compensator need not be strictly proper. In an earlier paper [1] we described a functional R_∞ which, when negative, guarantees closed-loop instability as a result of parasitic interactions in the feedback loop. In our main result, Theorem 5, we prove that, when $R_\infty > 0$, there exist perturbations of plant and compensator from a narrow class which result in closed-loop stability and convergence. Hence, we may view $R_\infty > 0$ as a necessary and sufficient condition for closed-loop robustness in non-strictly-proper feedback loops.

1 Introduction

Consider the multivariable feedback system in Figure 1, where $P(s)$ and $C(s)$ are matrices of rational functions

$$R = \det(I + CP)$$

and its high-frequency limit

$$R_\infty = \lim_{\sigma \to \infty} R(\sigma) \in [-\infty, \infty].$$

The closed-loop system in Figure 1 is governed by the transfer function matrix

$$H = \begin{bmatrix} P(I + CP)^{-1} & -P(I + CP)^{-1}C \\ (I + CP)^{-1}CP & (I + CP)^{-1}C \end{bmatrix}.$$

Henceforth, we adopt the assumption that H is BIBO stable. In particular, this implies that H is proper, so

$$(I + CP)^{-1} = I - C \left(P(I + CP)^{-1} \right)$$

is proper, R is not strictly proper, and $R_\infty \neq 0$.

A natural approach to studying stability and robustness of Figure 1 is to examine strictly proper perturbations of P and C. Then conventional feedback theory can be utilized. For technical reasons, we need additional assumptions. We say that $P_k \to P$ weakly if there exists $\sigma < \infty$ such that

W1) P_k has no pole in $[\sigma, \infty)$ for large k;

W2) $P_k \to P$ pointwise on $[\sigma, \infty)$.

Suppose we construct weakly convergent sequences $P_k \to P$ and $C_k \to C$. Letting $R_k = \det(I+C_k P_k)$, it is obvious from the definition of weak convergence that $R_k \to R$ weakly. The zeros of R are poles of H, and the zeros of R_k are poles of the perturbed closed-loop system H_k. In [1] we prove the following result.

Theorem 1 If P_k and C_k are strictly proper, $P_k \to P$ and $C_k \to C$ weakly, and $R_\infty < 0$, then there exist $\sigma_k \in \mathbb{R}$ such that $\sigma_k \uparrow \infty$ and $R_k(\sigma_k) = 0$ for every k.

Theorem 1 says that, under very mild assumptions, $R_\infty < 0$ guarantees that H_k has a high-frequency pole σ_k on the positive real axis, guaranteeing extreme instability of the closed-loop system. Our objective in this paper is to show that, when $R_\infty > 0$, we have the opposite situation — viz. that the closed-loop system is robust to certain reasonable perturbations of P and C.

*This work was supported by NSF grant ECS-9616567.
2 Preliminaries

We begin by recalling some basic facts about rational matrices and their state-space realizations. The characteristic polynomial Δ_p of a rational matrix P is the least common denominator of all minors of P. If P is strictly proper, its McMillan degree is $\nu(P) = \deg \Delta_p$. Δ_p is also the characteristic polynomial of any state-space realization of minimal dimension (i.e., any controllable and observable realization). Appropriate extensions of realization theory to the case of non-strictly-proper P are developed in [3] and summarized in [4], Theorem 1.2. If P is non-strictly-proper, we may perform entrywise polynomial division to obtain $P = P_s + P_f$, where P_s is strictly proper and P_f is polynomial. Let R be the operator on the space of rational matrices defined by

$$ R(P)(s) = -\frac{1}{s} P \left(\frac{1}{s} \right). $$

Then $R(P_f)$ is strictly proper and we may define the degree of P according to

$$ \mu(P) = \nu(P_s) + \nu(R(P_f)). $$

Our analysis hinges on state-space realizations of P and C. Suppose P has realization

$$ A \dot{x} + B u_1 = \begin{bmatrix} E & 0 \\ 0 & J \end{bmatrix} \begin{bmatrix} \dot{x} \\ \dot{z} \end{bmatrix} = \begin{bmatrix} A & -B & H \end{bmatrix} \begin{bmatrix} x \\ z \end{bmatrix} \quad (1) $$

$$ y_1 = C \begin{bmatrix} x \\ z \end{bmatrix} \quad (2) $$

with minimal dimension. (See [8] for basic information on singular systems.) Then $P(s) = C(sE - A)^{-1} B$ and, from [3], (E, A, B, C) is a controllable and observable 4-tuple with $\mu(P)$ states. The characteristic polynomial of (1) is

