Effects of Wind and Precipitation on Airborne Particulate Levels Around a Frac Sand Mine

University of Wisconsin-Eau Claire: Sand Fracking Research

Hannah Smith | BSB, Pang Houa Xiong-Yang | BSENPH

Background
- Frac sand mining and processing generate particulate matter including respirable crystalline silica.
- Different sources of pollution cause human health concerns associated with frac sand mining in Wisconsin.
- Many cardiovascular and respiratory symptoms are associated with the inhalation of particulate matter:
 - PM$_{2.5}$ and PM$_{10}$ levels, wind speed, wind direction and precipitation were measured at the Chippewa Sand mine in Bloomer, WI.
 - Chippewa Sands mine is located Northwest of our equipment.
 - Theoretically, wind direction will need to come from NW to SE to hit our equipment.

Objective
- Determine correlation between met data and PM$_{2.5}$ levels found.

Methods
- Collect data from meteorological station at the Bloomer site.
- Use software “Weather link” to download data from field unit to computer.
- Analyze data to determine correlation of the met data and other direct reading instruments.

Results
- Compared direct reading equipment levels to met data.
- Compared high PM$_{2.5}$ level days to:
 - Wind direction.
 - Rain rate.

- Compared lower levels of PM$_{2.5}$ to Wind directions and precipitation.
- Wind Directions and speeds don’t correlate with PM$_{2.5}$ levels.

Conclusion
- Measurements have found higher levels of PM$_{2.5}$ around plants, compared to regional levels.
- Wind speed and direction don’t play a role in the movement of particulates.
- Precipitation seems to lower PM$_{2.5}$.
- Monitoring for PM$_{2.5}$ and silica is essential.
- These particles are known to cause health impact in the long term.

Acknowledgements
- Dr. Crispin Pierce - Environmental Public Health Associate Professor.
- Office of Research and Sponsored Programs.

References
- Wisconsin Department of Natural Resources.