EXPLORATION ON DEEP DRUG DISCOVERY:
REPRESENTATION AND LEARNING

by

Shengchao Liu

A thesis submitted in partial fulfillment of
the requirements for the degree of

Master of Science
(Computer Science)

at the
UNIVERSITY OF WISCONSIN-MADISON

September 2018
I certify that I have read this thesis and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Master of Science.

(Anthony Gitter) Principal Adviser

I certify that I have read this thesis and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Master of Science.

(Yingyu Liang)

I certify that I have read this thesis and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Master of Science.

(Spencer S. Ericksen)

Approved for the University of Wisconsin-Madison Committee on Graduate Studies
I would first like to thank my thesis advisor, Professor Anthony Gitter. The door to Prof. Gitter office was always open when I ran into problems on my research projects or paper writing. He can guide me in the right direction for my research problems.

I would also thank Prof. Yingyu Liang and Dr. Spencer Ericksen for helping with my thesis project and being in my committee. Prof. Liang helped guide me to solve about problem from very special aspect, like apply n-gram idea on the graph structural data. And Dr. Ericksen helped offering rich domain knowledge for my questions on the drug discovery projects.

In addition, I would like to thank all my co-authors and labmates. Special thanks to Moayad Alnammi, Scott A. Wildman, Thevaa Chandereng, Small Molecule Screening Facility group at University of Wisconsin-Madison, Chengpeng Wang for helpful discussion.

Finally, I am grateful for computing resources from NVIDIA and the University of Wisconsin-Madison Center for High Throughput Computing and support provided by the University of Wisconsin-Madison Office of the Vice Chancellor for Research and Graduate Education with funding from the Wisconsin Alumni Research Foundation.
Contents

Acknowledgments iv

1 Starting from A Standard Pipeline 1

1.1 Introduction .. 1
1.2 Background ... 2

1.2.1 Dataset ... 2
1.2.2 Compound Features ... 4

1.3 Virtual Screening Models ... 5

1.3.1 Ligand-Based Neural Networks 5
1.3.2 Other Ligand-Based Models 7
1.3.3 Protein-Ligand Docking 7
1.3.4 Chemical Similarity Baseline 8
1.3.5 Evaluation Metrics ... 8
1.3.6 Pipeline ... 10
1.3.7 Data and Software Availability 12

1.4 Cross-Validation Results ... 12
1.5 Prospective Screening Results 15
1.6 Summary ... 17

2 Structural Representation and Learning 20

2.1 Introduction .. 20
2.2 Related Work .. 21

2.3 Background .. 22

2.3.1 Morgan Fingerprints and Simplified Molecular Input Line Entry System 22
2.3.2 Graph Representation ... 23
2.3.3 Message Passing in Graph-based Neural Network 23

2.4 Structural Learning Method: Graph-based Representation .. 24

2.4.1 Motivation .. 24
Contents

2.4.2 Relaxation and Problem Formulation 24
2.4.3 N-gram Graph: A Novel Molecule Representation 26
2.4.4 Atom Level: Segmented Random Projection 27
2.4.5 Molecule Level: N-Gram Graph ... 28
2.5 Experiments ... 29
 2.5.1 Qualitative Analysis ... 29
 2.5.2 Classification Tasks ... 30
 2.5.3 Regression Tasks .. 31
2.6 Summary .. 32

3 Reinforced Multi-task Learning .. 34
 3.1 Introduction ... 34
 3.2 Related Work .. 35
 3.2.1 Self-Paced Curriculum Learning 35
 3.2.2 Clustering-based Multi-task Learning 35
 3.2.3 Deep Multi-task Learning ... 35
 3.2.4 Meta Learning and Reinforcement Learning 36
 3.3 Problem Background .. 36
 3.3.1 Annotation ... 36
 3.3.2 Deep Single-task and Multi-task Learning 37
 3.4 Methodology ... 38
 3.4.1 Multi-task Reinforcement Learning 38
 3.4.2 Value-based Method .. 39
 3.4.3 Policy-based Methods .. 39
 3.4.4 Pipeline ... 40
 3.4.5 Reward Function on A Focused Task 41
 3.5 Experiments and Preliminary Results 41
 3.5.1 Experiment Setup ... 41
 3.5.2 Performance Comparison ... 42
 3.6 Summary .. 43

A Appendix: Starting from A Standard Pipeline 44
 A.1 PCBA Query ... 44
 A.2 Data Preprocessing .. 44
 A.2.1 Complex Matrix Composition 44
 A.2.2 Fold Splitting ... 45
 A.2.3 Label Imbalance ... 45
 A.2.4 Missing Label Imputation ... 46

vi
A.3 PCBA, PriA-SSB AS, PriA-SSB FP, and RMI-FANCM FP Data Distribution 47
A.4 Hyperparameter Grid Search 50
A.5 Cross-Validation Results on PriA-SSB FP and RMI-FANCM FP 52
A.5.1 Cross-Validation Performance on PriA-SSB FP 52
A.5.2 Cross-Validation Performance on RMI-FANCM FP 56
A.6 Prospective Screening: PriA-SSB prospective Metrics 60
A.7 Prospective Screening: Actives in Top 250 Predictions 62
A.8 Prospective Screening: UpSet Plots for Active Compound Clusters 63

B Appendix: Structural Representation and Learning 64
B.1 Task Specification 64
B.2 Node Attribute Matrix Specification 65
B.3 Result Classification Tasks 66
B.3.1 ROC on Tox21 66
B.3.2 Generalization Performance on Tox21 69

Bibliography 70
List of Tables

1.1 Summary statistics for the four binary datasets. 3
1.2 Summary of virtual screening methods 8
1.3 Model ranking on DTK+Mean 14
1.4 Number of actives in top-250 15

2.1 Models list for N-Gram Graph 29
2.2 Results on Tox21 31
2.3 Results on Delaney, Malaria, CEP 32

A.2 Hyperparameter sweeping for classification neural networks (STNN-C and MTNN-C). 50
A.3 Hyperparameter sweeping for regression neural networks (STNN-R). 50
A.4 Hyperparameter sweeping for LSTM neural networks. 50
A.5 Hyperparameter sweeping for random forests (RF). 51
A.6 Hyperparameter sweeping for IRV. 51
A.7 PS results, on-target evaluation 60
A.8 PS results, off-target evaluation 61
A.9 Number of hits in PS 62

B.1 Number of active and total molecules for each task in Tox21. 64
B.2 Node attribute matrix specification 65
B.3 ROC on Tox21 66
B.4 Generalization performance on Tox21 69
List of Figures

1.1 Morgan fingerprints example ... 5
1.2 Morgan fingerprints and SMILES example 5
1.3 Neural network structures .. 6
1.4 Evaluation on CV ... 13
1.5 UpSet plot on top predictions ... 16

2.1 Motivation for structural learning 25
2.2 Pipeline for Structure Graph Neural Network 26
2.3 Pipeline for segmented random projection 28
2.4 Molecule similarity comparison 30

3.1 Deep neural network structures 37
3.2 Pipeline for the multi-task reinforcement learning 40
3.3 RMTL performance on PCBA ... 43

A.1 Cross-validation performance with AUC[ROC] 52
A.2 Cross-validation performance with AUC[PR] 53
A.3 Cross-validation performance with AUC[BEDROC] 54
A.4 Cross-validation performance with EF@1% 55
A.5 Cross-validation performance with AUC[ROC] 56
A.6 Cross-validation performance with AUC[PR] 57
A.7 Cross-validation performance with AUC[BEDROC] 58
A.8 Cross-validation performance with EF@1% 59
A.9 UpSet plot on MCS clusters ... 63
A.10 UpSet plot on SIM clusters .. 63
Chapter 1

Starting from A Standard Pipeline

We start from a benchmark project, so as to build up the whole framework for applying machine learning on drug discovery. Co-authors of [54] contributed to the contents of this chapter.

1.1 Introduction

Drug discovery is time consuming and expensive. After a specific protein or mechanistic pathway is identified to play an essential role in a disease process, the search begins for a chemical or biological ligand that can perturb the action or abundance of the disease target in order to mitigate the disease phenotype. A standard approach to discover a chemical ligand is to screen thousands to millions of candidate compounds against the target in biochemical or cell-based assays via a process called high-throughput screening (HTS), which produces vast sets of valuable pharmacological data. Even though HTS assays are highly automated, screens of thousands of compounds sample only a small fraction of the millions of commercially-available, drug-like compounds. Cost and time preclude academic laboratories and even pharmaceutical companies from blindly testing the full set of millions of drug-like compounds in HTS assays. Thus, there is a crucial need for an effective virtual screening (VS) process as a preliminary step in prioritizing compounds for HTS assays.

Virtual screening comprises two categories: structure-based [16, 53] and ligand-based methods [42, 94]. Structure-based methods require that the target protein’s molecular structure be known so that the 3D interactions between the target and each chemical compound (binding poses) may be predicted in silico. These interactions are given numerical scores, which are then used to rank compounds for potential binding to the target. These methods do not require or typically make use of historical screening data in compound scoring. In contrast, ligand-based methods require no structural information about the target but use data generated from testing molecules in biochemical or functional assays of the target to fit empirical models that relate compound attributes to assay outcomes.
For targets with abundant assay data or where a druggable binding site is not well-defined, such as the targets considered here, ligand-based methods are generally superior to structure-based methods [33, 43, 96]. Confronted with the variety of ligand-based model building methods (e.g., regression models, random forests, support vector machines, etc.) [65], compound input representations, and performance metrics, how should one proceed? The Merck Molecular Activity Challenge [64] incited the development of many ligand-based deep learning VS methods [18, 58, 61, 95, 77], as recently reviewed [12]. These methods are often assessed with cross-validation on existing HTS data, but there is presently little experimental evidence on the best option for prioritizing new compounds given a fixed screening budget.

We critically evaluated a collection of VS algorithms that include both structure-based and ligand-based methods. We present a VS workflow that first uses available HTS training data to systematically prune the specific versions of the algorithms and calculate their cross-validation performance on a variety of evaluation metrics. Based on the cross-validation results and analysis of the various evaluation metrics, we selected a single virtual screening algorithm. The selected method, a random forest model, was the best option for prioritizing a small number of compounds from a new library, as verified by experimental screening. These model selection and evaluation strategies can guide VS practitioners to select the best model for their target even as the landscape of available VS algorithms continues to evolve.

1.2 Background

1.2.1 Dataset

Our case studies were on new and recently generated datasets [98, 97] for the targets PriA-SSB and RMI-FANCM. The PriA-SSB interaction is important in bacterial DNA replication and is a potential target for antibiotics [74]. The RMI-FANCM interaction is involved in DNA repair that is induced in human cancer cells to confer chemoresistance to cytotoxic DNA-cross-linking agents, making it an attractive drug target [59]. We previously screened these targets with a library of compounds obtained from Life Chemicals Inc. (LC) in different assay formats. In addition, we screened new LC compounds on the PriA-SSB target to evaluate our VS models. The four datasets derived from these screens are described below and summarized in Table 1.1.

PriA-SSB AlphaScreen: We refer to these continuous values as "PriA-SSB % inhibition". Those compounds that tested above a certain activity threshold ($\geq 35\%$ inhibition) and passed PAINS chemical structural filters [8, 47] were retested in the same AS assay. Compounds that were confirmed in the AS retest screen ($\geq 35\%$ inhibition) were marked as actives, creating the binary dataset PriA-SSB AS.

PriA-SSB fluorescence polarization: Compounds that had PriA-SSB % inhibition $\geq 35\%$ and passed the PAINS filters were also tested in a fluorescence polarization (FP) assay as a secondary
screen. Those compounds with FP inhibition $\geq 30\%$ were labeled as actives, creating the binary dataset \textit{PriA-SSB FP}, with all other compounds in the screening set labeled inactive.

RMI-FANCM fluorescence polarization: The RMI-FANCM interaction was initially screened with a subset of 49,796 compounds from the same LC library as PriA-SSB [98]. We refer to these continuous values as "RMI-FANCM % inhibition". Those compounds that demonstrated activity ≥ 2 standard deviations (SD) above the assay mean and passed PAINS filters were marked as actives in the binary dataset \textit{RMI-FANCM FP}.

PriA-SSB prospective: In subsequent screens used for prospective testing, we tested an additional 22,434 compounds, purchased from LC after the initial screening was complete. There was no overlap between these compounds and the 72,423 LC compounds described above that were used to train VS models. Actives were defined with the same criteria used for the binary dataset \textit{PriA-SSB AS}. Compounds with at least 35% inhibition that passed the PAINS filters were retested with the AS assay. Those with at least 35% inhibition in the AS retest were labeled as actives, creating the binary dataset \textit{PriA-SSB prospective}.

Because secondary screens and structural filters were used to define the active compounds, there was no single primary screen % inhibition threshold that separated the actives from the inactives. Some compounds exhibiting high % inhibition values were labeled as inactive because they did not satisfy the structural requirements or were not active in the secondary screen.

<table>
<thead>
<tr>
<th>Stage</th>
<th>Dataset</th>
<th>% inhibition threshold</th>
<th># actives</th>
<th># inactives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cross-validation</td>
<td>PriA-SSB AS</td>
<td>$\geq 35%$</td>
<td>79</td>
<td>72,344</td>
</tr>
<tr>
<td></td>
<td>PriA-SSB FP</td>
<td>$\geq 30%$</td>
<td>24</td>
<td>72,399</td>
</tr>
<tr>
<td></td>
<td>RMI-FANCM FP</td>
<td>≥ 2 SD</td>
<td>230</td>
<td>49,566</td>
</tr>
<tr>
<td>Prospective</td>
<td>PriA-SSB prospective</td>
<td>$\geq 35%$</td>
<td>54</td>
<td>22,380</td>
</tr>
</tbody>
</table>

To help learn a better chemical representation with multi-task neural networks, we considered other screening contexts from which to transfer useful knowledge. We used a specific subset of 128 assays (AIDs) from the \textit{PubChem BioAssay (PCBA)} [100] repository. This dataset was used in previous work on multi-task neural networks [77]. This subset contained assays that probe a specific protein target and provide dose-response measurements (assay query filters, see Appendix A.1). Potency and curve quality are factored into a PubChem Activity Score. Regardless of assay, compounds receiving a PubChem Score of 40 or greater (0-100) were assigned a PCBA Bioactivity outcome (label) of "Active". Compounds receiving PC Activity Scores 1-39 were labeled "Inconclusive," and those receiving 0 are labeled "Inactive" (Appendix A.2 and Appendix A.3).
1.2.2 Compound Features

Ligand-based virtual screening methods require each chemical compound to be represented in a particular format as input to the model. We adopted two common representations. All of the ligand-based algorithms except the Long Short-Term Memory (LSTM) neural network use Morgan fingerprints (1024 bits) \[80\]. For LSTM networks, we used the Simplified Molecular Input Line Entry System (SMILES) representation \[101\], where the characters were treated as sequential features. Both Morgan fingerprints and canonical SMILES were generated in RDKit \[1\].

Besides, people have found there exists a bottleneck when using Morgan fingerprints and SMILES. Recently more and more graph-based neural network models have been proposed, and in Chapter 2 we will have a further discussion on it. This chapter is focusing on building up a general framework so as to give a intuition on how to apply machine learning on drug discovery.

Further exploration of molecule representation will be discussed in Section 2.3.

Morgan Fingerprints

Morgan fingerprints \[80\] are produced by a widely accepted featurization mechanism to convert molecules to fixed-length bit strings. It is an iterative algorithm that encodes the circular substructures centered on each atom (node) of the molecule’s 2D graph as identifiers at increasing levels with each iteration. In each iteration, hashing is applied to generate new identifiers, and thus, there is a chance that two substructures are represented by the same identifier. In the end, a list of identifiers encoding the substructures are folded to bit positions of a fixed-length bit string. A 1-bit at a particular position indicates the presence of a substructure (or multiple substructures) and a 0-bit indicates its absence. The number of iterations, also called the radius, \(d\) and length of the bit string \(l\) is set by the user. We used the common setting of \(d = 4\) and \(l = 1024\). Section 1.2.2 illustrates the concept with a small fixed-length bit string.

Morgan fingerprints are commonly used as features for molecules in predicting drug activity. \[62\] report that a Deep Neural Network trained on Morgan fingerprints had similar performance to one trained on molecular descriptors. We use them in a supervised learning setting where the input features are the Morgan fingerprints and the target activities are the output labels. The goal is to train a supervised learning model that is able to generalize to fingerprint instances outside of the training set.

Simplified Molecular Input Line Entry System

The second option for feature representation is \[101\] Simplified Molecular Input Line Entry System (SMILES). Each molecule can be represented via a SMILES sequence, which consists of around 35 different characters. For example, \(\text{c1cc(oc1C(-O)Nc2nc(cs2)C(-O)OCC)Br}\) is a canonical SMILES for the molecule in Figure 1.2. All atoms, except for Br, Cl, and Si, are represented by single
Figure 1.1: Morgan fingerprints used in a supervised learning (SL) setting for learning drug activity. Credit goes to S. Lusher and G. Schaftenaar. 2-D searching Tutorial (http://www.cmbi.ru.nl/edu/bioinf4/2D-Prac/2d.shtml).

alphabetic characters. Atoms adjacent to each other or linked by '=' or '#' sign means they are bonded, where any sequence between numbered elements is in a ring closed by those numbered elements.

Figure 1.2: Three variants of representations for a molecule example. The graph for one molecule example is displayed as above. The canonical SMILES is c1cc(oc1C(=O)Ne2nc(cs2)C(=O)OCC)Br, and Morgan fingerprints is [000000...00100100100...000000].

1.3 Virtual Screening Models

We selected a variety of existing virtual screening approaches for our benchmarks and prospective predictions. These included ligand-based supervised learning approaches, structure-based docking, and a chemical similarity baseline. Table 1.2 summarizes the types of training data used by each algorithm. We discuss hyperparameter tuning for these models in Section 1.3.6.

1.3.1 Ligand-Based Neural Networks

Deep learning is a machine learning approach that encompasses neural network models with multiple hidden layer architectures and the techniques for training these models. It represents the state of the art for many predictive tasks, which has generated extensive interest in deep learning for biomedical
research, including virtual screening [12]. We evaluated multiple types of established neural network architectures for virtual screening.

Figure 1.3: Neural network structures. The neural networks map the input features (e.g. fingerprints) in the input (bottom) layer to intermediate chemical representations in the hidden (middle) layers and finally to the output (top) layer, which makes either continuous or binary predictions. Figure 1.3(a) has only one unit in the output layer. Figure 1.3(b) has multiple units in the output layer representing different targets, one for our new target of interest and the others for PCBA targets.