$$ \Delta_p(s) = \det(sE - A). $$

It can be shown that

$$ \deg \Delta_p \leq \text{rank } E $$

with equality iff P is proper. Applying the Weierstrass decomposition to (1) (see [5], Ch.12), we obtain

$$ M_p E N_p = \begin{bmatrix} I_{n_s} & 0 \\ 0 & A_f \end{bmatrix}, \quad M_p A N_p = \begin{bmatrix} A_s & 0 \\ 0 & I_{n_f} \end{bmatrix}, $$

$$ M_p B = \begin{bmatrix} B_s \\ B_f \end{bmatrix}, \quad C N_p = \begin{bmatrix} C_s & C_f \end{bmatrix}, $$

where M_p and N_p are nonsingular and A_f is nilpotent. Letting

$$ \begin{bmatrix} x_s \\ x_f \end{bmatrix} = N_p^{-1} x $$

leads to the decoupled state-space system

$$ \begin{bmatrix} I_{n_s} & 0 \\ 0 & A_f \end{bmatrix} \begin{bmatrix} \dot{x}_s \\ \dot{x}_f \end{bmatrix} = \begin{bmatrix} A_s & 0 \\ 0 & I_{n_f} \end{bmatrix} \begin{bmatrix} x_s \\ x_f \end{bmatrix} + \begin{bmatrix} B_s \\ B_f \end{bmatrix} u_1 $$

$$ \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} C_s & 0 \\ 0 & C_f \end{bmatrix} \begin{bmatrix} x_s \\ x_f \end{bmatrix}, $$

$$ y_1 = C \begin{bmatrix} x \\ z \end{bmatrix} = \begin{bmatrix} x_s \\ x_f \end{bmatrix}. $$

Then (1) has transfer function matrix

$$ \begin{bmatrix} C_s & C_f \end{bmatrix} \begin{bmatrix} x_s \\ x_f \end{bmatrix}, $$

and characteristic polynomial

$$ \Delta_p(s) = \alpha \det(sI - A_s) \det(sI - A_f) $$

for some constant $\alpha \neq 0$. Note that P is proper iff $A_f = 0$.

Similar statements can be made about C, yielding a realization

$$ J \dot{z} = F z + G u_2 $$

$$ y_2 = H z, $$

a Weierstrass decomposition

$$ M_c J N_c = \begin{bmatrix} I_{n_c} & 0 \\ 0 & F_f \end{bmatrix}, \quad M_c F N_c = \begin{bmatrix} F_s & 0 \\ 0 & I_{n_f} \end{bmatrix} $$

$$ M_c G = \begin{bmatrix} G_s & G_f \end{bmatrix}, \quad H N_c = \begin{bmatrix} H_s & H_f \end{bmatrix}, $$

and characteristic polynomial

$$ \Delta_c(s) = \beta \det(sI - F_s) \det(sI - F_f) $$

Then H has minimal realization

$$ \begin{bmatrix} E & 0 \\ 0 & J \end{bmatrix} \begin{bmatrix} x \\ z \end{bmatrix} = \begin{bmatrix} A & -B & H \end{bmatrix} \begin{bmatrix} x \\ z \end{bmatrix} $$

$$ \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} C & 0 \\ 0 & H \end{bmatrix} \begin{bmatrix} x \\ z \end{bmatrix}. $$

3688
The closed-loop characteristic polynomial is

$$
\Delta_{cl}(s) = \det \begin{bmatrix}
 sI - A_s & B_sH_s & 0 & B_sH_f \\
 G_sC_s & sI - F_s & -G_sC_f & 0 \\
 0 & B_fH_s & B_fH_f & 0 \\
 -G_fC_s & 0 & -G_fC_f & sF_f - I
\end{bmatrix}
$$

BIBO stability of H implies properness of H; so, as in (2), $\deg \Delta_{cl} = n_{ps} + n_{ca} + p$, where

$$
\rho = \text{rank} A_f + \text{rank} F_f.
$$

From [6], p.159, we know that

$$
R = \frac{\Delta_{cl}}{\Delta_{pa} \Delta_{ca}}.
$$

Let

$$
\gamma_0 s^p + \cdots + \gamma_0 = \det \begin{bmatrix}
 I & -sA_f & -B_fH_f \\
 G_fC_f & I & -sF_f
\end{bmatrix}.
$$

