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Abstract—We describe and detail two systems developed by the
University of Wisconsin—-Madison Graphics Group and Human-
Computer Interaction lab designed to synthesize robot arm
motion and evaluate human-robot collaborative performance.
STrOBE is a general purpose robot trajectory optimizer. STrOBE
optimizes a motion objective subject to a set of robot or
environmental constraints using a nonlinear solver. RobotSim
is an experimentation system implemented as a game. RobotSim
measures the human-robot collaborative performance of robot
arm motions. These systems have been developed with the intent
of being released as open source software. We hope that releasing
this software to the scientific community encourages further
exploration of human-robot collaboration. This report serves as
a resource for anyone looking to get started using these systems
or looking for ideas for their own software.

I. INTRODUCTION

Motion planning is an important step for performing any
type of robot task. The ability to produce collision-free and
minimal energy trajectories has been widely studied and
achieved by state-of-the-art motion planners [[I]], [2]. Minimal
energy trajectories are functionally important in many envi-
ronments, such as manufacturing, because these trajectories
reduce wear on the robot’s actuators. However, in many of
these environments robots interact and in some cases collabo-
rate with humans. In collaborative scenarios, minimal energy
may not always be the most desirable quality of a motion.

Communicating intent is an important component of motion
in collaborative scenarios because it affects the clarity of the
desired outcome [3], [4]. In this report we refer to the clarity
of the motion’s outcome as intent-expressiveness. The intent-
expressiveness of robot motion has been studied in many
contexts. The basic principle is rooted in neuroscience, which
has suggested that the human brain is designed to detect
and extract intention from biological motion [3]. Designing
expressive motion has a long tradition in character animation
(see [6] for a history of the development of the modern
art). These animation principles have been applied to robot
motion and have shown that intent-expressive motions can
improve people’s perceptions of the robot’s intelligence and
their confidence in inferring the robot’s goal. These findings
have led to the development of motions designed specifically
to signal the robot’s intent and methods to synthesize
intent-expressive motions [9].

While many open-source software systems exist for con-

Fig. 1.
motions use an objective designed to express the robot arm’s intent to an
observer. This objective is included as a built-in objective in STrOBE. The
motions are simulated within the Unity game engine using elements from our
evaluation framework, RobotSim.

Several samples of motions synthesized using STrOBE. These two

trolling robots (such as Robot Operating System (ROSﬂ),
systems to study the intent-expressiveness of robot motion are
not widely available. Furthermore, such systems require a fair
degree of generality to allow a wide range of objectives and
constraints to be utilized. In our research to understand the
qualities of effective human-robot collaboration, the University
of Wisconsin—Madison Graphics Group and Human-Computer
Interaction lab have developed several systems to address the
needs of synthesizing intent-expressive motions and evaluating
the effectiveness of these trajectories. We have built a general
purpose trajectory optimizer that can synthesize robot motion
using a wide variety of motion objectives and constraints. Our
trajectory optimizer, Spacetime Trajectory Optimizer for 'Bot
Expression (STrOBE), can optimize objectives and handle
constraints using both the kinematic space of the robot and
the Cartesian space the robot is operating in. These objectives
and constraints can make use of the robot’s joint and point
velocities, as well as joint and point accelerations. Our eval-
uation framework, RobotSim, reads trajectories synthesized
by STrOBE (or any other motion planner as long as they
are formatted properly) and executes these trajectories on a
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simulated robot game. RobotSim measures several metrics
throughout the game to evaluate the motion’s effect on col-
laborative performance with a human collaborator.

In this technical report, we describe the STrOBE and
RobotSim systems. We discuss the design, implementation,
and usage of each of these systems. We identify current
limitations and how these limitation could be addressed. We
hope that these systems, both planned for release as open-
source software on the University of Wisconsin—-Madison
Graphics Group GitHubEI, will help the scientific community
continue to explore human-robot collaboration and the design
of intent-expressive motion.

II. STROBE TRAJECTORY OPTIMIZER

To study how qualities of robot arm motion affect human-
robot collaboration, our lab requires the ability to synthesize
motions that have many different qualities and requirements.
We require a system that provides flexibility in the choice of
objective and constraints. To achieve this flexibility we devel-
oped an in-house trajectory optimizer built on the principles
of spacetime constraints from animation literature. While other
trajectory optimizers may be more efficient for optimizing to
achieve minimal energy and avoiding collisions, our optimizer
gives us the ability to drastically change the qualities and
requirements of motions synthesized to achieve a number of
desired outcomes. In this section we describe the design, im-
plementation, usage, and limitations of STTOBE. We provide
examples of synthesized trajectories and code to produce these
trajectories.

A. A Brief Introduction to Spacetime

In the animation community trajectory optimization, known
as spacetime constraints [10]], provides a framework for ex-
ploring and understanding the properties of intent-expressive
motions for robot manipulators. Trajectories are specified as
the solution to variational optimization problems, that is, a
trajectory that minimizes some objective function (defined
over the trajectory) subject to a set of constraints. The con-
straints allow defining the requirements of the motion, while
the choice of objective allows defining the desired properties
of the movement. Flexibility in the objective allows choosing
functions to create many effects, such as minimizing energy
[10] or expressing intent [9f], [L1], [[12].