Single-task Neural Network (STNN): A single-task neural network (Figure 1.3(a)) makes a single prediction for a single target (also referred to as a task). We trained a separate model for each of the PriA-SSB AS, PriA-SSB FP, and RMI-FANCM FP datasets, taking a compound’s Morgan fingerprints elements (1024 bits) as the input features. We trained the neural networks using Keras [13] with the Theano backend [90]. The single-task neural networks were trained on each task to predict either the binary activity label in the classification setting (STNN-C) or the continuous % inhibition in the regression setting (STNN-R).

Multi-task Neural Network (MTNN): Multi-task neural networks make different predictions for multiple targets or tasks but share knowledge by training the first few hidden layers together. Each of our multi-task neural networks included one target task (PriA-SSB AS, PriA-SSB FP, or RMI-FANCM FP) and 128 tasks from PCBA. We only trained multi-task neural networks in the classification setting (MTNN-C).

Single-task Atom-level LSTM (LSTM): The LSTM is one of most prevalent recurrent neural network models [34], which has been applied previously in virtual screening [37]. An LSTM assumes there exists a sequential pattern in the input string. We used a one-hot encoding of the SMILES strings as input for the LSTM model. In a one-hot encoding, each character in a SMILES string
is replaced by a binary vector. The binary vector has one bit for each possible unique character in all SMILES strings. At each position in a SMILES string, the bit corresponding to the character at that position is set to 1, and all other bits are set to 0. We trained the LSTM model to predict the binary activity labels.

Influence Relevance Voter (IRV): IRV [88, 57] is a hybrid between \(k \)-nearest neighbors and neural networks. Each compound’s output value is a non-linear combination of the similarity scores from its most closely related compounds in the training dataset. We used Morgan fingerprints as the input and trained separate IRV models for each dataset.

1.3.2 Other Ligand-Based Models

Random Forest (RF): Random forests are ensembles of decision trees that are often used as a baseline in virtual screening benchmarks [78, 102]. We used scikit-learn [75] to train a random forest classifier for each binary label with Morgan fingerprints as features.

1.3.3 Protein-Ligand Docking

Target Preparation: Our structure-based VS approach involved the docking-based ranking of the LC library to the holo-form of PriA, using the crystal structure (PDB: 4NL8) [9] in which it is bound to a C-terminal segment of an SSB protein. A missing loop in this structure was added from the apo-form (PDB: 4NL4), though this is not near the SSB binding site. The docking search space was limited to 8Å from the coordinates of the co-crystallized SSB C-terminal tripeptide.

Compound Preparation: LC library compounds were assigned 3D coordinates and Merck Molecular Force Field partial charges using OpenEye OMEGA and Molcharge [32], respectively. Compounds in the LC library with ambiguous stereochemistry were enumerated to test all possible configurations, and the best resulting docking score was retained for each.

Docking (Dock) and Consensus Docking (CD): We ran eight different docking programs and generated nine docking scores. The docking programs and names we use for their scores are AutoDock v4.2.6 [68] (Dock_ad4), Dock v6.7 [3] (Dock_dock6), FRED v3.0.1 [63] (Dock_fred), HYBRID v3.0.1 [63] (Dock_hybrid), PLANTS v1.2 [41] (Dock_plants), rDock v2013.1 [83] (Dock_rdocktot and Dock_rdockint), Smina v1.1.2 [40] (Dock_smina), and Surflex-Dock v3.040 [14] (Dock_surflex). In addition, we calculated consensus docking scores using three traditional approaches (CD_mean, CD_median, and CD_max) and two versions of the Boosting Consensus Score (CD_efr1_opt and CD_rocauc_opt) [25]. The Boosting Consensus Score method was trained using 21 of the DUD-E benchmark targets [70] without any PriA-SSB or RMI-FANCM assay data. Compounds with missing scores due to failures in preparation or docking were not considered during evaluation.
1.3.4 Chemical Similarity Baseline

In the prospective screening stage, we introduced a simple baseline compound ranking method against which to compare more sophisticated VS methods. Each of the 22,434 compounds in the prospective screening set was compared to the actives in PriA-SSB AS using Tanimoto similarity on the Morgan fingerprints. Compounds in the prospective library were ranked by their similarity, and those with Tanimoto similarity ≥ 0.45 to any active compound in the initial screen were predicted to be active.

In addition, all compounds were clustered by two separate approaches to describe chemical series. Chemical similarity based hierarchical clusters on Morgan fingerprints using Ward’s clustering are described as SIM. Maximum common substructure clusters, used to group molecules with similar scaffolds, are described as MCS. JKlustor was used for both types of clustering (JChem v17.26.0, ChemAxon).

<table>
<thead>
<tr>
<th>Model</th>
<th>Continuous % inhibition</th>
<th>Binary label</th>
<th>PCBA binary labels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dock</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STNN-C</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STNN-R</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MTNN-C</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>MTNN-R</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>LSTM</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RF</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IRV</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Similarity baseline</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1.2: A summary of the virtual screening methods and labels used by each model. The docking and consensus docking models do not train on the PriA-SSB or RMI-FANCM datasets.

1.3.5 Evaluation Metrics

Given our goal of developing VS methods that enable very small, cost-effective, productive screens, we considered how metrics weight early active retrieval. All of the VS algorithms produce a ranked list of compounds, where compounds are ordered by the probability of being active, the continuous predicted % inhibition, the docking score, or a comparable output value. For a ranked list of compounds, we can threshold the ranked list and consider all compounds above the threshold as positive (active) predictions and those below the threshold as negative (inactive). By comparing those predictions to the experimentally-observed activity, we can compute true positive (TP), false positive (FP), true negative (TN), and false negative (FN) predictions for that ranked list at that
threshold. We explored several options for summarizing how well each algorithm ranks the known active compounds.

The area under the receiver operating characteristic curve (AUC[ROC]) has been recommended for virtual screening because it is robust, interpretable, and does not depend on user-defined parameters [72]. The ROC curve plots the relationship between true positive rate (TPR, also known as sensitivity or recall) and false positive rate (FPR, equivalent to 1 - specificity), which are defined in Section 1.3.5. As the FPR goes to 100%, all ROC curves will converge, whereas early active retrieval (a more meaningful characteristic of VS performance) can be assessed in the low FPR region of the ROC curve, which exhibits greater variability across VS methods. Thus, we also considered the Boltzmann-enhanced discrimination of receiver operating characteristic (BEDROC) [93]. It emphasizes the early part of the ROC curve through a scaling function α, which we set to 10 for our purposes of early enrichment up to 20%. We used the BEDROC implementation from the CROC Python package [87].

\[
TPR = \frac{TP}{TP + FN}, \quad FPR = \frac{FP}{FP + TN}
\] (1.1)

\[
Recall = \frac{TP}{TP + FN}, \quad Precision = \frac{TP}{TP + FP}
\] (1.2)

Area under the precision-recall curve (AUC[PR]) is another common metric (Section 1.3.5). AUC[PR] has an advantage over AUC[ROC] for summarizing classifier performance when the class labels are highly-skewed, as in virtual screening where there are few active compounds in a typical library. AUC[PR] evaluates a classifier on its ability to retrieve actives (recall) and which of the predicted actives correctly classified (precision) as we vary the prediction threshold. We used the PRROC R package [29] to compute AUC[PR] because it correctly interpolates between points in the PR curve when there are ties in the compound rankings [19].

Another VS metric is enrichment factor (EF), which is the ratio between the number of actives found in some prioritized subset of compounds versus the expected number of actives in a random subset of same size. In other words, it assesses how much better the VS method performs over random compound selection. Let $R \in [0\%, 100\%]$ be a pre-defined fraction of the compounds from the total library of compounds screened.

\[
EF_R = \frac{\# \text{actives in top } R \text{ ranked compounds}}{\# \text{actives in entire library} \times R}
\] (1.3)

\[
EF_{\text{max},R} = \frac{\min\{\# \text{actives}, \text{total } \# \text{compounds} \times R\}}{\# \text{actives in entire library} \times R}
\] (1.4)
EF_{max,R} represents the maximum enrichment factor possible at \(R \). Difficulty arises when interpreting EF scores because they vary with the dataset and threshold \(R \). We defined the normalized enrichment factor (NEF) as:

\[
NEF_R = \frac{EF_R}{EF_{max,R}}
\]

Because \(NEF_R \in [0,1] \), it is easier to compare performance across datasets and thresholds. 1.0 is the perfect normalized enrichment factor. Furthermore, we can create an NEF curve as \(NEF_R \) versus \(R \in [0\%, 100\%] \) and compute the area under that curve to obtain AUC[NEF] \(\in [0,1] \). However, most models tend to exhibit similar late enrichment behavior. We are typically interested in early enrichment behavior so we computed AUC[NEF] using \(R \in [0\%, 20\%] \).

Finally, we introduce the metric \(n_{hits} \) which is simply the number of actives found in a selected number of tested compounds (e.g. how many hits or actives were found in 250 tested compounds). This metric represents the typical desired utility of a screening process: retrieve as many actives as possible in the selected number of tests (denoted as \(n_{tests} \)). We compare \(n_{hits} \) at various \(n_{tests} \) to the different evaluation metrics to identify which metrics best mimic the \(n_{hits} \) utility.

1.3.6 Pipeline

Our virtual screening workflow contains three stages:

1. Tune hyperparameters in order to prune the model search space.
2. Train, evaluate, and compare models with \(k \)-fold cross-validation results.
3. Assess the best models’ ability to prospectively identify active compounds in a new set.

In contrast to most other virtual screening studies, the experimental screen was not conducted until after all models were trained and evaluated in the cross-validation stage. For the first two stages, we first split the PriA-SSB AS, PriA-SSB FP, and RMI-FANCM FP datasets into five stratified folds as described in Appendix A.2.

Hyperparameter Sweeping Stage

Hyperparameters are model configurations or settings that can be set by an expert as opposed to the weights or parameters that are learned or fit during model training. For example, in neural networks the hyperparameters include the number of hidden layers, the number of hidden units in each layer, types of activation functions, drop out ratios, learning rates, etc. In random forests, hyperparameters include the number and depth of trees, the size of the subsamples, etc.

For most of the ligand-based machine learning models, the hyperparameter space was too large for exhaustive searches using the full dataset. Therefore, we applied a grid search on a pre-defined
set of hyperparameters in a smaller dataset and pruned those that performed poorly. We performed
a single iteration of training on the first four folds of PriA-SSB AS to avoid over-fitting. The
hyperparameters considered are listed in Appendix A.4.

Cross-Validation Stage

To identify which VS algorithms are likely to have the best performance in a prospective screen, we
applied a traditional cross-validation training strategy on datasets PriA-SSB AS, PriA-SSB FP,
and RMI-FANCM FP after reducing the hyperparameter combinations to consider. Selecting the
best model is non-trivial. Ideally, the best model would have dominant performance on all evaluation
metrics, but this is rarely observed with existing models. Each evaluation metric prioritizes different
performance characteristics. Our cross-validation results illustrate which models consistently per-
form well over different metrics, the correspondence of metrics relative to a desired utility (n_hits),
and how to choose models and evaluation metrics in order to successfully identify active compounds
in a prospective screen.

Cross-validation is commonly used to avoid over-fitting when there are few training samples. We
split the training data into 5 folds: 4 folds for training and 1 for testing. Models like RF and IRV
that do not require a hold-out dataset for early stopping used 4 folds for training. Other models
like the neural networks perform early-stopping based on a hold-out set, so we iteratively selected 1
of the 4 training data folds for this purpose. This led to a nested cross-validation with $5 \times 4 = 20$
trained neural networks.

Prospective Screening Stage

Our prospective screen used a library of 22,434 new LC compounds that were not present in the
training set. We used each VS model to prioritize 250 of these compounds that are most likely to
be active. This emulates virtual screening on much larger compound libraries, in which only a small
fraction of all computationally scored compounds can be tested experimentally. After finalizing the
models' predictions, we screened all 22,434 compounds in the wet lab and assigned actives based on
a 35 % inhibition threshold and structural filters (PriA-SSB prospective). Finally, we evaluated
how many of the wet lab actives each VS method identified in its top 250 predictions, the number
of distinct chemical clusters recovered, and the number of active compounds that were not in the
top 250 predictions from any of the VS algorithms. The prospective screen allowed us to assess how
well the cross-validation results generalized to new compounds and further verified our conclusions
from the retrospective cross-validation tests.
1.3.7 Data and Software Availability

Code implementing our ligand-based virtual screening algorithms is available at https://github.com/gitter-lab/pria_lifechem. This GitHub repository also contains additional Jupyter notebooks to reproduce the visualizations and analyses. Version 0.1.0 of our software is archived on Zenodo (doi:10.5281/zenodo.1257674). Our PriA-SSB and RMI-FANCM HTS data will be made available on PubChem. A formatted version of this dataset for training virtual screening algorithms is available on Zenodo (doi:10.5281/zenodo.1257462).

1.4 Cross-Validation Results

In the cross-validation stage we assessed 35 models: 8 neural networks (STNN-C, STNN-R, MTNN-C, and LSTM), 8 random forests (RF), 5 influence relevance voter (IRV), and 14 from docking (Dock) or consensus docking (CD). When there are multiple versions of a model that use different hyperparameters, we distinguish them with alphabetic suffixes such as "_a" and "_b". [54] describes the hyperparameters associated with these suffixes. We highlight the PriA-SSB AS dataset as a representative example, but the VS workflow is applicable for all tasks.

Comparing Virtual Screening Algorithms

We tested all 35 models on three datasets, and the results for four evaluation metrics on the PriA-SSB AS dataset are shown in Figure 1.4. Appendix A.5 contains the results for PriA-SSB FP and RMI-FANCM FP. The PriA-SSB AS performance using AUC[ROC] was comparable for most models, where nearly all models except LSTM and the docking programs were above 0.8 AUC[ROC]. Random forest was the best model, reaching AUC[ROC] of approximately 0.9.

Random forest was again the best method for the RMI-FANCM FP dataset for most of the evaluation metrics (Appendix A.5). On the PriA-SSB FP dataset, STNN-R achieved the highest scores over the majority of the metrics (Appendix A.5). The other types of VS models were effectively tied for most metrics (details in [54]).

Evaluation Metrics

Given a fixed evaluation metric, we could compare two models with a t-test to assess if one statistically outperforms the other. However, we needed to make such comparisons repeatedly between each pair of models and required a statistical test that accounts for multiple hypothesis testing. Due to unequal variances and sample sizes (Figure 1.4), we used Dunnett’s modified Tukey-Kramer test (DTK) [48, 21] for pairwise comparison to assess whether the mean metric scores of two models were significantly different.
Using DTK results for each metric, we scored each model based on how many times it attained a statistically significantly better result than other models (details in [54]). For most metric-target pairs, many models have the same rank because DTK does not report a significant difference. Based on DTK alone, RF models consistently place in the top five ranks for each metric-target pair.

In a prospective screen, our goal is to maximize the number of active compounds identified by a VS algorithm given a fixed budget (number of predictions). We wanted to determine which of the evaluation metrics commonly used for VS best aligns with n_{hits}; i.e. maximizing the metric leads to maximizing n_{hits}. We assume that n_{hits} is ultimately the desired utility to maximize. Thus, we compared the model ranking induced by each metric with the model ranking induced by n_{hits} at varying number of tests.
To score the evaluation metrics, we used Spearman’s rank correlation coefficient based on the model rankings induced by the metric of concern versus \(n_{\text{hits}} \) at a specific \(n_{\text{tests}} \). We then ranked the metrics based on their correlation with \(n_{\text{hits}} \). The correlation coefficients and metric rankings can be found in [54]. The metric ranking varies depending on \(n_{\text{tests}} \) and the target. Some metrics overtake one another as we increase or decrease \(n_{\text{tests}} \). For PriA-SSB AS, NEF\(_R\) consistently placed in the top ranking correlations when \(R \) coincided with \(n_{\text{tests}} \). This is evident when we focus on a single metric and see the top ranking metrics for \(n_{\text{tests}} \in [100, 250, 500, 1000, 2500] \). Only for a large enough \(n_{\text{tests}} \) do metrics like AUC[ROC] that evaluate the complete ranked list become comparable. This suggests that if we know \textit{a priori} how many new compounds we can afford to screen, then NEF\(_R\) at a suitable \(R \) is a viable metric for choosing a VS algorithm during cross-validation in the hopes of maximizing \(n_{\text{hits}} \).

Selecting the Best Model

Based on these results, we selected the VS screening models that are most likely to generalize to new compounds and identify actives in our experimental screen of 22,434 new compounds. We focus on PriA-SSB for the prospective screen using models trained on PriA-SSB AS because the assay was more readily available for us to generate data for the new compounds.

Table 1.3 compares model selection based on evaluation metric means alone versus the DTK+Mean approach for multiple evaluation metrics on the three tasks. The complete model rankings for means only and DTK+Means can be found in [54]. DTK+Mean ranks models by statistical significance and uses the mean value only for tie-breaking. Both strategies selected the same models for a fixed evaluation metric, except for AUC[PR] on all three tasks and NEF\(_1\%\) for RMI-FANCM FP. This is mainly due to DTK not detecting statistically significant differences among the models’ evaluation scores, so tie-breaking by means selected the same models as ranking by means. Recall that PriA-SSB FP has fewer actives than PriA-SSB AS and RMI-FANCM FP (Table 1.1). Similar models from random forest and STNN-C were selected for PriA-SSB AS and RMI-FANCM FP. However, PriA-SSB FP identified STNN-R models exclusively.

<table>
<thead>
<tr>
<th>Metric</th>
<th>Best by Mean Model</th>
<th>Best by DTK+Mean Model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PriA-SSB AS</td>
<td>PriA-SSB FP</td>
</tr>
<tr>
<td>AUC[ROC]</td>
<td>RF(_d)</td>
<td>STNN-R(_a)</td>
</tr>
<tr>
<td>AUC[BEDROC]</td>
<td>RF(_h)</td>
<td>STNN-R(_b)</td>
</tr>
<tr>
<td>AUC[PR]</td>
<td>RF(_h)</td>
<td>STNN-R(_a)</td>
</tr>
<tr>
<td>NEF(_1%)</td>
<td>RF(_h)</td>
<td>STNN-R(_b)</td>
</tr>
</tbody>
</table>

In our prospective screen, each model prioritizes 250 top-ranked compounds, approximately 1%
of the new LC library. In this setting where each model has a fixed budget for the predicted com-
pounds, NEF$_R$ is a suitable metric. Therefore, we used NEF$_{1\%}$ with DTK+Means to choose the best
models from each class. The best-in-class models were RandomForest_h, SingleClassification_a,
SingleRegression_b, MultiClassification_b, LSTM_b, IRV_d, and ConsensusDocking_efr1_opt,
with RandomForest_h being the strongest model overall (details in [54]).