Recalling

$$
\det (sA_f - I) = (-1)^{n_f}, \quad \det (sF_f - I) = (-1)^{n_f},
$$

we obtain

$$
R_{\infty} = \begin{cases}
 \gamma_0, & \text{P and C proper}, \\
 \gamma_0, & \text{P or C improper}.
\end{cases}
$$

Note that P and C proper implies

$$
R_{\infty} = \det \begin{bmatrix}
 I & -B_fH_f \\
 G_fC_f & I
\end{bmatrix} = \det (I + B_fH_f G_fC_f).
$$

3 Sufficiency of $R_{\infty} > 0$

Merely showing that $R_{\infty} > 0$ guarantees closed-loop robustness to certain weak perturbations would not be an acceptable result, since the class of weak perturbations is so large. To obtain a better result, we limit our analysis to the narrowest perturbation class normally encountered in singular perturbation problems. As an initial step, we consider rational functions

$$
f_k(s) = \frac{b_{2k}s^2 + \cdots + b_{0k}}{a_{rk}s^r + \cdots + a_{0k}}
$$

and say that $f_k \to f$ parametrically if

$$
q \geq m, \quad r \geq n
$$

and say that $f_k \to f$ parametrically if

$$
\begin{align*}
 a_{ik} &\to a_i; & i = 0, \ldots, n - 1 \\
 a_{nk} &\to 1 \\
 a_{ik} &\to 0; & i = n + 1, \ldots, r \\
 b_{ik} &\to b_i; & i = 0, \ldots, m \\
 b_{nk} &\to 0; & i = m + 1, \ldots, q.
\end{align*}
$$

For matrices, we say $P_k \to P$ parametrically if each entry converges parametrically. We say $P_k \to P$ strongly, if

$$
\begin{align*}
 &\text{S1} \quad P_k \to P \text{ parametrically,} \\
 &\text{S2} \quad \mu(P_k) = \mu(P) \text{ for large } k, \\
 &\text{S3} \quad \text{there exists } \epsilon > 0 \text{ and } K < \infty \text{ such that, when } k > K, \text{ no finite pole } \lambda_{ik} \text{ of } P_k \text{ satisfies } |\lambda_{ik}| > \frac{1}{\epsilon} \text{ and } |\arg \lambda_{ik}| < \frac{\pi}{2} + \epsilon.
\end{align*}
$$

Condition S3 is equivalent to saying that the divergent poles of P_k lie in a fixed left half-plane sector. S1) and S3) together imply weak convergence. Furthermore, it is shown in [4] that S1) guarantees that P_k and C_k have realizations of the form (1) with convergent matrices. Let L^{-1} denote the inverse Laplace transform operator. Then, from S3) and [7], Theorem 1, $L^{-1} \{P_k\} \to L^{-1} \{P\}$ and $L^{-1} \{C_k\} \to L^{-1} \{C\}$ as distributions. (See [2] for a discussion of distributional convergence.) In addition, we can show that the inverse transforms converge uniformly on compact subintervals of $(0, \infty)$. Hence, strong convergence embodies all the properties that are normally encountered in classical singular perturbation problems. We will eventually prove that, for $R_{\infty} > 0$, the closed-loop system is robust to certain strong, strictly proper plant and compensator perturbations.

Next we study a class of perturbations of P and C obtained by choosing $A_{f_k} \to A_f$ and $F_{f_k} \to F_f$ and substituting A_{f_k} and F_{f_k} into (7) and (5) in place of A_f and F_f. Recall that the index ind A of a square matrix A is the smallest integer $p \geq 1$ such that rank $A^p = $ rank A^{p+1}. It is easy to show that ind $A = 1$ is equivalent to having rank A nonzero eigenvalues in A, counting multiplicities.

Lemma 2 Let $A_{f_k} \to A_f$ and $F_{f_k} \to F_f$, where rank $A_{f_k} = $ rank A_f, rank $F_{f_k} = $ rank F_f, ind $A_{f_k} = $ ind $F_{f_k} = 1$, and every nonzero eigenvalue λ_{ik} of A_{f_k} and F_{f_k} satisfies $\text{Re} \lambda_{ik} < 0$ for large k. Then P_k, C_k, and H_k are proper and $R_{\infty} \to R_{\infty}$.