1.5 Prospective Screening Results

After selecting the best model from each class based on cross-validation and the NEF$_{1\%}$ metric, we
retrained the models on all 72,423 LC compounds to predict PriA-SSB inhibition using the same
types of data shown in Table 1.2. This provided a single version of each model instead of one for
each cross-validation fold. All models then ranked 22,434 new LC compounds that were provided
blind, without activity labels. We selected the top 250 ranked new compounds from each model.
Then, we experimentally screened all 22,434 new compounds to assess PriA-SSB % inhibition and
defined actives based on a 35% inhibition and PAINS filters. The new binary dataset PriA-SSB
prospective contained 54 actives.

Table 1.4 presents how many of the 54 actives were identified by each of the best-in-class virtual
screening methods, along with the chemical structure similarity baseline. For comparison, randomly
selecting 250 compounds from the PriA-SSB prospective dataset is expected to identify less than
one active.

Table 1.4: The number of active compounds in the top 250 predictions from the seven selected
models and the chemical similarity baseline compared to the number of experimentally-identified
actives. These selected models are the best in each algorithm category from cross-validation. The
last two columns correspond to the number of distinct chemical clusters from similarity or maximum
common substructure clustering that are represented among the 54 actives. Complete hits on all
models are in Appendix A.7.

<table>
<thead>
<tr>
<th>Model</th>
<th>Actives</th>
<th>Actives not in baseline</th>
<th>SIM clusters</th>
<th>MCS clusters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental</td>
<td>54</td>
<td>–</td>
<td>27</td>
<td>35</td>
</tr>
<tr>
<td>Similarity baseline</td>
<td>31</td>
<td>–</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>CD_efr1_opt</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>STNN_C_a</td>
<td>29</td>
<td>4</td>
<td>11</td>
<td>8</td>
</tr>
<tr>
<td>STNN_R_b</td>
<td>28</td>
<td>7</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>LSTM_b</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>MTNN_C_b</td>
<td>27</td>
<td>3</td>
<td>13</td>
<td>9</td>
</tr>
<tr>
<td>RF_h</td>
<td>37</td>
<td>7</td>
<td>13</td>
<td>9</td>
</tr>
<tr>
<td>IRV_d</td>
<td>29</td>
<td>4</td>
<td>13</td>
<td>9</td>
</tr>
</tbody>
</table>

Table 1.4 also lists the number of distinct chemical clusters identified by each method, with the
goal of identifying as many diverse compounds as possible. The 54 experimental hits represent 27
SIM and 35 MCS clusters or chemical series. Commonly, virtual screening is followed by a medicinal
chemistry effort that would be expected to identify other members of these clusters.

In general, the number of distinct chemical clusters captured in the top 250 predictions is correlated with the number of actives (Table 1.4), meaning that the methods selected structurally diverse hits. The best ligand-based approaches predicted at least one compound from half of the SIM clusters but a smaller fraction of the MCS clusters. RF found the most actives and the most distinct chemical clusters.

![UpSet plot](image)

Figure 1.5: An UpSet plot showing the overlap between the top 250 predictions from the selected VS models and the chemical similarity baseline on PriA-SSB prospective. The plot generalizes a Venn diagram by indicating the overlapping sets with dots on the bottom and the size of the overlaps with the bar graph [51]. Altogether, the combined predictions from the best-in-class VS methods found 43 of the 54 actives.

On the PriA-SSB prospective dataset, only the RF model recovered more active compounds in its top 250 predictions than the chemical similarity baseline. Cross-validation with NEF$_{1\%}$ as the metric successfully identified the best PriA-SSB model before the prospective screen. The similarity baseline included one active compound that was excluded from the top 250 compounds from RF (Figure 1.5), but RF recovered a different member from this active compound’s SIM and MCS clusters (Appendix A.8). The STNN-R model identified fewer total active compounds than the similarity baseline but more unique chemical clusters.

The ligand-based methods recovered many of the same actives as the chemical similarity baseline, but they also found actives that were missed by the baseline (Figure 1.5). There was a group of four active compounds that were identified by most ligand-based methods, including the baseline model. The best model, RF, identified two unique actives that were not detected by any other methods.
STNN-R was not the top performer overall but found five unique actives.

Trained Models are Target-Specific

As a control, we assessed the performance of models trained on RMI-FANCM FP instead of PriA-SSB AS for making PriA-SSB prospective predictions on the new 22,434 compounds. As expected, the RMI-FANCM FP models perform poorly on PriA-SSB prospective (Appendix A.6), indicating that the best PriA-SSB AS models have learned compound properties that are specific to PriA-SSB.

1.6 Summary

We followed a VS pipeline with the goal of maximizing the number of active compounds identified in a prospective screen with a limited number of predictions. From an initial pool of structure-based and ligand-based models, we pruned models in a hyperparameter search stage and conducted cross-validation with multiple evaluation metrics. We used DTK+Means with the NEF$_1\%$ metric to select the best models based on the cross-validation results and evaluated their top 250 prospective predictions from a new library of 22,434 compounds. The single best model from our pool, which was RandomForest$_h$ for PriA-SSB AS, was also the top performing model on PriA-SSB prospective. Therefore, our overall pipeline successfully identified the best prospective model.

Metrics like AUC[ROC] can compare models in general, regardless of cost or other additional constraints [72]. However, for virtual screening in practice, one typically only experimentally tests a small fraction of all compounds in the test library. In this setting, metrics like EF that capture early enrichment are preferable. In our prospective screen, STNN-R had higher AUC[ROC] than the random forest (Appendix A.6), but the random forest found 11 more active compounds in its top 250 predictions (Table 1.4). Our study suggests that EF$_R$, or its normalized version NEF$_R$, are the preferred metrics for identifying the best target-specific virtual screening method that maximizes n_{hits} when there is a budget for experimental testing. Other metrics like AUC[ROC] or AUC[PR], which is more appropriate for problems where the inactive compounds far outnumber the actives [19], may still be reasonable for benchmarking virtual screening methods on large existing datasets where the entire ranked list of compounds is evaluated [102].

Some recent studies [50, 78, 42] reported that deep learning models substantially outperform traditional supervised learning approaches, including random forests. Our finding that a random forest model was the most accurate in both cross-validation and our prospective screen does not refute those results. Rather, it reinforces that the ideal virtual screening method can depend on the training data available, target attributes, and other factors. Therefore, careful target-specific cross-validation is important to optimize prospective performance. One cannot assume that deep learning models will be dominant for all targets and all virtual screening scenarios. We also recommend
CHAPTER 1. STARTING FROM A STANDARD PIPELINE

hyperparameter exploration for all models, including traditional supervised learning methods. For example, our best random forest model contained 8000 estimators, whereas a previous benchmark considered at most 50 estimators [42].

Ramsundar et al. [77] showed that performance improved in multi-task neural networks as they added more training compounds and tasks. Furthermore, the degree of improvement varied across the datasets and was moderately correlated with number of shared active compounds among the targets within a single dataset. Task-relatedness also affects the success of multi-task learning but is difficult to quantify [38, 4]. We observed that PriA-SSB AS, PriA-SSB FP, and RMI-FANCM FP have no shared actives with any of the PCBA tasks, and multi-task neural networks were not substantially better than single-task neural networks in PriA-SSB AS cross-validation (Figure 1.4). The MTNN-C model outperformed the STNN-C model in the prospective evaluation (Table 1.4), possibly because multi-task learning can help prevent overfitting [81], but was still considerably worse than the random forest.

We focused on docking and well-established machine learning models instead of more recent deep learning models, such as graph-based neural networks [23, 39, 15, 60, 102]. This is because our main goal was to investigate the virtual screening principles for choosing the best model for a specific task (PriA-SSB AS) in a practical setting instead of broadly benchmarking virtual screening algorithms. In addition, a recent benchmark showed that conventional methods outperformed graph-based methods on most biophysics datasets [102].

Consensus docking [25] failed to recover any actives in the PriA-SSB prospective dataset, even though some of the individual docking programs did. It should be noted that the individual docking and consensus methods do not make use of the initial HTS screening data like the machine learning methods do. A more direct comparison might be to re-train a custom consensus scoring function to include the initial HTS data, though this effort is out of scope for this study.

Specifically for the PriA-SSB protein-protein interaction, docking is also limited by the large, flat nature of the binding site. Many compounds that are inactive in the experimental screen have good scores and reasonable binding poses (per visual inspection) but fail to interrupt necessary specific interactions in the protein-protein interface. This will the limit overall performance by pushing true actives down the ranked list. Therefore, our docking results are not necessarily representative for other targets with other structural features, once again demonstrating the need for target-specific model selection during virtual screening.

The random forest model performed the best overall, but there were ten active compounds identified by the other methods that the random forest missed (Figure 1.5). The single-task regression neural network recovered nine of those ten and three unique active compound clusters (Appendix A.8). In addition, this regression model performed the best on PriA-SSB FP during cross-validation (Table 1.3), possibly because there are fewer binary actives in this dataset. In future work, we will explore whether ensembling classification and regression models, potentially in
combination with structure-based VS algorithms, can further improve accuracy.

We emphasize our prospective performance on the new LC library, which minimizes the biases that make evaluation with retrospective benchmarks challenging [99]. There are many sources of experimental error in HTS, and the active compounds in the prospective evaluation must still be interpreted conservatively. However, a VS algorithm that can prioritize compounds with high % inhibition in primary and retest screens is valuable for further compound optimization even if not all of the actives confirm experimentally. Our study provides guidelines for selecting a target-specific VS model and complements other practical recommendations for VS pertaining to hit identification, validation, and filtering [105] as well as avoiding common pitfalls [84]. Having established that our best virtual screening model successfully prioritized new active compounds in the LC library, another future direction will be to test prospective performance on much larger, more diverse chemical libraries.
Chapter 2

Structural Representation and Learning

If we treat the success of deep learning as a useful but black-box function for feature representation, then it can explain why we have not seen such advance in abstract topics like drug discovery.

Some argue that machine learning models cannot outperform human’s performance, from easy tasks (like image recognition) to more abstract tasks. This conjecture is interesting to justify, but the first step is to make machine understand the tasks like expert, or how to make a good representation for machine remains unsolved. This chapter explores such problems from a graph’s perspective, considering that molecules have rich properties and can be treated as structural data.

Co-authors of [55] contributed to the contents of this chapter.

2.1 Introduction

The advancement in deep learning has brought tremendous advancement in the area of image classification and speech recognition. The benefits of applying deep neural networks in the horizon of drug discovery (prediction on molecules) are yet to be fully realized. Recent publication demonstrates poor prediction when distortion (noise) was added to images [85]. Unlike images and speech, the most common input features in drug discovery provide highly abstract representations of the chemicals, thus creating a stumbling block in making a good prediction on molecules.

Chemical fingerprints, such as the Morgan fingerprints, are perhaps the most widely used feature representations of molecules, encoding each as a fixed length bit vector. In Morgan fingerprints, each bit vector corresponds to a set of substructures and collisions may happen after the hashing operation. Therefore, Morgan fingerprints are easy for the machine to utilize but complex for a human interpretation.
CHAPTER 2. STRUCTURAL REPRESENTATION AND LEARNING

Simplified Molecular Input Line Entry System (SMILES) is a character sequence describing molecular structures. There are some inherent issues in SMILES, the biggest being that molecules cannot be simply represented as a linear sequence: drug-like organic molecules usually have ring structures and tree-like branching.

Graph-based representation, on the other hand, can include the most comprehensive information for a molecule, including the molecule skeleton, conformational information, and atom features. But common molecule input representations used in machine learning models, such as chemical fingerprints or SMILES, may not be optimal or even adequate in some tasks. A fully-connected neural network is a good fit for models using Morgan fingerprints, and both convolution and a recurrent neural network can map SMILES strings into meaningful latent space. [24] introduces neural fingerprints (NEF), and it first starts to apply a graph layer on deep neural networks. Beyond this, developments in molecule representations for machine learning models are few. One limitation for graph-based models is that most efforts focus on message passing between adjacent atoms as representation, and it may over represent the local structure and ignore the molecule general shape.

Current graph-based neural networks apply message passing for information delivery and are only designed for end-to-end deep neural networks. This paper introduces a novel graph-based representation called N-gram graph. It allows non-deep supervised machine learning methods to reach the most up-to-date performance.

The contributions of this chapter are: (1) An introduction to a novel representation on graph-like data, N-gram graph. It is much simpler than existing graph-based neural network, yet the performance can compete with the most up-to-date models. (2) The N-gram graph does not require an end-to-end training process, therefore multiple non-deep supervised machine learning methods can be trained on it. (3) The N-gram graph shows very promising generalization performance on deep neural networks. (4) These findings support a conclusion that molecule representation has become a bottleneck in virtual screening tasks, and significant gains might be achieved by new representation methods that can fully utilize the expressive capacity of deep neural networks.

2.2 Related Work

Deep learning methods captured the attention among scientists in the drug discovery domain in [64, 17] Merck Molecular Activity Challenge, 2012. [18, 38, 58, 61, 77, 95] Efforts expanded to investigate the benefits of multi-task deep neural network, frequently showing outstanding performance when comparing with shallow models. All of these works used Morgan fingerprints as input representations.

Another option for molecule representation is the SMILES string. SMILES can be treated as a sequence of atoms and bonds, and each molecule has a unique canonical SMILES string among a frequently vast set of noncanonical, but completely valid, SMILES strings. Therefore attempts were made to make SMILES feed into more complicated neural networks. [37] makes model comparisons
based on input features, including recurrent neural network language model (RNN) and convolutional neural networks (CNN) with SMILES, and shows that CNN is best when evaluated on the log-loss.

SMILES as molecule representation is now common in molecule generation tasks. [28] first applies SMILES for automatic molecule design, and [46] proposes using a parser tree on SMILES so as to produce more grammatically-valid molecules, where the input is the one-hot encoded rules.

Recent works are also exploring the molecule graph, which can potentially represent each molecule without losing any information. [24] first utilized message passing on graph. At each step, this method passes the hidden message layer to the intermediate feature layer, the summed-up neural fingerprints then feed into neural network as feature. Following this, [4] made small adaptations by using the last message layer as feature inputs for neural network. In work along these lines, [39] proposed a new module called weave for delivering information among atoms and bonds.

It should also be noted that there are other research lines not focusing on message-passing for graph representation. Patchy-SAN(Select-Assemble-Normalize), introduced by [73], imposes an order on nodes to construct local structure as graph features, and [60] applies weave operation on a graph. Distributed graph representations are also of interest in other domains [2, 71].

2.3 Background

Generally, molecules can be represented in three formats for machine learning models. The ideal representation contains comprehensive information for each molecule, like molecule graph. SMILES represents each molecule as a string of characters, while Morgan fingerprints maps molecules to a bit-vector, where each bit represents the existence of one set of substructures. [91] Molecular descriptors is another option, but we are not going to include that in this chapter, because heuristically coming up with descriptors and dynamically adjusting it as tasks is not easy and requires a lot of domain knowledge; one of the goal here is to get a generalized feature representation.

2.3.1 Morgan Fingerprints and Simplified Molecular Input Line Entry System

Morgan fingerprints [80] has been the most widely used for featurization in virtual screening tasks. It is an iterative algorithm that encodes the circular substructures of the molecule as identifiers at increasing levels with each iteration. In each iteration, hashing is applied to generate new identifiers, and thus, there is a chance that two substructures are represented by the same identifier. In the end, a list of identifiers encoding the substructures is folded to bit positions of a fixed-length bit string. A 1-bit at a particular position indicates the presence of a substructure (or multiple substructures) and a 0-bit indicates the absence of corresponding substructures.

Simplified Molecular Input Line Entry System (SMILES) [101] is another representation option. For any given compound structure with a valid 2-D graph representation, a SMILES string can be
generated as a 1-D line notation for the chemical structure. By this transformation, SMILES can be treated as a sequential representation and fits the setting of a recurrent neural network.

An example of Morgan fingerprints and SMILES is illustrated in Figure 1.2.

2.3.2 Graph Representation

Nearly all drug-like molecules can be potentially represented as a graph, where each atom is a node and each bond is an edge. Suppose there are in total \(m \) atoms in the graph, each atom is \(a_i \), where \(i \in \{0,1,...,m-1\} \).

Each atom entails useful information, like atom symbol, number of charges, etc. These atom features are encoded into node attribute matrix \(N \in \{0,1\}^{m \times d} \), where \(d \) is the dimension of atom feature. For atom \(a_i \), its attribute vector \(N_i \) is defined in Equation (2.1). Adjacency matrix \(A \in \{0,1\}^{m \times m} \) is able to depict the skeleton of a molecule. As in Equation (2.2), \(A_{i,j} = 1 \) iff \(a_i \) and \(a_j \) are bonded. And distance matrix \(D_{i,j} \) is defined in Equation (2.3).

\[
N_i = \begin{bmatrix} C, Cl, I, F, \ldots, 0, 1, 2, 3, 4, 5, 6, \ldots, 0, 1, 0, 1 \end{bmatrix}
\]

\[
A_{i,j} = \begin{cases} 1, & \text{atom}_i \text{ and atom}_j \text{ are bonded} \\ 0, & \text{otherwise} \end{cases}
\]

\[
D_{i,j} = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2 + (z_i - z_j)^2}
\]

Each N-gram path in a graph is represented by \(V \), and \(|V| \) is the length of that path. A path with length \(n \) is represented by \(V_n \). The set of all N-gram paths with same length is called a N-gram path set.

2.3.3 Message Passing in Graph-based Neural Network

In recent works, message passing has been dominant in graph-based neural networks. Message passing has \(T \) iterations. At step \(t \), each atom will pass its information only to neighbors. After continuing for \(T \) steps, each atom is able to pass its own information to atoms at most \(T \)-steps away. Therefore, message passing is capable of encoding molecule local structure within the radius of \(T \) around each atom.

Let the intermediate matrix at step \(t \) be \(M_t \), and operation \(A \cdot M_t \) allows each atom to pass its own information to its neighbors, where \(\cdot \) is the matrix multiplication. Message passing will then multiply it with hidden layer \(H_t \) followed by activation function \(\sigma \). Repeat this process for \(T \) times,
and the output matrix M_T is assumed to capture the molecule information. This can be nicely written in Equation (2.4). $M_0 = \mathcal{N}$ at initial step.

$$M_{t+1} = \sigma(H_t[M_t + \mathcal{A} \cdot M_t])$$ \hspace{1cm} (2.4)

One characteristic of graph-based representation is that its restriction applies only to end-to-end deep neural networks, where all parameters are learned by back-propagation.

2.4 Structural Learning Method: Graph-based Representation

2.4.1 Motivation

This section helps explain the motivation to combine adjacency matrix \mathcal{A} and distance matrix \mathcal{D} for input representation.

The **adjacency matrix** can be used to represent the neighborhood structure for each atom. But it lacks the ability to capture overall molecular structure.

The **distance matrix** is defined as the distance between each pair of atoms in a molecule. In other words, the distance matrix is able to capture the global structure, but may miss some local information.

For example, both atom a and c are bonded with atom b, and they are close in the euclidean space (either 2-D or 3-D), but not directly bonded. In this case, the adjacency matrix can reveal the skeleton from a to b to c, while the distance matrix is able to distinguish that atom a, b, and c are close in the euclidean space. Combining such two matrices for molecule representation, each molecule can be potentially represented in a lossless way. Therefore it is possible to get better performance for drug discovery using this representation. In figure 2.1, it illustrates how adjacency matrix and distance matrix together specify the graph structure in a 2D euclidean space.

2.4.2 Relaxation and Problem Formulation

This chapter formulates the problem as follows. For each molecular graph, an attempt is made to find a shared substructure among all the actives. The substructure must satisfy some latent constraints, including the atom types, atom distance, and bond types. The predicted molecules will have positive labels if and only if they contain such substructure, otherwise the molecules should have inactive interactions against the target.

The substructure is represented by a candidate set $s = \{0, 1\}^{n \times 1}$, where each one bit in s means this atom is crucial for the target task. One relaxation strategy is, instead of requiring the atoms with exact positions and exact symbols, only adding exact constraints on the atom positions; and
CHAPTER 2. STRUCTURAL REPRESENTATION AND LEARNING

25

(a) stage 1, fix atom a and b locations. The distance between atoms is given by distance matrix.

(b) Stage 2, construct the molecule graph following the adjacency matrix. There are two possible locations for atom c.

(c) Stage 3, choose c as atom C.

(d) Stage 4, all the remaining atoms will be uniquely defined in this 2D space after fixing first three atoms.

Figure 2.1: Illustrations on how the adjacency matrix and the distance matrix can be combined to recover a graph structure in 2-D euclidean space.

for atom symbols, the only constraints is that each positive molecules should contain the exact total number of key atoms. After relaxation, this problem can be interpreted in the following rigorous way. Suppose each molecule has \(n \) atoms, and the goal is to find if there exists one candidate set \(s \) in this molecule, such that

1. \(\mathcal{N} \cdot s = c_1 \)
2. \(\mathcal{A} \otimes (s \cdot s^T) \cong c_2 \)
3. \(\mathcal{D} \otimes (s \cdot s^T) \cong c_3 \)

where \(\cdot \) is the matrix multiplication, \(\otimes \) is the element-wise multiplication, and \(A \cong B \) means \(A \) and \(B \) are two matrices with order-invariant property.

In the above constraints, \(c_1 \in \mathbb{R}^d \) in Item 1 represents the number of each feature in the potential structure, like atom symbol and atom degree. The \(c_2 \in \mathbb{R}^n \) and \(c_3 \in \mathbb{R}^n \) are the corresponding skeleton and affinity structures.

The complete pipeline for structure-based neural network is shown in Figure 2.2. However, under this setting, the candidate set \(s \) is sensitive to the atom order, therefore \textbf{order invariant} becomes the biggest issue. Like shuffling the atom orders, same molecule may have totally different candidate set \(s \).
2.4.3 N-gram Graph: A Novel Molecule Representation

N-gram graph is an order-invariant representation for a graph. It splits the graph into different N-gram path sets. The high-level process for the N-gram Graph is described as follows:

1. Apply atom-level representation, segmented random projection.
2. N-gram path is formulated by the production of all the nodes (atoms) in that path.
3. For a fixed path length, sum up all the N-gram paths to denote N-gram path set.
4. Concatenate N-gram path sets with multiple N, and output is the N-gram graph.

Formulation on N-Gram Graph

For each molecular graph, the goal is to find a set of shared substructures among all the active molecules. The substructure should satisfy several constraints, like the atom features and relative positions. The predicted molecules will have positive labels if and only if they contain similar substructures.

The target substructures can be represented by a candidate set $C \in \{0, 1\}^{m \times 1}$, where each bit set to 1 in C means this atom is crucial for the target task. Therefore drug discovery problems can be interpreted as follows.

\begin{align*}
N^T \cdot C &= c_1 \quad (2.5) \\
A \otimes (C \cdot C^T) &\cong c_2 \quad (2.6)
\end{align*}

\[,\text{ where } \cdot \text{ is the matrix multiplication, } \otimes \text{ is the element-wise multiplication, and } A \cong B \text{ means } A \text{ and } B \text{ are isomorphic.}\]

For the above constraints in Equation (2.5), $c_1 \in \mathbb{R}^d$ represents the number
of each feature in the candidate substructures, like atom symbol and atom degree, and \(c_2 \in \mathbb{R}^m \) is the skeleton among candidate substructures.

One issue for the candidate set \(C \) is that it is sensitive to the atom ordering. Once the indices of atoms are switched, it’s still the same molecule but representation may change totally. And this is the motivation for introducing \textbf{N-gram graph}, an order-invariant graph representation.

2.4.4 Atom Level: Segmented Random Projection

Before introducing the novel representation, we need to apply \textit{segmented random projection} as atom-level feature. Recall that \(A \) is the adjacency matrix, and \(N \) is the node attribute matrix. Atom features can be treated as the combination of \(S \) feature segments, where each segment is a one-hot vector. Similarly, the node attribute matrix can be divided into \(S \) segments, \(N = [N^0, N^1, \ldots, N^{(S-1)}] \).

In natural language processing tasks, a word is first mapped to a one-hot vector. Recent work [7] has shown that random embedding for words can be simple yet effective, and we extend this idea to map each feature segment into a random space, from one-hot vector to one-hot matrix. The segmented random projection is the concatenation of \(S \) one-hot matrices.

Let \(G = [G^0, G^1, \ldots, G^{(S-1)}] \in \mathbb{R}^{S \times r \times d} \) be the randomized Gaussian matrix, where \(d \) is the dimension of the atom feature and \(r \) is the dimension of the random space. It can be divided into \(S \) segments according to atom features. \(N_{i, \cdot} \) is the feature for atom \(a_i \), and \(g_i \) is the corresponding randomized representation. The segmented randomized projection function \(f : N_{i, \cdot} \rightarrow g_i \) is defined in Equation (2.7).

\[
g_i = f(N_{i, \cdot}) = f([N^0_{i, \cdot}, N^1_{i, \cdot}, \ldots, N^{(S-1)}_{i, \cdot}]) = \left[\sum (G^0 \cdot N^0_{i, \cdot}), \sum (G^1 \cdot N^1_{i, \cdot}), \ldots, \sum (G^{(S-1)} \cdot N^{(S-1)}_{i, \cdot}) \right]
\]

where \(\sum \) is the summation along the axis of feature dimension \(d_i \). \(\sum (G^s \cdot N^s_{i, \cdot}) \in \mathbb{R}^{r \times 1} \) is the random projection on \(s \)-th feature segment for \(a_i \). Figure 2.3 describes the whole projection process.
2.4.5 Molecule Level: N-Gram Graph

Atom ordering becomes one of the biggest challenges under the previous problem formulation. Reordering atoms in one molecule will not change its physical or molecule properties, but the candidate set C is not capable of recognizing this difference. Adding an order-invariant representation seems to be a reasonable solution.

The N-gram approach is a classic technique used in natural language processing. It represents a sentence as counts of the contiguous sequence of N words in the sentence. Viewing words as atoms and sentences as linear molecules inspire us to come up with a N-gram method for graph representation. Based on segmented random projection on atoms, this paper proposes a novel molecular representation named **N-gram graph**.

Let $V_n \in \mathbb{R}^{r \times S}$, $p \in \{1, 2, \ldots, N\}$ represent the **N-gram path set**. It is defined as the sum of all **N-gram paths** with length n. And each N-gram path is represented by the product of randomized atoms $f(a_i)$ in that path. See definition in Equation (2.8).

$$V_n = \sum_{\forall V, \text{s.t. } |V| = n, a_i \in V} \prod_{\text{segmented random projection}} f(a_i) \quad \text{(2.8)}$$

N-gram graph for each molecule $G = [V_1, V_2, \ldots, V_n] \in \mathbb{R}^{N \times r \times S}$ is the concatenation of N-gram path sets with multiple length n. Notice that with N-gram graph representation, each column of G corresponds to the path representation with different length. In comparison to the message-passing in the end-to-end graph neural network or Morgan fingerprints generation, the N-gram graph representation can offer a finer-grained view of the molecules, in the sense that it separates...
different local structures by path length. Moreover, when generating G, only path information is
used, whereas in a message passing graph, important information can get delivered back-and-force
within each pair of adjacency atoms, therefore it may lead to a biased representation focusing more
on paths with smaller length.

To build up models, N-gram graph is flattened into a 1-dimensional vector for compatibility as
input features into non-deep models like random forest or XGBoost. Deep neural networks can
directly apply fully-connected layers on the N-gram graph with flatten operation between some
intermediate layers.

2.5 Experiments

Six models and three different feature representations were tested on 12 classification and 3 regression
tasks. The corresponding feature representation and model combinations are listed in Table 2.1.

Table 2.1: Feature representation for each different machine learning model. NEF, GCNN, and
Weave are end-to-end neural networks.

<table>
<thead>
<tr>
<th>Model</th>
<th>Feature Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neural Fingerprints (NEF)</td>
<td>[24] Message-Passing Graph</td>
</tr>
<tr>
<td>Graph CNN (GCNN) [4]</td>
<td>Message-Passing Graph</td>
</tr>
<tr>
<td>Weave NN (Weave) [39]</td>
<td>Message-Passing Graph</td>
</tr>
<tr>
<td>Random Forest (RF)</td>
<td>Morgan fingerprints / N-Gram Graph</td>
</tr>
<tr>
<td>XGBoost (XGB) [11]</td>
<td>Morgan fingerprints / N-Gram Graph</td>
</tr>
<tr>
<td>Fully-connected Deep Neural Network (DNN)</td>
<td>Morgan fingerprints / N-Gram Graph</td>
</tr>
</tbody>
</table>

For N-gram graph, the specific $d = 42$ dimension features and $S = 8$ segments can be found in
Appendix B.2. NEF, GCNN and Weave use hyperparameters in [24, 4, 39]. For other models, we
run a comprehensive grid search for hyperparameter sweeping and explore two non-deep machine
learning algorithms, RF and XGB. All data sets are split into five folds with one selected as hold-out
test set. We run a comprehensive grid search for hyperparameter sweeping, and all the details and
implementation are available on GitHub (https://github.com/chao1224/n_gram_graph).

2.5.1 Qualitative Analysis

To further explain how N-gram graph can help with representation, pairwise cosine similarities on
different representations are compared. Here we compare representations from a randomly sampled
subset of molecules from Delaney dataset [20].

As displayed in Figure 2.4, similarity based on Morgan fingerprints tends to concentrate around
0, while N-gram graph is inclined to make molecules concentrate on similar representation. This
is not telling us which representation is better or worse, and it is just an observation. However,
some molecule pairs are observed to be overlapped on Morgan fingerprints while N-gram graph can distinguish among them.

![Comparison of pairwise molecule similarity between Morgan fingerprints and N-gram graph. Larger random dimension \((r = 100)\) shows slightly wider distribution than lower dimension \((r = 50)\). The vertical band of points on the left side of the plots show compounds with no detectable similarity (cosine similarity=0) by Morgan fingerprints representation that do show various levels of similarity when comparing N-gram graph representations.]

2.5.2 Classification Tasks

Tox21: [92] "Toxicology in the 21st Century" initiative created a public database measuring toxicity of compounds, which was used in the 2014 Tox21 Data Challenge. Twelve representation and model pairs are tested on twelve tasks, and Table 2.2 summarizes the AUC[ROC] on the test set.
Table 2.2: AUC[ROC] on test set on Tox21. Top three results are bolded and the best performance is underlined. Each row corresponds to a task, except that last row measures the general performance over all tasks.

<table>
<thead>
<tr>
<th>Representation</th>
<th>Morgan</th>
<th>Message-Passing Graph</th>
<th>N-Gram Graph</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RF</td>
<td>XGB</td>
<td>DNN</td>
</tr>
<tr>
<td>NR-AR</td>
<td>0.820</td>
<td>0.822</td>
<td>0.751</td>
</tr>
<tr>
<td>NR-AR-LBD</td>
<td>0.882</td>
<td>0.853</td>
<td>0.808</td>
</tr>
<tr>
<td>NR-AhR</td>
<td>0.883</td>
<td>0.887</td>
<td>0.850</td>
</tr>
<tr>
<td>NR-Aromatase</td>
<td>0.828</td>
<td>0.782</td>
<td>0.693</td>
</tr>
<tr>
<td>NR-ER</td>
<td>0.717</td>
<td>0.742</td>
<td>0.709</td>
</tr>
<tr>
<td>NR-ER-LBD</td>
<td>0.837</td>
<td>0.827</td>
<td>0.796</td>
</tr>
<tr>
<td>NR-PPAR-gamma</td>
<td>0.809</td>
<td>0.709</td>
<td>0.738</td>
</tr>
<tr>
<td>SR-ARE</td>
<td>0.838</td>
<td>0.839</td>
<td>0.781</td>
</tr>
<tr>
<td>SR-ATAD5</td>
<td>0.865</td>
<td>0.808</td>
<td>0.746</td>
</tr>
<tr>
<td>SR-HSE</td>
<td>0.797</td>
<td>0.745</td>
<td>0.723</td>
</tr>
<tr>
<td>SR-MMP</td>
<td>0.874</td>
<td>0.866</td>
<td>0.870</td>
</tr>
<tr>
<td>SR-p53</td>
<td>0.875</td>
<td>0.869</td>
<td>0.710</td>
</tr>
<tr>
<td>Average</td>
<td>0.835</td>
<td>0.812</td>
<td>0.765</td>
</tr>
</tbody>
</table>

After a thorough hyperparameter sweeping, RF on Morgan fingerprints in Table 2.2 shows promising results. Other methods, like GCNN and Weave on Message-Passing Graph, also exhibit competitive performance. Switching from Morgan fingerprints to N-gram graph representations appears to benefit XGB and DNN performance, where XGB model with n-gram graph representations show highest overall ROCAUC. Though all the test set performance are similar, as shown in Appendix B.3.2, N-gram graph on DNN possesses quite stable performance.

However, we are not able to conclude which representation and model pair can make the best prediction. As observed from Table 2.2, no model can be singled out as the top performer, and best algorithm may vary according to different tasks. In addition, performance is very sensitive to data splits and hyperparameters. In many domains, a comprehensive representation and a deep neural network can outperform other modeling frameworks. Yet we have not observed that in this domain, and the bottleneck seems likely to be in the compound representation.

2.5.3 Regression Tasks

Compound representations were also compared on three different regression tasks from the same datasets used in [24].

- **Delaney**: 1144 molecules were measured with respect to the aqueous solubility [20].
- **Malaria**: [27] measures the drug efficacy of 10,000 molecules against the parasite that causes malaria.

- **CEP**: A subset of 2,000 molecules from Havard Clean Energy Project (CEP) [31]. It aims at estimating organic photovoltaic efficiency.

Table 2.3: RMSE on three regression tasks (test set). Top three results are **bolded** and the best performance is **underlined**. Baseline results (*) are from [24, 39].

<table>
<thead>
<tr>
<th>Representation</th>
<th>Method</th>
<th>Delaney</th>
<th>Malaria</th>
<th>CEP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morgan</td>
<td>RF</td>
<td>1.251</td>
<td>1.011</td>
<td>1.667</td>
</tr>
<tr>
<td></td>
<td>XGB</td>
<td>1.120</td>
<td>0.998</td>
<td>1.442</td>
</tr>
<tr>
<td></td>
<td>DNN (*)</td>
<td>1.40</td>
<td>1.13</td>
<td>2.00</td>
</tr>
<tr>
<td>Message-Passing Graph</td>
<td>NEF (*)</td>
<td>0.52</td>
<td>1.15</td>
<td>1.43</td>
</tr>
<tr>
<td></td>
<td>GCNN</td>
<td>0.98</td>
<td>1.02</td>
<td>1.17</td>
</tr>
<tr>
<td></td>
<td>Weave (*)</td>
<td>0.46</td>
<td>1.07</td>
<td>1.10</td>
</tr>
<tr>
<td>N-Gram Graph</td>
<td>RF</td>
<td>0.802</td>
<td>1.011</td>
<td>1.367</td>
</tr>
<tr>
<td></td>
<td>XGB</td>
<td>0.771</td>
<td>1.003</td>
<td>1.296</td>
</tr>
<tr>
<td></td>
<td>DNN</td>
<td>0.665</td>
<td>1.085</td>
<td>1.359</td>
</tr>
</tbody>
</table>

As demonstrated in Table 2.3, performance on regression tasks varies a lot. But we can still get some common observations out of it. When comparing N-gram graph with Morgan fingerprints, all three models can obtain better RMSE in most cases (except RF and XGB on Malaria). Message-passing graph shows slightly better performance on Delaney and CEP, but other models based on n-gram graph are very comparative.

2.6 Summary

This chapter introduces a novel graph-based representation called **N-gram graph** for virtual screening task. The first step in tackling this task is the derivation of problem formulation which requires an order-invariant representation. Then, the idea of N-gram is taken and extended to graph data and this can be applied to most supervised machine learning methods. After a comprehensive hyperparameter sweeping, we show the potential benefits of N-gram graph by reaching state-of-the-art performance on many benchmarks using different classification and regression models. However, the limitation is that N-gram graph does not take the edge information or molecule shape into consideration, which might be important for making predictions.

The work here suggests an interesting way to handle graph-based representation. A future direction for this work would involve deeper exploration of molecule representation and molecule
CHAPTER 2. STRUCTURAL REPRESENTATION AND LEARNING

...generation based on the randomized latent space.
Chapter 3

Reinforced Multi-task Learning

3.1 Introduction

Multi-task classification as one of transfer learning methods, has shown remarkable advantages in natural language processing, computer vision, and [17, 77] drug discovery arenas. An assumption in multi-task learning application is that the tasks are potentially related, and comparing to the single-task setting, training multiple tasks together can lead to a better represented feature space, obtain higher performance, and alleviate the data insufficiency issue.

Traditional MTL methods are based on shallow models. But now, as the deep neural network becomes prevalent, more work has adopted deep multi-task learning—examples arising in diverse applications such as the [64, 17] Merck Molecule Activity Challenge, [56] facial attributes detection, language translation, and [36] wellbeing detection. But experiments illustrate that multi-task learning is not always stable. We refer to this phenomenon as negative transfer, where unrelated tasks in joint-training show decreased performance relative to that from single-task training. There are two main reasons: either there exists one domain group of tasks taking over the training process towards its dominant representation space, or all the tasks are widely spread, and heading towards different latent space can result in a useless latent representation. On average MTL can outperform STL, but there’s no guarantee when focusing on target tasks, the remaining ones can act as auxiliary tasks that support the main training.