Proof. If P and C are proper, then $A_f = A_{f_k} = 0$ and $F_f = F_{f_k} = 0$, so $P_k = P$, $C_k = C$, $H_k = H$, and

$$
R_{\infty} = R_{\infty}.
$$

Suppose P and C are not both proper. Since A_{f_k} and F_{f_k} have unit index, the corresponding P_k and C_k are proper. Despite the fact that A_{f_k} and F_{f_k} may not be nilpotent, we may substitute them for A_f and F_f in (3), (6), and (7), yielding $\Delta_{p_k}, \Delta_{c_k},$ and Δ_{c_k}. Applying (2) to (7), we obtain properness of H_k. Applying (8) to the perturbed system, we obtain

$$
R_{\infty} = \lim_{s \to \infty} \Gamma_k(s),
$$

where

$$
\Gamma_k(s) = \frac{\det \begin{bmatrix}
 sA_{f_k} - I & B_{f_k}H_f \\
 -G_{f_k}C_f & sF_{f_k} - I
\end{bmatrix}}{\det (sA_{f_k} - I) \det (sF_{f_k} - I)} = \gamma_0 s^p + \cdots + \gamma_0
$$

$$
\prod_{i=1}^k (1 - \lambda_{ik}s),
$$

(11)
with \(\gamma_{ik} \rightarrow \gamma_i \). Thus

\[
R_{\infty} = \frac{\gamma_{jk}}{\prod_{i=1}^p (\lambda_{ik})}.
\] (12)

Since the denominator of (12) is positive, real, and converging to 0, \(R_{\infty} \rightarrow \gamma_p \cdot \infty = R_{\infty} \).

Strongly convergent sequences \(P_k \) and \(C_k \) satisfying the conditions of Lemma 2 are easily constructed. For example, let \(P \) have minimal realization (??), and suppose \(A_{f} \) has Jordan form

\[
T^{-1}A_{f}T = \begin{bmatrix}
J_1 & & \\
& \ddots & \\
& & J_l
\end{bmatrix}, \quad J_i = \begin{bmatrix}
0 & 1 \\
& \ddots & 1 \\
& & 0
\end{bmatrix}
\]

Let

\[
A_{f} = T \begin{bmatrix}
J_{1k} & & \\
& \ddots & \\
& & J_{lk}
\end{bmatrix} T^{-1},
\]

\[
J_{ik} = \begin{bmatrix}
-\frac{1}{k} & 1 \\
& \ddots & 1 \\
& & -\frac{1}{k}
\end{bmatrix}
\]

Lemma 3 Suppose \(A_{f} \) and \(F_{f} \) are constructed as in (13) and (14). Then \(P_k, C_k, \text{ and } H_k \) are proper, \(P_k \rightarrow P, \text{ and } C_k \rightarrow C, \) and \(H_k \rightarrow H \) strongly and \(R_{\infty} \rightarrow R_{\infty} \).

Proof. The conditions of Lemma 2 obviously hold, guaranteeing properness of \(P_k, C_k, \text{ and } H_k \) and convergence of \(R_{\infty} \). Also, (S1) and (S2) are obvious for \(P_k, C_k, \) and \(H_k \). The divergent poles of \(P_k \) and \(C_k \) are just \(\lambda_{ik} = -k \), so (S3) holds. From (2) and (7),

\[
n_{ps} + n_{cs} \geq \deg \Delta_{ck} \geq \deg \Delta_{ci} = n_{ps} + n_{cs}
\]

so \(\deg \Delta_{ck} \) is constant. Hence \(H_k \) has no divergent poles and (S3) holds vacuously.

Before we state our main theorem, we need one more preliminary result.

Lemma 4 A square matrix \(M \) is the product of two stable matrices iff \(\det M > 0 \) and \(M \neq -\alpha I \) for any \(\alpha > 0 \).

Proof. (Necessary) Let \(M = \Sigma \Pi, \) where \(\Sigma \) and \(\Pi \) are stable with eigenvalues \(\{\sigma_i\} \) and \(\{\pi_i\} \), respectively. Then

\[
\det M = \left(\prod \sigma_i \right) \left(\prod \pi_i \right) > 0.
\]

If \(M = -\alpha I \) with \(\alpha > 0 \), then \(\Sigma^{-1} = -\frac{1}{\alpha} \Pi \) is unstable. Stability of \(\Sigma \) yields a contradiction.