So here, we first try to address this negative transfer issue in deep multi-task training by proposing a general reinforced multi-task learning (RMTL) framework. The goal is to train a distilled policy for the multi-task neural network. Originally, the reinforcement learning was to solve the decision-making problem in gaming and robotics [67]. The target agent learns how to make decisions based on partially observed environments and scalar rewards; by enough trials and errors, it can learn an optimal action given the environment state. To apply this idea in our RMTL framework, we trained an agent model, which given the state of multi-task network, automatically decides which group of
similar tasks to be updated in each epoch.

3.2 Related Work

3.2.1 Self-Paced Curriculum Learning

Self-paced curriculum learning borrows idea from education: it is reasonable for people to take curricula in progression from easy ones to complex ones. Curriculum learning suggests using easy samples to train the model first, then continue by adding more complicated samples. The easiness is hard to determine, and [45] introduces self-paced learning, where the easiness is identified by the learned model.

Then following works extend this from single-task model to multi-task case. [52] introduces a joint objective function by adding weights and regularizers on each task. And [69] uses a threshold on the residual of each task to guide which group of tasks are easy, so as to update gradients. Above methods need the assumption that all tasks are related, and [76] handles dissimilar tasks by applying multiple task learning sequences.

3.2.2 Clustering-based Multi-task Learning

Many examples have been proposed in literature that use clustered tasks, grouping tasks using different notions of grouping. Some methods assume that parameters of tasks that can be grouped in the same cluster are either close to each other in some distance metric or share a common probabilistic prior, whereas tasks assigned in different clusters didn’t interact with each other [35, 10]. Similar to the method proposed in this chapter, many methods are trying to find a probabilistic model that attempts to extract a covariance matrix among task pairs for use in training predictors [104, 30].

Another assumption in clustering-based method is that task parameters lie in a low dimensional subspace, which captures model structure shared among all tasks. Some methods assume that some features (with all raw and transformed features contained) are inactive for all tasks. And thus all tasks parameters are pushed to a low dimensional subspace [6]. Other methods follow the low dimensional subspace assumption but allows the tasks in different task groups to overlap with each other in one or more bases [44].

3.2.3 Deep Multi-task Learning

Classification tasks have been increasingly addressed by deep neural network, which benefits from taking the raw data as input, extracting the latent features, so as to make better predictions.

However, only a few works [82] have focused on a better generalized deep multi-task framework. Ensembling is one traditionally adopted option, and [49] introduces a similar idea called TreeNets, an ensembled deep neural network. In TreeNets, the first part of layers are shared among tasks, and
following layers are trained independently. [56] proposes a framework that is able to dynamically construct a hierarchical network structure and selectively share information among closely-related tasks. Both methods require vast computation memory, especially when the hidden space is in high dimension.

3.2.4 Meta Learning and Reinforcement Learning

Meta learning on deep networks is a novel approach. Meta learning, or learning to learn, aims at making a model being able to learn the learning process, so it can generalize well on new tasks or new samples. When it comes to deep network framework, there are many interesting and potentially constructive points, like optimal learning rates, batch size, predicting loss, and gradients. There has been recent work on such idea, [5] uses a meta learner to learn the gradient, and [79] predicts the next step hidden layer parameter with recurrent neural network.

Reinforcement learning provides another option for meta learning. The intuition behind reinforcement learning is that once a model or agent observed the environment, with the feedback, it can update its policy space to make decisions towards higher expected rewards. [26] Therefore the policy agent can fit well as meta learner, considering that agent can apply meta learning to find a better base model, facilitating quick transfer to new unseen but related tasks under some task distribution, where only a few data points are available. This setting is also called few-shot learning, where insufficient data is very common on new tasks, and models are supposed to converge well within a few epochs on limited data. Distral [89] proposes a framework for simultaneously training multiple reinforcement tasks by learning a distilled policy, but this is not applicable towards the multi-task classification problems.

3.3 Problem Background

3.3.1 Annotation

Suppose we have \(T \) tasks, corresponding to \(T \) datasets, and each dataset \(S_t = \{X_t, Y_t\}, t \in \{0, 1, \ldots, T - 1\} \). All the instance-task labels can compose a complement matrix \(C \in \mathbb{R}^{n \times T} \), where \(n \) is the number of instances in its union set and \(T \) is the number of tasks. All the missing values are filled with ‘None’ in the complement matrix \(C \). In the context of stochastic gradient descent, one epoch, or one data pass, refers to using all samples for gradient updates once. \(W \) is the weight parameters for neural network.

In reinforcement learning, a problem is episodic if it has a repeated decision making pattern, where each round of decision making process is called episode. Policy \(\pi \) is an action to make best decision with respect to some predefined reward function, where the reward function returns a value after the task environment changes.
3.3.2 Deep Single-task and Multi-task Learning

Deep Single-task learning treats each column of complement matrix C independently, and trains T independent tasks. Multi-task learning uses either hard parameter sharing or soft parameter sharing to transfer knowledge, depending on network construction. In hard parameter sharing network, all the hidden layers are shared, except the output layer. While in soft parameter sharing, each model has its own layers and parameters. Constraints are commonly applied to force similarity among models of tasks, for example implementing ℓ_2 regularization [22] or trace norm [103] on distances among model parameters. Figure 3.1 presents more details.

![Figure 3.1: Deep Neural Network Structures.](image)

A Single-task NN in Figure 3.1(a) has only one unit on output layer, and requires T independent neural networks for T tasks. A Multi-task hard NN in Figure 3.1(b) shares parameters except the output layer, and each one unit in the output layer corresponds to one task predictions. For Multi-task soft NN in Figure 3.1(c), each task has its own model, but parameters are constrained to force similarity. Therefore, this only needs one such network for T tasks.
The intuition behind MTL approaches is to transform knowledge among tasks, augment representation learning among tasks, and improve performance especially when they are highly correlated. Besides, when data are insufficient, tasks can benefit from learning representation from closely related ones. The structures of neural networks are illustrated in Figure 3.1.

3.4 Methodology

3.4.1 Multi-task Reinforcement Learning

One of the biggest differences between shallow and deep models is the training process. In a shallow model, all the features are provided, either by manual extraction or feature extractor model. While in a deep model, only raw data are required from which the model learns its own latent space. Therefore, we can divide the training process of deep neural networks into two stages, encoding and decoding. Encoding maps raw input data to meaningful latent features; decoding maps latent features to an output scalar (single-task) or vector (multi-task).

Traditional MTL works well under the assumption that most of tasks are correlated, and therefore knowledge can be transferred across the tasks. Negative transfer will happen when this assumption does not hold. And here we propose a generalized framework called reinforced multi-task learning to address this issue. The idea comes very naturally: suppose there exists a generalized representation space for all tasks, and each tasks will possess its own decoding process after mapping to the latent space. The two causes of negative transfer may easily occur during decoding. Therefore, we believe that negative transfer might be mitigated by decoding only similar tasks at one time.

To put this in the reinforcement learning context, when given a deep network state, the policy agent will guide the network to update towards its optimal solution. In the RMTL setting, the state is the parameter W of network and the action can be a subset of tasks to update. So the action $a \in A = \{0, 1\}^T$ is task selection for gradient updates. Each epoch will be treated as one episode in the reinforcement learning context, therefore this RMTL can be treated as an episodic learning process. The agent will get a return value from the environment, like evaluation value on a hold-out dataset, and it aims for higher return values. If we are using Q-learning as exact solution, the Q-function is a mapping $W \times A \rightarrow \mathbb{R}$.

Reinforcement learning has two main strategies, value-based and policy-based. We will introduce both of them, compare the pros and cons, and illustrate how to select the condition.
3.4.2 Value-based Method

The value-based method learns the policy by maximizing the expected state-function values. At time step \(t \), we choose the best policy \(\pi \) and use this policy to update the multi-task network weights.

\[
\pi_{t+1}(W_t) = \arg\max_a Q(W_t, a)
\]

The \(Q(W_t, a) \) is a value function that maps the state space and action space to the reward space. [86] Temporal difference (TD) and Monte-Carlo (MC) are two traditional methods to approximate Q-value. Algorithm 1 sketches this iterative approach.

Algorithm 1: Value-based Method

1. Initialize Neural Network \(W_0 \), initialize \(\pi_0 = \{1\}^T \)
2. repeat
 - \(\pi_{t+1}(W_t) = \arg\max_{a \in \{0,1\}^T} Q(W_t, a) \)
 - \(\mathcal{L} = \sum_{i=1}^{T} \pi_{t+1}(i) \cdot \mathcal{L}(\mathcal{X}(i), f(\mathcal{X}(i), W_t)) \)
3. update weight \(W_{t+1} \)
4. until Convergence

If the action space is discrete, we can enumerate all possible policies. But if the action space is too large or continuous, Monte-Carlo can guarantee convergence by law of large numbers.

The classical value-based methods have one big drawback: given discrete action space, the computation time will grow exponentially as the number of tasks increases. One solution is to use a parametric model, like neural network in deep Q-network (DQN) [66], to approximate the Q-value. To be more specific, in our case, we use a meta-RL agent to model the policy, \(\pi_\theta \), where the input is the model state (like hidden layer parameter), and the output is the probability of each task updated in current epoch.

3.4.3 Policy-based Methods

Once we have a parametric model to approximate the Q-value, instead of applying it in the bootstrap framework for policy selection, a natural approach would be to directly output the policy. A more current method is to use policy gradient to train a parameterized (\(\theta \)) policy \(\pi_\theta \), where the goal is to maximize the expectation \(\mathbb{E}_{a \sim \pi_\theta}[Q(W, a)] \). The gradient is as follows:

\[
\nabla_\theta \mathbb{E}_{a \sim \pi_\theta}[Q(W, a)] = \mathbb{E}_{a \sim \pi_\theta}[Q(W, a) \nabla_\theta \log \pi_\theta(a | W)]
\]

Applying this for gradient updates, and at each time step \(t \), we determine next action according to this newly updated distribution. Details are described in Algorithm 2.
Algorithm 2: Policy-based Method

Initialize Neural Network W_0, and π_θ

repeat

$\theta_{t+1} = \theta_t + \alpha \cdot \mathbb{E}[Q(W_t, a)\nabla_{\theta_t} \log \pi_{\theta_t}(a|W_t)]$

$L = \sum_{i=1}^{T} \pi^{(i)}_{\theta_{t+1}} \cdot L(y^{(i)}, f(X^{(i)}, W_t^{(i)}))$

update weight W_{t+1}

until Convergence

3.4.4 Pipeline

In Figure 3.2 we describe the complete pipeline of our framework. The solid arrow stands for the policy improvements based on the state-function or value-function. The dashed arrow is for policy-gradient based method.

![Pipeline Diagram](image)

Figure 3.2: Pipeline for the multi-task reinforcement learning. At the start of each step t, $W = W_t$ is the deep neural network parameter. Run several episodes as trials, update \hat{W} by taking (1) current state W_t and (2) the sampled policy π. Get (3) the return value and (4) use it as feedback to select best policy π. This optimal policy can then be used to (5) update the deep network parameter. In the case of policy-based method, policy is parameterized by θ. At the beginning of each epoch, (2) will map from state W_t to an action, and use this selected group of tasks for trial. Correspondingly, (4) π_θ will be updated upon receiving return values.

In general, given the state or the weights of the multi-task network, and following some stochastic distribution, we can forecast the updated weight \hat{W}, which is the state of next epoch $t + 1$. Since we have the updated weight, it is reasonable to obtain the return target, some pre-defined function with respect to W_t and \hat{W}. And according to Figure 3.2, this return target is $\mathcal{R} = \Delta[W_t, \hat{W}] \in \mathbb{R}^T$. Once we have this return, we can treat it as oracle for policy improvement at epoch t. We will repeat this forecasting step until reaching an acceptable policy distribution, then continue to the next epoch.
3.4.5 Reward Function on A Focused Task

There’s a very common desire for domain experts to transfer domain knowledge towards one specific task, and we call this focused task. When the focused task has only a few data points, the problem is equivalent to few-show learning.

The reward function is the key component in reinforcement learning problems, given that the ultimate outputs can be very sensitive to it. It can be very sensitive to the ultimate outputs. This section will explore an applicable strategy for developing a reward function in the setting with one focused task.

Our motivation for the reward function is that task relatedness may not be easily represented by a latent task distribution. However, if we take a closer look at each data point separately, we can tell how tasks are relevant with respect to the data, and therefore useful information can be extracted. Here we apply cosine-similarity on task pairs based on gradient of each batch of data as reward scores. Details are explained in Algorithm 3.

Algorithm 3: Reward Function

Given a focused task.
Initialize neural network W, with depth d.

for batch of data B do
 for all candidate policy π. do
 Get gradient w.r.t. batch of data on the last shared layer $\nabla_{d-1}B$.
 Compute cosine-similarity v w.r.t. the focused task based on $\nabla_{d-1}B$.
 Fetch reward, $r = \max(v, 0)$.
 end for
 Select best π according to r.
 Multiply gradients ∇B by $\pi \cdot r$.
 Update W by backpropagation.
end for

Algorithm 3 is the core function in RMTL. It reveals how we can get a finer-grained operation in the reinforcement learning structure. By assumption, how helpful each task in the policy π to the focused task is proportional to the corresponding cosine-similarity. In Algorithm 3, we get the reward by $r = \max(v, 0)$. This reports as to whether a candidate task in the policy has a negative effect to the focused one, in which case we will reduce its impact by multiplying 0.

3.5 Experiments and Preliminary Results

3.5.1 Experiment Setup

We test our RMTL algorithm on virtual chemical screening tasks, where the goal is to predict the biochemical activity or other properties of a chemical compound. In this domain, the number of
labeled training examples is typically limited, making multi-task learning appealing.

We are conducting experiments on one virtual screening dataset. In the PubChem BioAssay (PCBA) dataset [100], each task is a binary classification problem. The goal is to predict whether a chemical is active for any of 128 properties/tasks. For molecule representation, we use the Morgan fingerprints. It encodes each molecule structure into 1024 binary bits, where each bit represents one substructure. Previous studies using this dataset with multi-task neural networks exhibited negative transfer for some tasks [77, 78]. Thus this dataset is desirable for our efforts to eliminate negative transfer with RMTL.

3.5.2 Performance Comparison

For preliminary results, we picked 3 pairs of similar tasks, where there is one focused task and one policy task in each pair. Both single- and multi-task deep neural network (STDNN and MTDNN) are tested. For RMTL, each task is treated as the focused task once, and the other one in the corresponding task pair is the only task for policy.
CHAPTER 3. REINFORCED MULTI-TASK LEARNING

Figure 3.3: Test ROC performance. Three task pairs are 903-904, 1460-1468, 720579-720580. Four tasks have negative transfer issue, and RMTL is best in all those tasks. It also shows robust performance on the other two tasks. In general, RMTL performs better than both STDNN and MTDNN as expected.

3.6 Summary

In this chapter, we propose a general reinforced multi-task learning framework. It shows promising results in a subsample of the PCBA dataset. Future testing should be expanded to other benchmark datasets. Here we investigated the negative transfer issue only on one focused task cases. An ultimate solution would fit for multi-task learning with any number of focused tasks, and RMTL provides one possible path towards it.
Appendix A

Appendix: Starting from A Standard Pipeline

Co-authors of [54] contributed to this appendix chapter.

A.1 PCBA Query

We downloaded additional high-throughput screening datasets from the PubChem BioAssay database [100] using the following query: TotalSidCount from 10000, ActiveSidCount from 30, Chemical, Confirmatory, Dose-Response, Target: Single, NCGC. These correspond to the search query: (10000[TotalSidCount]: 1000000000[TotalSidCount]) AND (30[ActiveSidCount]: 1000000000[ActiveSidCount]) AND “small molecule”[filt] AND “doseresponse”[filt] AND 1[TargetCount] AND “NCGC”[SourceName]. This follows the query from Ramsundar et al. [77].

A.2 Data Preprocessing

A.2.1 Complex Matrix Composition

Each target dataset consists of compounds as rows. For each compound, it provides the biochemical features such as structure, SMILES, interaction scores, and the activity label (binary or continuous). For our purposes, we are only interested in the SMILES and activity label of the compounds. The first step was to extract these two properties for each target and construct the data matrix for training. We used RDKit [1] for navigating and extracting information from these datasets and for generating the fingerprints.

The second step was to merge the target matrices together into one consolidated matrix. We used an outer-join operation with the SMILES as the key. That is, given two matrices A and B with
two columns: SMILES and target-activity, an outer-join operation will merge rows of A and B that have the same SMILES value into a new matrix \(M \). If there is a row in A with SMILES value \(s \) and no corresponding row in B with SMILES value \(s \), then the merge would yield a row in \(M \) with an empty target-activity for \(B \). In the resulting matrix, each row is a compound and the columns are: SMILES, Morgan fingerprints (1024 bits), and a column for the activity outcome of each target (5 columns for \(\text{PriA-SSB AS} \), \(\text{PriA-SSB FP} \), and \(\text{RMI-FANCM FP} \) and the associated % inhibition values and 128 columns for PCBA). As a result, we have two data matrices: \(\text{PriA-SSB AS, PriA-SSB FP, and RMI-FANCM FP} \) and \(\text{PriA-SSB AS, PriA-SSB FP, and RMI-FANCM FP plus PCBA} \), on which we can train either single-task or multi-task learning methods. Note that merging all the targets introduces many empty cells for the activity outcome columns. For the distribution of active, inactive, and missing values for each target, refer to Appendix A.3. We observed severe data imbalance; the ratio of positive to negative labels is very small.

During model evaluation, we considered each task (column) separately and dropped the missing values.

A.2.2 Fold Splitting

The whole data set was split into 5 fixed folds for cross-validation. Label imbalance and the limited number of known active molecules is one of biggest challenges in virtual screening and must be accounted for during modeling. Stratified splitting is a way to divide data into folds while keeping the same active-to-inactive ratio for each label.

For a single-target task, stratified splits can be implemented by combining folds after sampling each class of labels. But this procedure becomes more complicated in the multi-task setting. With a total of 131 targets, each target has a set of molecules with activity outcomes that may or may not overlap across targets. After merging all molecules into one matrix, each row represents one molecule and each column represents one target. For each column (target), molecules can have missing, inactive, or active labels. Similarly, for each row (molecule), the molecule must have an active or inactive label for at least one of the 131 targets but can be missing for some of other targets. We construct this combined matrix of 131 targets using Algorithm 1 described below. We divide this matrix into 5 folds, while keeping the same data distribution.

A.2.3 Label Imbalance

\(\text{PriA-SSB AS, PriA-SSB FP, and RMI-FANCM FP} \) have only 79, 24, and 230 actives, respectively. To alleviate this class imbalance, one solution is to use a weighted schema. For single-target neural network models, we apply Eq (A.1).

\[
weight_{(negative)} = 1, \quad weight_{(positive)} = \frac{n}{p}
\]

(A.1)
Algorithm 4: Multi-task Data Splitting

Input: Initial pre-split molecule-target matrix M, number of desired folds k

Output: k folds $F[1], F[2], ..., F[k]$ containing stratified splits of M

1 shuffle rows of M randomly
2 create k folds $F[1], F[2], ..., F[k]$ which contain the row indexes only
3 indexList ← argsort columns of M from smallest active counts to largest
4 for i in indexList do
 currColumn ← $M[:, i]$
 split active indexes of currColumn into the k folds
 split inactive indexes of currColumn into the k folds
 split missing indexes of currColumn into the k folds
 take the unique compounds in each fold to remove duplicate row indexes
 greedily remove overlapping indexes from each fold (fold-by-fold manner)
7 take the unique compounds in each fold to remove duplicate row indexes
8 return $F[1], F[2], ..., F[k]$

where $weight_{\text{positive}}$ and $weight_{\text{negative}}$ are weight scalars for positive (active) and negative (inactive) compounds, respectively, and p and n represent the number of positive and negative samples on this target.

Similarly, we apply the weighted schema to multi-task models, defined as Eq (A.2).

$$weight_{\text{negative}, i} = t_i, \quad weight_{\text{positive}, i} = t_i \cdot \frac{n_i}{p_i}$$ (A.2)

where $weight_{\text{positive}, i}$ and $weight_{\text{negative}, i}$ are weight scalars for positive and negative labels for the i^{th} target, and p_i and n_i represent the number of positive and negative samples for i^{th} target. t_i is defined as Eq (A.3)

$$t_i = \begin{cases} \frac{\sum p_i}{p_i}, & \text{i^{th} target is in PCBA} \\ \alpha \cdot \frac{\sum p_i}{p_i}, & \text{i^{th} target is in PriA-SSB AS, PriA-SSB FP, and RMI-FANCM FP} \end{cases}$$ (A.3)

In the multi-task setting, we give different weights to each target, focusing more on the PriA-SSB AS, PriA-SSB FP, and RMI-FANCM FP targets and the PCBA targets that have fewer positive samples. We emphasize PriA-SSB AS, PriA-SSB FP, and RMI-FANCM FP by setting $\alpha = 100$, and alleviate the data skewness among targets by the term $\frac{\sum p_i}{p_i}$.

A.2.4 Missing Label Imputation

1. For single-task machine learning models – random forest, single-task neural networks, and IRV – training is done on non-missing molecules (missing molecules are removed from the training
set).

2. In the case of multi-task neural networks, missing molecules were imputed as inactive. This was mainly due to Keras (at the time) not supporting sample-weighting for the multi-task case.

A.3 PCBA, PriA-SSB AS, PriA-SSB FP, and RMI-FANCM FP Data Distribution

<table>
<thead>
<tr>
<th>Task name</th>
<th>Positive molecules</th>
<th>Negative molecules</th>
<th>Missing molecules</th>
<th>ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>pcba-aid1030</td>
<td>15932</td>
<td>145369</td>
<td>335063</td>
<td>10.95970%</td>
</tr>
<tr>
<td>pcba-aid1379</td>
<td>561</td>
<td>196368</td>
<td>314806</td>
<td>0.28569%</td>
</tr>
<tr>
<td>pcba-aid1452</td>
<td>178</td>
<td>149367</td>
<td>362573</td>
<td>0.11917%</td>
</tr>
<tr>
<td>pcba-aid1454</td>
<td>513</td>
<td>115335</td>
<td>395935</td>
<td>0.44479%</td>
</tr>
<tr>
<td>pcba-aid1457</td>
<td>720</td>
<td>202110</td>
<td>308746</td>
<td>0.35624%</td>
</tr>
<tr>
<td>pcba-aid1458</td>
<td>5778</td>
<td>188852</td>
<td>311888</td>
<td>3.05954%</td>
</tr>
<tr>
<td>pcba-aid1460</td>
<td>5650</td>
<td>217010</td>
<td>283986</td>
<td>2.60357%</td>
</tr>
<tr>
<td>pcba-aid1461</td>
<td>2305</td>
<td>206016</td>
<td>301670</td>
<td>1.11885%</td>
</tr>
<tr>
<td>pcba-aid1468</td>
<td>1038</td>
<td>251148</td>
<td>259072</td>
<td>0.41330%</td>
</tr>
<tr>
<td>pcba-aid1469</td>
<td>170</td>
<td>272533</td>
<td>239423</td>
<td>0.06238%</td>
</tr>
<tr>
<td>pcba-aid1471</td>
<td>293</td>
<td>218258</td>
<td>293452</td>
<td>0.13424%</td>
</tr>
<tr>
<td>pcba-aid1479</td>
<td>793</td>
<td>269530</td>
<td>241180</td>
<td>0.29422%</td>
</tr>
<tr>
<td>pcba-aid1631</td>
<td>892</td>
<td>259603</td>
<td>251482</td>
<td>0.34436%</td>
</tr>
<tr>
<td>pcba-aid1634</td>
<td>154</td>
<td>261988</td>
<td>250000</td>
<td>0.05878%</td>
</tr>
<tr>
<td>pcba-aid1688</td>
<td>2375</td>
<td>201910</td>
<td>305636</td>
<td>1.17627%</td>
</tr>
<tr>
<td>pcba-aid1721</td>
<td>1087</td>
<td>289651</td>
<td>220471</td>
<td>0.37528%</td>
</tr>
<tr>
<td>pcba-aid2100</td>
<td>1157</td>
<td>291855</td>
<td>218127</td>
<td>0.39643%</td>
</tr>
<tr>
<td>pcba-aid2101</td>
<td>288</td>
<td>309967</td>
<td>201813</td>
<td>0.09283%</td>
</tr>
<tr>
<td>pcba-aid2147</td>
<td>3473</td>
<td>188764</td>
<td>316586</td>
<td>1.83986%</td>
</tr>
<tr>
<td>pcba-aid2242</td>
<td>715</td>
<td>183374</td>
<td>327492</td>
<td>0.38991%</td>
</tr>
<tr>
<td>pcba-aid2326</td>
<td>1065</td>
<td>259688</td>
<td>250478</td>
<td>0.41011%</td>
</tr>
<tr>
<td>pcba-aid2451</td>
<td>2005</td>
<td>271718</td>
<td>236568</td>
<td>0.73790%</td>
</tr>
<tr>
<td>pcba-aid2517</td>
<td>1138</td>
<td>332123</td>
<td>177897</td>
<td>0.34264%</td>
</tr>
<tr>
<td>pcba-aid2528</td>
<td>652</td>
<td>340938</td>
<td>170054</td>
<td>0.19124%</td>
</tr>
<tr>
<td>pcba-aid2546</td>
<td>10556</td>
<td>267886</td>
<td>223298</td>
<td>3.94048%</td>
</tr>
<tr>
<td>pcba-aid2549</td>
<td>1211</td>
<td>230450</td>
<td>279424</td>
<td>0.52549%</td>
</tr>
<tr>
<td>pcba-aid2551</td>
<td>16671</td>
<td>253653</td>
<td>225301</td>
<td>6.57236%</td>
</tr>
<tr>
<td>pcba-aid2662</td>
<td>110</td>
<td>285240</td>
<td>226836</td>
<td>0.03856%</td>
</tr>
<tr>
<td>pcba-aid2675</td>
<td>99</td>
<td>248789</td>
<td>263093</td>
<td>0.03979%</td>
</tr>
<tr>
<td>pcba-aid2676</td>
<td>1081</td>
<td>357341</td>
<td>152793</td>
<td>3.0251%</td>
</tr>
<tr>
<td>pcba-aid411</td>
<td>1563</td>
<td>690057</td>
<td>440113</td>
<td>2.26335%</td>
</tr>
<tr>
<td>pcba-aid463254</td>
<td>41</td>
<td>329171</td>
<td>183043</td>
<td>0.01246%</td>
</tr>
<tr>
<td>pcba-aid485281</td>
<td>253</td>
<td>314347</td>
<td>197443</td>
<td>0.08048%</td>
</tr>
<tr>
<td>pcba-aid485290</td>
<td>938</td>
<td>335859</td>
<td>174561</td>
<td>0.27928%</td>
</tr>
<tr>
<td>pcba-aid485294</td>
<td>148</td>
<td>309649</td>
<td>202351</td>
<td>0.04780%</td>
</tr>
<tr>
<td>pcba-aid485297</td>
<td>9128</td>
<td>301294</td>
<td>192746</td>
<td>3.02960%</td>
</tr>
<tr>
<td>pcba-aid485313</td>
<td>7569</td>
<td>304194</td>
<td>192964</td>
<td>2.48821%</td>
</tr>
<tr>
<td>pcba-aid485314</td>
<td>4493</td>
<td>312590</td>
<td>190720</td>
<td>1.43735%</td>
</tr>
<tr>
<td>pcba-aid485341</td>
<td>1729</td>
<td>325703</td>
<td>183135</td>
<td>0.53085%</td>
</tr>
<tr>
<td>pcba-aid485349</td>
<td>618</td>
<td>319466</td>
<td>191594</td>
<td>0.19345%</td>
</tr>
<tr>
<td>pcba-aid485353</td>
<td>603</td>
<td>322454</td>
<td>188636</td>
<td>0.18700%</td>
</tr>
<tr>
<td>Task name</td>
<td>Positive molecules</td>
<td>Negative molecules</td>
<td>Missing molecules</td>
<td>ratio</td>
</tr>
<tr>
<td>----------------</td>
<td>--------------------</td>
<td>--------------------</td>
<td>-------------------</td>
<td>-------</td>
</tr>
<tr>
<td>pcba-aid485360</td>
<td>1485</td>
<td>216997</td>
<td>292329</td>
<td>0.68434%</td>
</tr>
<tr>
<td>pcba-aid485364</td>
<td>10698</td>
<td>331470</td>
<td>159430</td>
<td>3.22744%</td>
</tr>
<tr>
<td>pcba-aid485367</td>
<td>557</td>
<td>325598</td>
<td>185584</td>
<td>0.17107%</td>
</tr>
<tr>
<td>pcba-aid492947</td>
<td>80</td>
<td>329301</td>
<td>182835</td>
<td>0.02429%</td>
</tr>
<tr>
<td>pcba-aid493208</td>
<td>342</td>
<td>41294</td>
<td>470318</td>
<td>0.82821%</td>
</tr>
<tr>
<td>pcba-aid504327</td>
<td>766</td>
<td>370995</td>
<td>139769</td>
<td>0.20647%</td>
</tr>
<tr>
<td>pcba-aid504332</td>
<td>30264</td>
<td>263754</td>
<td>188014</td>
<td>11.47433%</td>
</tr>
<tr>
<td>pcba-aid504333</td>
<td>15673</td>
<td>310114</td>
<td>170836</td>
<td>5.05395%</td>
</tr>
<tr>
<td>pcba-aid504339</td>
<td>16859</td>
<td>338757</td>
<td>139821</td>
<td>4.97672%</td>
</tr>
<tr>
<td>pcba-aid504444</td>
<td>7388</td>
<td>282993</td>
<td>214527</td>
<td>6.10676%</td>
</tr>
<tr>
<td>pcba-aid504466</td>
<td>4169</td>
<td>306751</td>
<td>197207</td>
<td>3.35995%</td>
</tr>
<tr>
<td>pcba-aid504467</td>
<td>7648</td>
<td>235607</td>
<td>140121</td>
<td>5.05395%</td>
</tr>
<tr>
<td>pcba-aid504706</td>
<td>201</td>
<td>302548</td>
<td>209346</td>
<td>0.06644%</td>
</tr>
<tr>
<td>pcba-aid504842</td>
<td>101</td>
<td>324570</td>
<td>187524</td>
<td>0.03112%</td>
</tr>
<tr>
<td>pcba-aid504845</td>
<td>100</td>
<td>372270</td>
<td>139826</td>
<td>0.02686%</td>
</tr>
<tr>
<td>pcba-aid504847</td>
<td>3509</td>
<td>376531</td>
<td>128747</td>
<td>0.33193%</td>
</tr>
<tr>
<td>pcba-aid504891</td>
<td>34</td>
<td>361224</td>
<td>151004</td>
<td>0.09941%</td>
</tr>
<tr>
<td>pcba-aid504912</td>
<td>4393</td>
<td>192748</td>
<td>310762</td>
<td>2.27914%</td>
</tr>
<tr>
<td>pcba-aid504927</td>
<td>2129</td>
<td>367917</td>
<td>140121</td>
<td>0.57866%</td>
</tr>
<tr>
<td>pcba-aid504944</td>
<td>25036</td>
<td>301746</td>
<td>160478</td>
<td>8.29704%</td>
</tr>
<tr>
<td>pcba-aid504953</td>
<td>3904</td>
<td>365862</td>
<td>138626</td>
<td>1.06707%</td>
</tr>
<tr>
<td>pcba-aid504956</td>
<td>51</td>
<td>384356</td>
<td>127838</td>
<td>0.01327%</td>
</tr>
<tr>
<td>pcba-aid504979</td>
<td>1980</td>
<td>384213</td>
<td>124123</td>
<td>0.51534%</td>
</tr>
<tr>
<td>pcba-aid519259</td>
<td>3931</td>
<td>352947</td>
<td>140121</td>
<td>0.57866%</td>
</tr>
<tr>
<td>pcba-aid519267</td>
<td>3002</td>
<td>393819</td>
<td>117657</td>
<td>0.07872%</td>
</tr>
<tr>
<td>pcba-aid519270</td>
<td>310</td>
<td>393819</td>
<td>117657</td>
<td>0.07872%</td>
</tr>
<tr>
<td>pcba-aid519273</td>
<td>762</td>
<td>372237</td>
<td>138499</td>
<td>0.20469%</td>
</tr>
<tr>
<td>pcba-aid519279</td>
<td>69</td>
<td>408322</td>
<td>103836</td>
<td>0.01690%</td>
</tr>
<tr>
<td>pcba-aid524170</td>
<td>838</td>
<td>397756</td>
<td>112864</td>
<td>0.21068%</td>
</tr>
<tr>
<td>pcba-aid524171</td>
<td>1239</td>
<td>394674</td>
<td>115144</td>
<td>0.31933%</td>
</tr>
<tr>
<td>pcba-aid524173</td>
<td>487</td>
<td>399643</td>
<td>111679</td>
<td>0.12186%</td>
</tr>
<tr>
<td>pcba-aid524202</td>
<td>3968</td>
<td>362543</td>
<td>141817</td>
<td>1.09449%</td>
</tr>
<tr>
<td>pcba-aid543246</td>
<td>101</td>
<td>364511</td>
<td>147583</td>
<td>0.02771%</td>
</tr>
<tr>
<td>pcba-aid543248</td>
<td>432</td>
<td>302226</td>
<td>209224</td>
<td>0.33996%</td>
</tr>
<tr>
<td>pcba-aid543288</td>
<td>1356</td>
<td>323051</td>
<td>186533</td>
<td>0.41975%</td>
</tr>
<tr>
<td>pcba-aid543291</td>
<td>222</td>
<td>331803</td>
<td>180049</td>
<td>0.06691%</td>
</tr>
<tr>
<td>pcba-aid543296</td>
<td>9840</td>
<td>282428</td>
<td>210188</td>
<td>3.48407%</td>
</tr>
<tr>
<td>pcba-aid543297</td>
<td>6213</td>
<td>301951</td>
<td>197919</td>
<td>2.05762%</td>
</tr>
<tr>
<td>pcba-aid543417</td>
<td>6389</td>
<td>319289</td>
<td>180229</td>
<td>2.00101%</td>
</tr>
<tr>
<td>pcba-aid543635</td>
<td>3784</td>
<td>343160</td>
<td>161568</td>
<td>1.0269%</td>
</tr>
<tr>
<td>pcba-aid543644</td>
<td>748</td>
<td>353982</td>
<td>156818</td>
<td>0.21131%</td>
</tr>
<tr>
<td>pcba-aid543768</td>
<td>1677</td>
<td>355992</td>
<td>152950</td>
<td>0.47198%</td>
</tr>
<tr>
<td>pcba-aid543965</td>
<td>6346</td>
<td>318038</td>
<td>181566</td>
<td>1.9936%</td>
</tr>
<tr>
<td>pcba-aid543967</td>
<td>388</td>
<td>368557</td>
<td>129487</td>
<td>1.93349%</td>
</tr>
<tr>
<td>pcba-aid543969</td>
<td>4702</td>
<td>318365</td>
<td>185787</td>
<td>1.27904%</td>
</tr>
<tr>
<td>pcba-aid543970</td>
<td>497</td>
<td>362334</td>
<td>148968</td>
<td>0.13717%</td>
</tr>
<tr>
<td>pcba-aid543978</td>
<td>5948</td>
<td>331060</td>
<td>169340</td>
<td>1.79665%</td>
</tr>
<tr>
<td>pcba-aid543979</td>
<td>62373</td>
<td>236628</td>
<td>150918</td>
<td>2.63594%</td>
</tr>
<tr>
<td>pcba-aid543968</td>
<td>4532</td>
<td>257279</td>
<td>157953</td>
<td>18.86357%</td>
</tr>
<tr>
<td>pcba-aid543969</td>
<td>10170</td>
<td>340357</td>
<td>151599</td>
<td>2.98804%</td>
</tr>
</tbody>
</table>
APPENDIX A. APPENDIX: STARTING FROM A STANDARD PIPELINE