(Sufficient) A proof of the converse is too long to present here in detail. The general idea is to first construct a nonsingular matrix \(T \) such that every leading principal minor of \(T^{-1}MT \) is positive. Second, find a lower triangular triangular \(\Sigma \) and an upper triangular \(\Pi \) such that \(T^{-1}MT = \Sigma \Pi \). These constructions can be performed using standard matrix manipulations and an inductive argument.

Theorem 5 If \(R_{\infty} > 0 \), then there exist strictly proper sequences \(P_k \) and \(C_k \) such that \(P_k \rightarrow P, \text{ and } C_k \rightarrow C, \) and \(H_k \rightarrow H \) strongly and \(H_k \) is proper for large \(k \).

Proof. Our construction proceeds in four stages. First, we assume \(P \) is strictly proper and \(C \) is proper. This means \(n_{ps} = 0 \) and \(F_{f} = 0 \). Let \(P_k = P \) and \(C_k \) be determined by setting \(F_{jk} = \frac{1}{\Sigma} \Sigma_{1} \), where \(\Sigma_{1} \) is any stable matrix. Then \(C_k \) and \(H_k \) are obviously strictly proper and satisfy (S1) and (S2). Since the divergent poles of \(C_k \) are just the eigenvalues of \(\Sigma^\infty \), \(\Sigma_{1} \) follows for \(C_k \). From [9], Corollary 2.1, \(H_k \) satisfies (S3).

Now assume that \(P \) and \(C \) are proper and that \(I + B_f H_{f} G_{f} C_{f} \neq -\alpha I \) for any \(\alpha > 0 \). Then, by Lemma 4 and (10), there exist stable matrices \(\Sigma \) and \(\Pi \) such that \(I + B_f H_{f} G_{f} C_{f} = \Sigma \Pi, \) so \(\Sigma^{-1} \Pi \) is stable. Let \(A_{f} = \frac{1}{\Sigma} \Sigma_1 \) and fix \(F_{f} = 0 \). Then \(P_k \) is strictly proper and \(P_k \rightarrow P \) strongly. Letting \(C_k = C \), [9], Corollary 2.1, again implies \(H_k \rightarrow H \) strongly and \(H_k \) proper. Based on the construction in the preceding paragraph, for each \(k \) we can find a sequences \(P_{kj} \rightarrow P \) and \(C_{kj} \) such that \(C_{kj} \) is strictly proper and \(C_{kj} \rightarrow C_k \) and \(H_{kj} \rightarrow H_k \) strongly as \(j \rightarrow \infty \) for every \(k \). Hence, there exists a sequence of integers \(j_k \in \infty \) such that \(P_{kj_k}, C_{kj_k}, \text{ and } H_{kj_k} \) are strongly convergent.

Next, assume \(P \) and \(C \) are proper, but \(I + B_f H_{f} G_{f} C_{f} \neq -\alpha I \) for some \(\alpha > 0 \). Then there exists a sequence \(B_{f,k} \rightarrow B_f \) such that \(I + B_{f,k} H_{f} G_{f} C_{f} \neq -\beta_k I \) for any \(\beta_k > 0 \). Fix \(A_{f} = 0 \) and \(F_{f} = 0 \), but use \(B_{f,k} \) in place of \(B_{f} \) in (??). Then \(P_k \) is proper, \(\Sigma = C, \) and \(P_k \rightarrow P \) strongly, since its poles are constant. As in the proof of Lemma 3, \(\deg \Delta_{ck} \) is constant; hence, \(H_k \rightarrow H \) strongly with \(H_k \) proper. As in the preceding paragraph, we may construct \(P_{kj}, C_{kj}, \text{ and } j_k \) such that \(P_{kj_k}, C_{kj_k}, \text{ and } H_{kj_k} \) are strongly convergent.

Finally, suppose \(P \) and \(C \) are not both proper. Then, from Lemma 3, the construction (13) and (14) yields strongly convergent proper sequences \(P_k, C_k, \) and \(H_k \) with \(R_{\infty} \rightarrow R_{\infty} \). From the preceding paragraph, we may construct \(P_{kj}, C_{kj}, \text{ and } j_k \) such that \(P_{kj_k}, C_{kj_k}, \text{ and } H_{kj_k} \) are strongly convergent.

We note that condition (S3) along with properness of \(H_k \) imply BIBO stability of \(H_k \) for large \(k \). Hence, the construction in the proof of Theorem 5 yields strong perturbations of \(P \) and \(C \) under which the closed-loop system is robustly stable. This establishes sufficiency of \(R_{\infty} > 0 \).
References