<table>
<thead>
<tr>
<th>Task name</th>
<th>Positive molecules</th>
<th>Negative molecules</th>
<th>Missing molecules</th>
<th>ratio ($\frac{pos ; number}{neg ; number}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pcba-aid720532</td>
<td>976</td>
<td>11815</td>
<td>498529</td>
<td>8.26069%</td>
</tr>
<tr>
<td>pcba-aid720542</td>
<td>733</td>
<td>356204</td>
<td>154626</td>
<td>0.20578%</td>
</tr>
<tr>
<td>pcba-aid720551</td>
<td>1265</td>
<td>341660</td>
<td>168106</td>
<td>0.37025%</td>
</tr>
<tr>
<td>pcba-aid720553</td>
<td>3259</td>
<td>336029</td>
<td>169749</td>
<td>0.96986%</td>
</tr>
<tr>
<td>pcba-aid720579</td>
<td>1908</td>
<td>280991</td>
<td>227489</td>
<td>0.67903%</td>
</tr>
<tr>
<td>pcba-aid720580</td>
<td>1508</td>
<td>304454</td>
<td>204826</td>
<td>0.49531%</td>
</tr>
<tr>
<td>pcba-aid720707</td>
<td>268</td>
<td>363257</td>
<td>148503</td>
<td>0.07378%</td>
</tr>
<tr>
<td>pcba-aid720708</td>
<td>661</td>
<td>356743</td>
<td>154231</td>
<td>0.18529%</td>
</tr>
<tr>
<td>pcba-aid720709</td>
<td>516</td>
<td>352850</td>
<td>158414</td>
<td>0.14624%</td>
</tr>
<tr>
<td>pcba-aid720711</td>
<td>290</td>
<td>363245</td>
<td>148471</td>
<td>0.07984%</td>
</tr>
<tr>
<td>pcba-aid743255</td>
<td>901</td>
<td>366915</td>
<td>143579</td>
<td>0.24556%</td>
</tr>
<tr>
<td>pcba-aid743266</td>
<td>306</td>
<td>398728</td>
<td>112956</td>
<td>0.07674%</td>
</tr>
<tr>
<td>pcba-aid875</td>
<td>34</td>
<td>73821</td>
<td>438407</td>
<td>0.04606%</td>
</tr>
<tr>
<td>pcba-aid881</td>
<td>590</td>
<td>103808</td>
<td>407308</td>
<td>0.56836%</td>
</tr>
<tr>
<td>pcba-aid883</td>
<td>1217</td>
<td>6647</td>
<td>503215</td>
<td>18.30901%</td>
</tr>
<tr>
<td>pcba-aid884</td>
<td>3396</td>
<td>6983</td>
<td>498521</td>
<td>48.63239%</td>
</tr>
<tr>
<td>pcba-aid885</td>
<td>160</td>
<td>12683</td>
<td>499293</td>
<td>1.26153%</td>
</tr>
<tr>
<td>pcba-aid887</td>
<td>1017</td>
<td>68423</td>
<td>441839</td>
<td>1.48634%</td>
</tr>
<tr>
<td>pcba-aid891</td>
<td>1564</td>
<td>6012</td>
<td>503156</td>
<td>26.01464%</td>
</tr>
<tr>
<td>pcba-aid899</td>
<td>1773</td>
<td>6141</td>
<td>502699</td>
<td>28.87152%</td>
</tr>
<tr>
<td>pcba-aid902</td>
<td>1865</td>
<td>117072</td>
<td>391494</td>
<td>1.59304%</td>
</tr>
<tr>
<td>pcba-aid903</td>
<td>338</td>
<td>52451</td>
<td>459169</td>
<td>0.64441%</td>
</tr>
<tr>
<td>pcba-aid904</td>
<td>528</td>
<td>50430</td>
<td>460810</td>
<td>1.04700%</td>
</tr>
<tr>
<td>pcba-aid912</td>
<td>453</td>
<td>56178</td>
<td>455212</td>
<td>0.80637%</td>
</tr>
<tr>
<td>pcba-aid914</td>
<td>221</td>
<td>7524</td>
<td>504330</td>
<td>2.93727%</td>
</tr>
<tr>
<td>pcba-aid915</td>
<td>421</td>
<td>7524</td>
<td>503930</td>
<td>5.59543%</td>
</tr>
<tr>
<td>pcba-aid924</td>
<td>1144</td>
<td>118813</td>
<td>391195</td>
<td>0.96286%</td>
</tr>
<tr>
<td>pcba-aid925</td>
<td>39</td>
<td>64140</td>
<td>448078</td>
<td>0.06080%</td>
</tr>
<tr>
<td>pcba-aid926</td>
<td>345</td>
<td>56230</td>
<td>455376</td>
<td>0.61355%</td>
</tr>
<tr>
<td>pcba-aid927</td>
<td>60</td>
<td>58565</td>
<td>458611</td>
<td>0.10245%</td>
</tr>
<tr>
<td>pcba-aid938</td>
<td>1781</td>
<td>60720</td>
<td>448014</td>
<td>2.93314%</td>
</tr>
<tr>
<td>pcba-aid995</td>
<td>699</td>
<td>65056</td>
<td>445842</td>
<td>1.07446%</td>
</tr>
<tr>
<td>PriA-SSB AS</td>
<td>79</td>
<td>72344</td>
<td>439794</td>
<td>0.10920%</td>
</tr>
<tr>
<td>PriA-SSB FP</td>
<td>24</td>
<td>72399</td>
<td>439849</td>
<td>0.03315%</td>
</tr>
<tr>
<td>RMI-FANCM FP</td>
<td>230</td>
<td>49566</td>
<td>462270</td>
<td>0.46403%</td>
</tr>
</tbody>
</table>
A.4 Hyperparameter Grid Search

Table A.2: Hyperparameter sweeping for classification neural networks (STNN-C and MTNN-C).

<table>
<thead>
<tr>
<th>Hyperparameters</th>
<th>Candidate values</th>
</tr>
</thead>
<tbody>
<tr>
<td>hidden layer sizes</td>
<td>[2000, 2000]</td>
</tr>
<tr>
<td>learning rate</td>
<td>0.00003, 0.0001, 0.003</td>
</tr>
<tr>
<td>optimizer</td>
<td>Adam</td>
</tr>
<tr>
<td>weighted schema</td>
<td>no_weight, weighted_sample</td>
</tr>
<tr>
<td>epoch patience</td>
<td>[epoch_size: 200, patience: 50], [epoch_size: 1000, patience: 200]</td>
</tr>
<tr>
<td>activations</td>
<td>[ReLU, Sigmoid, Sigmoid], [ReLU, ReLU, Sigmoid]</td>
</tr>
<tr>
<td>drop out</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Table A.3: Hyperparameter sweeping for regression neural networks (STNN-R).

<table>
<thead>
<tr>
<th>Hyperparameters</th>
<th>Candidate values</th>
</tr>
</thead>
<tbody>
<tr>
<td>hidden layer sizes</td>
<td>[2000, 2000]</td>
</tr>
<tr>
<td>learning rate</td>
<td>0.00003, 0.0001, 0.003</td>
</tr>
<tr>
<td>optimizer</td>
<td>Adam</td>
</tr>
<tr>
<td>weighted schema</td>
<td>no_weight</td>
</tr>
<tr>
<td>epoch</td>
<td>200, 1000</td>
</tr>
<tr>
<td>activations</td>
<td>[ReLU, Sigmoid, Sigmoid], [ReLU, ReLU, Sigmoid]</td>
</tr>
<tr>
<td>drop out</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Table A.4: Hyperparameter sweeping for LSTM neural networks.

<table>
<thead>
<tr>
<th>Hyperparameters</th>
<th>Candidate values</th>
</tr>
</thead>
<tbody>
<tr>
<td>hidden layer sizes</td>
<td>[50], [100], [100, 10], [100, 50], [50, 10]</td>
</tr>
<tr>
<td>embedding layer size</td>
<td>30, 50, 100</td>
</tr>
<tr>
<td>learning rate</td>
<td>0.00003, 0.0001, 0.003</td>
</tr>
<tr>
<td>optimizer</td>
<td>Adam</td>
</tr>
<tr>
<td>epoch patience</td>
<td>[epoch_size: 200, patience: 50]</td>
</tr>
<tr>
<td>drop out</td>
<td>0.2, 0.5</td>
</tr>
</tbody>
</table>
Table A.5: Hyperparameter sweeping for random forests (RF).

<table>
<thead>
<tr>
<th>Hyperparameters</th>
<th>Candidate values</th>
</tr>
</thead>
<tbody>
<tr>
<td>n_estimators</td>
<td>4000, 8000, 16000</td>
</tr>
<tr>
<td>max_features</td>
<td>None, sqrt, log2</td>
</tr>
<tr>
<td>min_samples_leaf</td>
<td>1, 10, 100, 1000</td>
</tr>
<tr>
<td>class_weight</td>
<td>None, balanced_subsample, balanced</td>
</tr>
</tbody>
</table>

Table A.6: Hyperparameter sweeping for IRV.

<table>
<thead>
<tr>
<th>Hyperparameters</th>
<th>Candidate values</th>
</tr>
</thead>
<tbody>
<tr>
<td>number of neighbors</td>
<td>5, 10, 20, 40, 80</td>
</tr>
<tr>
<td>epoch patience</td>
<td>[epoch_size: 1000, patience: 20]</td>
</tr>
<tr>
<td>batch size</td>
<td>8192</td>
</tr>
<tr>
<td>learning rate</td>
<td>0.01</td>
</tr>
<tr>
<td>penalty</td>
<td>0.05</td>
</tr>
</tbody>
</table>

During the hyperparameter sweeping stage, we trained models with all combinations of the hyperparameters in the tables above. For the neural networks, 80% of the 4 folds were used for training and 20% for validation. For random forest, the first 3 folds were used for training and the 4th fold for validation to prune 108 models down to 8 models. In both cases, the goal was to prune the model search space before the cross-validation stage. IRV has one primary hyperparameter for the number of neighbors so we did not need to prune the model search space before the cross-validation stage.
A.5 Cross-Validation Results on PriA-SSB FP and RMI-FANCM FP

A.5.1 Cross-Validation Performance on PriA-SSB FP

Figure A.1: Cross-validation performance with AUC[ROC]

Figure A.1: Cross-validation performance with AUC[ROC]
Figure A.2: Cross-validation performance with AUC[PR]
Figure A.3: Cross-validation performance with AUC[BEDROC]
Figure A.4: Cross-validation performance with EF@1%
A.5.2 Cross-Validation Performance on RMI-FANCM FP

Figure A.5: Cross-validation performance with AUC[ROC]
Figure A.6: Cross-validation performance with AUC[PR]
Figure A.7: Cross-validation performance with AUC[BEDROC]
Figure A.8: Cross-validation performance with EF@1%
A.6 Prospective Screening: PriA-SSB prospective Metrics

Table A.7: On-target evaluation metrics for all models. Models were trained on PriA-SSB AS and evaluated on PriA-SSB prospective.

<table>
<thead>
<tr>
<th>model</th>
<th>AUC[ROC]</th>
<th>AUC[BEDROC]</th>
<th>AUC[PR]</th>
<th>NEF@1%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>0.84937</td>
<td>0.67375</td>
<td>0.16167</td>
<td>0.55556</td>
</tr>
<tr>
<td>ConsensusDocking_efr1_opt</td>
<td>0.57953</td>
<td>0.11677</td>
<td>0.00293</td>
<td>0.00000</td>
</tr>
<tr>
<td>ConsensusDocking_max</td>
<td>0.57996</td>
<td>0.14810</td>
<td>0.00337</td>
<td>0.03704</td>
</tr>
<tr>
<td>ConsensusDocking_mean</td>
<td>0.55288</td>
<td>0.09588</td>
<td>0.00261</td>
<td>0.00000</td>
</tr>
<tr>
<td>ConsensusDocking_median</td>
<td>0.53129</td>
<td>0.07482</td>
<td>0.00246</td>
<td>0.00000</td>
</tr>
<tr>
<td>ConsensusDocking_rocauc_opt</td>
<td>0.58635</td>
<td>0.11949</td>
<td>0.00298</td>
<td>0.00000</td>
</tr>
<tr>
<td>Docking_ad4</td>
<td>0.36292</td>
<td>0.01643</td>
<td>0.00159</td>
<td>0.00000</td>
</tr>
<tr>
<td>Docking_dock6</td>
<td>0.55541</td>
<td>0.13279</td>
<td>0.00454</td>
<td>0.01852</td>
</tr>
<tr>
<td>Docking_fred</td>
<td>0.51009</td>
<td>0.12103</td>
<td>0.00301</td>
<td>0.03704</td>
</tr>
<tr>
<td>Docking_hybrid</td>
<td>0.49760</td>
<td>0.13474</td>
<td>0.00293</td>
<td>0.01852</td>
</tr>
<tr>
<td>Docking_plants</td>
<td>0.48162</td>
<td>0.06959</td>
<td>0.00223</td>
<td>0.01852</td>
</tr>
<tr>
<td>Docking_rdockint</td>
<td>0.56174</td>
<td>0.12492</td>
<td>0.00224</td>
<td>0.01852</td>
</tr>
<tr>
<td>Docking_rdocktot</td>
<td>0.68720</td>
<td>0.21658</td>
<td>0.00470</td>
<td>0.01852</td>
</tr>
<tr>
<td>Docking_smina</td>
<td>0.42361</td>
<td>0.03394</td>
<td>0.00188</td>
<td>0.00000</td>
</tr>
<tr>
<td>Docking_surflex</td>
<td>0.57940</td>
<td>0.15061</td>
<td>0.00341</td>
<td>0.01852</td>
</tr>
<tr>
<td>IRV_a</td>
<td>0.64669</td>
<td>0.35955</td>
<td>0.07617</td>
<td>0.29630</td>
</tr>
<tr>
<td>IRV_b</td>
<td>0.71961</td>
<td>0.48510</td>
<td>0.12394</td>
<td>0.44444</td>
</tr>
<tr>
<td>IRV_c</td>
<td>0.78292</td>
<td>0.59296</td>
<td>0.18787</td>
<td>0.51852</td>
</tr>
<tr>
<td>IRV_d</td>
<td>0.82602</td>
<td>0.65816</td>
<td>0.19050</td>
<td>0.51852</td>
</tr>
<tr>
<td>IRV_e</td>
<td>0.86718</td>
<td>0.71450</td>
<td>0.20442</td>
<td>0.53704</td>
</tr>
<tr>
<td>LSTM_a</td>
<td>0.58979</td>
<td>0.17634</td>
<td>0.00357</td>
<td>0.01852</td>
</tr>
<tr>
<td>LSTM_b</td>
<td>0.61639</td>
<td>0.18218</td>
<td>0.00440</td>
<td>0.01852</td>
</tr>
<tr>
<td>MultiClassification_a</td>
<td>0.83244</td>
<td>0.58368</td>
<td>0.18462</td>
<td>0.40741</td>
</tr>
<tr>
<td>MultiClassification_b</td>
<td>0.84750</td>
<td>0.61346</td>
<td>0.22199</td>
<td>0.50000</td>
</tr>
<tr>
<td>RandomForest_a</td>
<td>0.87578</td>
<td>0.73649</td>
<td>0.28165</td>
<td>0.66667</td>
</tr>
<tr>
<td>RandomForest_b</td>
<td>0.87065</td>
<td>0.74287</td>
<td>0.28530</td>
<td>0.66667</td>
</tr>
<tr>
<td>RandomForest_c</td>
<td>0.87524</td>
<td>0.74333</td>
<td>0.28648</td>
<td>0.66667</td>
</tr>
<tr>
<td>RandomForest_d</td>
<td>0.88677</td>
<td>0.75521</td>
<td>0.28425</td>
<td>0.64815</td>
</tr>
<tr>
<td>RandomForest_e</td>
<td>0.89007</td>
<td>0.75693</td>
<td>0.28200</td>
<td>0.66667</td>
</tr>
<tr>
<td>RandomForest_f</td>
<td>0.88105</td>
<td>0.68324</td>
<td>0.17308</td>
<td>0.44444</td>
</tr>
<tr>
<td>RandomForest_g</td>
<td>0.88903</td>
<td>0.76547</td>
<td>0.36893</td>
<td>0.66667</td>
</tr>
<tr>
<td>RandomForest_h</td>
<td>0.89689</td>
<td>0.76886</td>
<td>0.37933</td>
<td>0.66667</td>
</tr>
<tr>
<td>SingleClassification_a</td>
<td>0.76435</td>
<td>0.51959</td>
<td>0.11103</td>
<td>0.37037</td>
</tr>
<tr>
<td>SingleClassification_b</td>
<td>0.81857</td>
<td>0.61809</td>
<td>0.30469</td>
<td>0.55556</td>
</tr>
<tr>
<td>SingleRegression_a</td>
<td>0.92068</td>
<td>0.73424</td>
<td>0.18769</td>
<td>0.53704</td>
</tr>
<tr>
<td>SingleRegression_b</td>
<td>0.89712</td>
<td>0.68403</td>
<td>0.18575</td>
<td>0.50000</td>
</tr>
</tbody>
</table>
Table A.8: Off-target evaluation metrics for all models. As a control, the models trained on RMI-FANCM FP were evaluated on PriA-SSB prospective.

<table>
<thead>
<tr>
<th>model</th>
<th>AUC[ROC]</th>
<th>AUC[BEDROC]</th>
<th>AUC[PR]</th>
<th>NEF@1%</th>
</tr>
</thead>
<tbody>
<tr>
<td>ConsensusDocking_efr1_opt</td>
<td>0.39931</td>
<td>0.04559</td>
<td>0.00182</td>
<td>0.0000</td>
</tr>
<tr>
<td>ConsensusDocking_max</td>
<td>0.49919</td>
<td>0.07458</td>
<td>0.00227</td>
<td>0.0000</td>
</tr>
<tr>
<td>ConsensusDocking_mean</td>
<td>0.48110</td>
<td>0.07205</td>
<td>0.00217</td>
<td>0.0000</td>
</tr>
<tr>
<td>ConsensusDocking_median</td>
<td>0.47915</td>
<td>0.06370</td>
<td>0.00214</td>
<td>0.0000</td>
</tr>
<tr>
<td>ConsensusDocking_rocauc_opt</td>
<td>0.41457</td>
<td>0.04680</td>
<td>0.00186</td>
<td>0.0000</td>
</tr>
<tr>
<td>Docking_ad4</td>
<td>0.37911</td>
<td>0.02775</td>
<td>0.00173</td>
<td>0.0000</td>
</tr>
<tr>
<td>Docking_dock6</td>
<td>0.60630</td>
<td>0.12972</td>
<td>0.00318</td>
<td>0.0000</td>
</tr>
<tr>
<td>Docking_fred</td>
<td>0.40761</td>
<td>0.06924</td>
<td>0.00218</td>
<td>0.0185</td>
</tr>
<tr>
<td>Docking_hybrid</td>
<td>0.43895</td>
<td>0.04436</td>
<td>0.00196</td>
<td>0.0000</td>
</tr>
<tr>
<td>Docking_plants</td>
<td>0.45539</td>
<td>0.07053</td>
<td>0.00212</td>
<td>0.0185</td>
</tr>
<tr>
<td>Docking_rdockint</td>
<td>0.52785</td>
<td>0.08938</td>
<td>0.00245</td>
<td>0.0000</td>
</tr>
<tr>
<td>Docking_rdocktot</td>
<td>0.60125</td>
<td>0.13316</td>
<td>0.00313</td>
<td>0.0000</td>
</tr>
<tr>
<td>Docking_smina</td>
<td>0.44368</td>
<td>0.04307</td>
<td>0.00195</td>
<td>0.0000</td>
</tr>
<tr>
<td>Docking_surflex</td>
<td>0.56411</td>
<td>0.10643</td>
<td>0.00295</td>
<td>0.0185</td>
</tr>
<tr>
<td>IRV_a</td>
<td>0.52240</td>
<td>0.13901</td>
<td>0.00615</td>
<td>0.0370</td>
</tr>
<tr>
<td>IRV_b</td>
<td>0.51675</td>
<td>0.13037</td>
<td>0.00701</td>
<td>0.0370</td>
</tr>
<tr>
<td>IRV_c</td>
<td>0.53331</td>
<td>0.15181</td>
<td>0.00605</td>
<td>0.0370</td>
</tr>
<tr>
<td>IRV_d</td>
<td>0.52513</td>
<td>0.14306</td>
<td>0.00593</td>
<td>0.0370</td>
</tr>
<tr>
<td>IRV_e</td>
<td>0.52069</td>
<td>0.14026</td>
<td>0.00608</td>
<td>0.0370</td>
</tr>
<tr>
<td>LSTM_a</td>
<td>0.60099</td>
<td>0.15468</td>
<td>0.00341</td>
<td>0.0000</td>
</tr>
<tr>
<td>LSTM_b</td>
<td>0.55336</td>
<td>0.18084</td>
<td>0.00351</td>
<td>0.0000</td>
</tr>
<tr>
<td>MultiClassification_a</td>
<td>0.64870</td>
<td>0.20565</td>
<td>0.00551</td>
<td>0.0370</td>
</tr>
<tr>
<td>MultiClassification_b</td>
<td>0.54647</td>
<td>0.14914</td>
<td>0.00376</td>
<td>0.0555</td>
</tr>
<tr>
<td>RandomForest_a</td>
<td>0.50393</td>
<td>0.09951</td>
<td>0.00583</td>
<td>0.0370</td>
</tr>
<tr>
<td>RandomForest_b</td>
<td>0.52529</td>
<td>0.08989</td>
<td>0.00634</td>
<td>0.0370</td>
</tr>
<tr>
<td>RandomForest_c</td>
<td>0.52841</td>
<td>0.09705</td>
<td>0.00654</td>
<td>0.0370</td>
</tr>
<tr>
<td>RandomForest_d</td>
<td>0.49301</td>
<td>0.09502</td>
<td>0.00617</td>
<td>0.0370</td>
</tr>
<tr>
<td>RandomForest_e</td>
<td>0.49008</td>
<td>0.09053</td>
<td>0.00609</td>
<td>0.0370</td>
</tr>
<tr>
<td>RandomForest_f</td>
<td>0.61363</td>
<td>0.15680</td>
<td>0.01225</td>
<td>0.0370</td>
</tr>
<tr>
<td>RandomForest_g</td>
<td>0.51600</td>
<td>0.10026</td>
<td>0.00628</td>
<td>0.0370</td>
</tr>
<tr>
<td>RandomForest_h</td>
<td>0.53381</td>
<td>0.10430</td>
<td>0.00637</td>
<td>0.0370</td>
</tr>
<tr>
<td>SingleClassification_a</td>
<td>0.51852</td>
<td>0.11192</td>
<td>0.01917</td>
<td>0.0370</td>
</tr>
<tr>
<td>SingleClassification_b</td>
<td>0.53075</td>
<td>0.13639</td>
<td>0.01135</td>
<td>0.0370</td>
</tr>
<tr>
<td>SingleRegression_a</td>
<td>0.44809</td>
<td>0.07585</td>
<td>0.00224</td>
<td>0.0185</td>
</tr>
<tr>
<td>SingleRegression_b</td>
<td>0.44100</td>
<td>0.07796</td>
<td>0.00482</td>
<td>0.0370</td>
</tr>
</tbody>
</table>
A.7 Prospective Screening: Actives in Top 250 Predictions

Table A.9: Number of active compounds and unique clusters in the top 250 predictions compared to the experimental actives.

<table>
<thead>
<tr>
<th>Model</th>
<th>Actives</th>
<th>Actives not in baseline</th>
<th>SIM clusters</th>
<th>MCS clusters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental</td>
<td>54</td>
<td>–</td>
<td>27</td>
<td>35</td>
</tr>
<tr>
<td>Baseline</td>
<td>32</td>
<td>–</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>ConsensusDocking_efr1_opt</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ConsensusDocking_max</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>ConsensusDocking_mean</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ConsensusDocking_median</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ConsensusDocking_rocauc_opt</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Docking_ad4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Docking_dock6</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Docking_fred</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Docking_hybrid</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Docking_plants</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Docking_rdockint</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Docking_rdocktot</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Docking_smina</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Docking_surflex</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>IRV_a</td>
<td>16</td>
<td>1</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>IRV_b</td>
<td>24</td>
<td>3</td>
<td>11</td>
<td>8</td>
</tr>
<tr>
<td>IRV_c</td>
<td>28</td>
<td>4</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>IRV_d</td>
<td>29</td>
<td>4</td>
<td>13</td>
<td>9</td>
</tr>
<tr>
<td>IRV_e</td>
<td>29</td>
<td>4</td>
<td>13</td>
<td>9</td>
</tr>
<tr>
<td>LSTM_a</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>LSTM_b</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>MultiClassification_a</td>
<td>22</td>
<td>1</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>MultiClassification_b</td>
<td>27</td>
<td>3</td>
<td>13</td>
<td>9</td>
</tr>
<tr>
<td>RandomForest_a</td>
<td>36</td>
<td>6</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>RandomForest_b</td>
<td>37</td>
<td>7</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>RandomForest_c</td>
<td>36</td>
<td>6</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>RandomForest_d</td>
<td>36</td>
<td>7</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>RandomForest_e</td>
<td>36</td>
<td>7</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>RandomForest_f</td>
<td>24</td>
<td>4</td>
<td>11</td>
<td>6</td>
</tr>
<tr>
<td>RandomForest_g</td>
<td>37</td>
<td>7</td>
<td>13</td>
<td>9</td>
</tr>
<tr>
<td>RandomForest_h</td>
<td>37</td>
<td>7</td>
<td>13</td>
<td>9</td>
</tr>
<tr>
<td>SingleClassification_a</td>
<td>21</td>
<td>2</td>
<td>13</td>
<td>9</td>
</tr>
<tr>
<td>SingleClassification_b</td>
<td>31</td>
<td>5</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>SingleRegression_a</td>
<td>29</td>
<td>4</td>
<td>11</td>
<td>8</td>
</tr>
<tr>
<td>SingleRegression_b</td>
<td>28</td>
<td>7</td>
<td>10</td>
<td>8</td>
</tr>
</tbody>
</table>
A.8 Prospective Screening: UpSet Plots for Active Compound Clusters

Figure A.9: An UpSet plot showing the overlap in identified MCS clusters between the selected models and the chemical similarity baseline on PriA-SSB prospective.

Figure A.10: An UpSet plot showing the overlap in identified SIM clusters between the selected models and the chemical similarity baseline on PriA-SSB prospective.
Appendix B

Appendix: Structural Representation and Learning

Co-authors of [55] contributed to this appendix chapter.

B.1 Task Specification

<table>
<thead>
<tr>
<th>Task</th>
<th>Num of Active</th>
<th>Num of Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>NR-AR</td>
<td>304</td>
<td>7332</td>
</tr>
<tr>
<td>NR-AR-LBD</td>
<td>237</td>
<td>6817</td>
</tr>
<tr>
<td>NR-AhR</td>
<td>783</td>
<td>6592</td>
</tr>
<tr>
<td>NR-Aromatase</td>
<td>298</td>
<td>5853</td>
</tr>
<tr>
<td>NR-ER</td>
<td>784</td>
<td>6237</td>
</tr>
<tr>
<td>NR-ER-LBD</td>
<td>347</td>
<td>7014</td>
</tr>
<tr>
<td>NR-PPAR-gamma</td>
<td>186</td>
<td>6505</td>
</tr>
<tr>
<td>SR-ARE</td>
<td>954</td>
<td>5907</td>
</tr>
<tr>
<td>SR-ATAD5</td>
<td>262</td>
<td>7140</td>
</tr>
<tr>
<td>SR-HSE</td>
<td>378</td>
<td>6562</td>
</tr>
<tr>
<td>SR-MMP</td>
<td>912</td>
<td>5834</td>
</tr>
<tr>
<td>SR-p53</td>
<td>414</td>
<td>6814</td>
</tr>
</tbody>
</table>
B.2 Node Attribute Matrix Specification

Table B.2: 42 features are divided into 8 segments.

<table>
<thead>
<tr>
<th>segmentation</th>
<th>digit</th>
<th>meaning</th>
<th>values</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0-9</td>
<td>atom symbol</td>
<td>[C, Cl, I, F, O, N, P, S, Br, Unknown]</td>
</tr>
<tr>
<td>1</td>
<td>10-16</td>
<td>atom degree</td>
<td>[0, 1, 2, 3, 4, 5, 6]</td>
</tr>
<tr>
<td>2</td>
<td>17-23</td>
<td>atom number of Hydrogen</td>
<td>[0, 1, 2, 3, 4, 5, 6]</td>
</tr>
<tr>
<td>3</td>
<td>24-29</td>
<td>atom implicit valence</td>
<td>[0, 1, 2, 3, 4, 5]</td>
</tr>
<tr>
<td>4</td>
<td>30-35</td>
<td>atom charge</td>
<td>[-2, -1, 0, 1, 2, 3]</td>
</tr>
<tr>
<td>5</td>
<td>36-37</td>
<td>if atom is aromatic</td>
<td>[not aromatic, is aromatic]</td>
</tr>
<tr>
<td>6</td>
<td>38-39</td>
<td>if atom is acceptor</td>
<td>[not acceptor, is acceptor]</td>
</tr>
<tr>
<td>7</td>
<td>40-41</td>
<td>if atom donor</td>
<td>[not donor, is donor]</td>
</tr>
</tbody>
</table>
B.3 Result Classification Tasks

B.3.1 ROC on Tox21

Table B.3: This table includes three different methods on N-Gram Graph. Six combinations of \(n \)-gram and \(r \) random projection dimension are listed. For each combination, model with best performance is **bolded**.

<table>
<thead>
<tr>
<th>target name</th>
<th>target name</th>
<th>r-dimension</th>
<th>n-gram</th>
<th>XGBoost</th>
<th>RF</th>
<th>DNN</th>
</tr>
</thead>
<tbody>
<tr>
<td>NR-AR</td>
<td>50</td>
<td>2</td>
<td>0.825</td>
<td>0.825</td>
<td>0.855</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>0.832</td>
<td>0.826</td>
<td>0.863</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>0.839</td>
<td>0.826</td>
<td>0.864</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>2</td>
<td>0.818</td>
<td>0.826</td>
<td>0.816</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>0.832</td>
<td>0.823</td>
<td>0.847</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>0.837</td>
<td>0.822</td>
<td>0.830</td>
<td></td>
</tr>
<tr>
<td>NR-AR-LBD</td>
<td>50</td>
<td>2</td>
<td>0.835</td>
<td>0.851</td>
<td>0.867</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>0.835</td>
<td>0.849</td>
<td>0.857</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>0.845</td>
<td>0.841</td>
<td>0.857</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>2</td>
<td>0.835</td>
<td>0.855</td>
<td>0.867</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>0.827</td>
<td>0.841</td>
<td>0.857</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>0.843</td>
<td>0.840</td>
<td>0.845</td>
<td></td>
</tr>
<tr>
<td>NR-AhR</td>
<td>50</td>
<td>2</td>
<td>0.883</td>
<td>0.874</td>
<td>0.852</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>0.889</td>
<td>0.872</td>
<td>0.852</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>0.884</td>
<td>0.870</td>
<td>0.851</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>2</td>
<td>0.887</td>
<td>0.874</td>
<td>0.866</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>0.888</td>
<td>0.873</td>
<td>0.861</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>0.886</td>
<td>0.872</td>
<td>0.859</td>
<td></td>
</tr>
<tr>
<td>NR-Aromatase</td>
<td>50</td>
<td>2</td>
<td>0.839</td>
<td>0.849</td>
<td>0.826</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>0.829</td>
<td>0.849</td>
<td>0.824</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>0.833</td>
<td>0.849</td>
<td>0.826</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>2</td>
<td>0.829</td>
<td>0.853</td>
<td>0.824</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>0.833</td>
<td>0.848</td>
<td>0.834</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>0.829</td>
<td>0.844</td>
<td>0.832</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NR-ER</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.712</td>
<td>0.693</td>
<td>0.708</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.717</td>
<td>0.695</td>
<td>0.708</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.704</td>
<td>0.697</td>
<td>0.708</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.711</td>
<td>0.694</td>
<td>0.717</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.714</td>
<td>0.698</td>
<td>0.719</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.704</td>
<td>0.699</td>
<td>0.729</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NR-ER-LBD</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.811</td>
<td>0.801</td>
<td>0.805</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.821</td>
<td>0.816</td>
<td>0.800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.829</td>
<td>0.812</td>
<td>0.799</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.822</td>
<td>0.798</td>
<td>0.813</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.821</td>
<td>0.818</td>
<td>0.801</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.822</td>
<td>0.807</td>
<td>0.802</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NR-PPAR-gamma</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.821</td>
<td>0.850</td>
<td>0.726</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.821</td>
<td>0.850</td>
<td>0.726</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.784</td>
<td>0.847</td>
<td>0.728</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.817</td>
<td>0.826</td>
<td>0.717</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.829</td>
<td>0.849</td>
<td>0.751</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.821</td>
<td>0.835</td>
<td>0.748</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.822</td>
<td>0.837</td>
<td>0.772</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SR-ARE</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.819</td>
<td>0.815</td>
<td>0.795</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.829</td>
<td>0.824</td>
<td>0.807</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.826</td>
<td>0.827</td>
<td>0.804</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.837</td>
<td>0.828</td>
<td>0.803</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.836</td>
<td>0.832</td>
<td>0.794</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SR-ATAD5</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.853</td>
<td>0.840</td>
<td>0.814</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.846</td>
<td>0.865</td>
<td>0.807</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.844</td>
<td>0.858</td>
<td>0.807</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.858</td>
<td>0.844</td>
<td>0.805</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.853</td>
<td>0.865</td>
<td>0.821</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.843</td>
<td>0.858</td>
<td>0.808</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SR-HSE</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.785</td>
<td>0.760</td>
<td>0.775</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.805</td>
<td>0.771</td>
<td>0.779</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.821</td>
<td>0.773</td>
<td>0.771</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.792</td>
<td>0.762</td>
<td>0.759</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.798</td>
<td>0.775</td>
<td>0.760</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.796</td>
<td>0.771</td>
<td>0.764</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SR-MMP</td>
<td></td>
<td>SR-p53</td>
<td></td>
<td>Average</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>-------</td>
<td>--------</td>
<td>-------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>100</td>
<td>50</td>
<td>100</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>2</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>0.897</td>
<td>0.904</td>
<td>0.905</td>
<td>0.903</td>
<td>0.909</td>
<td>0.908</td>
</tr>
<tr>
<td></td>
<td>0.887</td>
<td>0.893</td>
<td>0.893</td>
<td>0.889</td>
<td>0.893</td>
<td>0.893</td>
</tr>
<tr>
<td></td>
<td>0.857</td>
<td>0.851</td>
<td>0.849</td>
<td>0.863</td>
<td>0.860</td>
<td>0.862</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>2</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>0.847</td>
<td>0.864</td>
<td>0.872</td>
<td>0.855</td>
<td>0.868</td>
<td>0.865</td>
</tr>
<tr>
<td></td>
<td>0.826</td>
<td>0.840</td>
<td>0.843</td>
<td>0.830</td>
<td>0.841</td>
<td>0.841</td>
</tr>
<tr>
<td></td>
<td>0.778</td>
<td>0.778</td>
<td>0.772</td>
<td>0.791</td>
<td>0.795</td>
<td>0.794</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>2</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>0.827</td>
<td>0.830</td>
<td>0.835</td>
<td>0.827</td>
<td>0.830</td>
<td>0.830</td>
</tr>
<tr>
<td></td>
<td>0.823</td>
<td>0.829</td>
<td>0.826</td>
<td>0.823</td>
<td>0.829</td>
<td>0.826</td>
</tr>
<tr>
<td></td>
<td>0.805</td>
<td>0.804</td>
<td>0.802</td>
<td>0.805</td>
<td>0.804</td>
<td>0.807</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>2</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>0.828</td>
<td>0.832</td>
<td>0.830</td>
<td>0.828</td>
<td>0.832</td>
<td>0.830</td>
</tr>
<tr>
<td></td>
<td>0.824</td>
<td>0.828</td>
<td>0.826</td>
<td>0.828</td>
<td>0.828</td>
<td>0.826</td>
</tr>
<tr>
<td></td>
<td>0.806</td>
<td>0.809</td>
<td>0.807</td>
<td>0.806</td>
<td>0.809</td>
<td>0.807</td>
</tr>
</tbody>
</table>
B.3.2 Generalization Performance on Tox21

Table B.4: Generalization performance is the performance (AUC[ROC]) gap between train and test set. Top three robust models are **bolded** and the most stable one is **underlined**. Though its performance is not the best (details in Table 2.2), N-gram graph with DNN is the most robust representation and model pair.

<table>
<thead>
<tr>
<th>Representation</th>
<th>Morgan</th>
<th>Message-Passing Graph</th>
<th>N-Gram Graph</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RF</td>
<td>XGB</td>
<td>DNN</td>
</tr>
<tr>
<td>NR-AR</td>
<td>0.179</td>
<td>0.162</td>
<td>0.249</td>
</tr>
<tr>
<td>NR-AR-LBD</td>
<td>0.118</td>
<td>0.142</td>
<td>0.190</td>
</tr>
<tr>
<td>NR-AhR</td>
<td>0.117</td>
<td>0.105</td>
<td>0.149</td>
</tr>
<tr>
<td>NR-Aromatase</td>
<td>0.171</td>
<td>0.209</td>
<td>0.307</td>
</tr>
<tr>
<td>NR-ER</td>
<td>0.282</td>
<td>0.219</td>
<td>0.291</td>
</tr>
<tr>
<td>NR-ER-LBD</td>
<td>0.162</td>
<td>0.161</td>
<td>0.204</td>
</tr>
<tr>
<td>NR-PPAR-gamma</td>
<td>0.191</td>
<td>0.284</td>
<td>0.262</td>
</tr>
<tr>
<td>SR-ARE</td>
<td>0.161</td>
<td>0.135</td>
<td>0.219</td>
</tr>
<tr>
<td>SR-ATAD5</td>
<td>0.135</td>
<td>0.186</td>
<td>0.254</td>
</tr>
<tr>
<td>SR-HSE</td>
<td>0.203</td>
<td>0.241</td>
<td>0.277</td>
</tr>
<tr>
<td>SR-MMP</td>
<td>0.126</td>
<td>0.122</td>
<td>0.130</td>
</tr>
<tr>
<td>SR-p53</td>
<td>0.125</td>
<td>0.125</td>
<td>0.290</td>
</tr>
<tr>
<td>Average</td>
<td>0.164</td>
<td>0.174</td>
<td>0.235</td>
</tr>
</tbody>
</table>
Bibliography

[9] Basudeb Bhattacharyya, Nicholas P. George, Tiffany M. Thurmes, Ruobo Zhou, Niketa Jani, Sarah R. Wessel, Steven J. Sandler, Taekjip Ha, and James L. Keck. Structural mechanisms

[99] Izhar Wallach and Abraham Heifets. Most Ligand-Based Classification Benchmarks Reward Memorization Rather than Generalization. *Journal of Chemical Information and Modeling*, April 2018.