We define a robot trajectory as a function that maps time to
robot configurations, © : R — R”" where n is the number of
degrees of freedom, so that the configuration along a trajectory
at time ¢ is ©(r). We denote the kinematic function that maps
from configuration space to a position, the robot’s forward
kinematics, as FK, such that the end effector position at time
t is FK(O(2)).

Optimizing the variational problem results in a trajectory:

©* = argmin g(©) subject to ¢; © k;,

for the time range f, to fr. The objective function g is a function
over the trajectory that returns a scalar value. Each of the

Zhttps://github.com/uwgraphics

( Solver )
( Spacetime )
Evaluation Functions
Problem Information
File Out
Trajectory Robot KeyVector
output Kinematics Problem States
(ObjectiveTerm[D ( Constraint([] )
\_ J
g J

Fig. 2. The high-level design of our STrOBE trajectory optimizer. A Robot
defines the state and point variables by its configuration and kinematics. A
Spacetime problem is initialized with the robot and the number of keyframes
for the KeyVector. ObjectiveTerms and Constraints are added to the problem
as required by the motion design and environment. Finally, a Solver is passed
a Spacetime problem and solves the problem using the Spacetime evaluation
functions. Optionally, the solution can be written to a file.

constraints ¢; is either ¢ € {=,<,>} to a constant k;. These
constraints allow the requirements for the motion and the
environment to be defined. For example we can constrain the
initial configuration of the robot with an initial pose constraint
(O(ty) = ko). A simple example of an objective function is to
minimize the length of the trajectory in configuration space
(minimal joint movement):
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By defining our problem as above, we can explore a large
space of different objectives and/or constraints. In the next
subsections we describe the design and implementation of our
spacetime constraints optimizer.

B. STrOBE Design

Spacetime constraints provides a very generalized formu-
lation for solving a wide variety of motion optimization
problems. It allows us flexibility in the objective and the
constraints. Thus, it is an ideal formulation to use for our
trajectory optimizer. STrOBE is designed to solve this very
flexible problem space.

To solve the variational optimization problem of spacetime
constraints, we discretize the robot’s trajectory and approx-
imate the objective function with finite differences sampled
along time. This discretization leads to a non-linear program-
ming problem over the variables of the representation of the
trajectory that can be modeled using automatic differentiation
and solved using commonly available variants of Sequential
Quadratic Programming (SQP) as described by [[10] and [11].
These these earlier implementations use bespoke solvers. We
have implemented STrOBE with freely available tools from
standard libraries (the Python ad automatic differentiation
package and the SLSQP solver from scipy). We note that
for the class of spacetime objectives we consider, we cannot
use per-frame iterative approaches [13]].
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Fig. 3. Class diagram for the Robot class.

The basic, high-level design of STrOBE is shown is Fig-
ure 2] The system synthesizes trajectories by building the
problem from the bottom up. First, a Robot is defined by
its kinematics. All robots are dervived from the Robot base
class. Next, each ObjectiveTerm for the desired properties
of the motion must be defined. All objectives are derived
from ObjectiveTerm. Next, the requirements of the motion
(due to the environment, robot, goals, etc.) are defined as
Constraints. All constraints are derived from Constraint.
With these building blocks defined, the Spacetime prob-
lem is initialized with the robot and number of keyframes.
A KeyVector is created from the robot’s state space re-
peated for the number of keyframes. ObjectiveTerms and
Constraints are added to the Spacetime problem using
member functions. Finally, with the problem fully defined, the
Spacetime problem is passed to the Solver. The Solver
utilizes the evaluation functions provided by Spacetime to
minimize the ObjectiveTerms over the KeyVector subject
to the Constraints.

C. STrOBE Implementation

This section describes each of the classes and their member
functions. We describe how these classes integrate into the
overall system. We also discuss the built-in extensions to our
base classes that we have developed for our own research. The
built-in classes are included in the framework and provide a
variety of useful robots, objectives, and constraints as well as
a solver implementation.

1) Robot: Robot is an abstract class that defines the
interface for specifying the kinematics and state space for
the Spacetime problem. A Robot has a certain number of
points (for example the joints of a robot arm) and a certain
number of variables in the state space to be optimized over.
These counts, a robot name, and a cleanup callback function
(used to perform post processing functions such as removing
erroneous spinning of joints) are used to initialize a Robot.
Robots are treated as functions of state that when called
return a list of the point positions of the robot for that state.
A Robot also provides a getFrames function that returns
the same list of points for a given state, as well as a list
of 3x3 transformation matrices for each point. Robot has
two members, xUBounds and xLBounds, that can be set to
define the upper and lower bounds for each state variable.
Finally, a Robot may define its own internal constraints that
are called the same as Constraint objects. Figure [3] details
the members of the Robot class.

TABLE I
STROBE CONSTRAINT AND OBJECTIVE PARAMETERS

Parameter | Description

t The current keyframe.

state The state vector at keyframe t.

points The point vector at keyframe t.

frames The transformation matrices for the robot at keyframe t.
stvel The state velocities vector at keyframe.

stacc The state accelerations vector at keyframe.

ptvel The point velocities vector at keyframe t.

ptacc The point accelerations vector at keyframe t.
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Fig. 4. Class diagram for the ObjectiveTerm class.
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Fig. 5. Class diagram for the Constraint class.

STrOBE also includes an extension of Robot called Arm.
The Arm class implements a Robot and provides additional
functions to evaluate the robot state using the kinematic
description (axes of rotation, joint offsets, and rotations) of a
robot arm. Three of our built-in robots discussed later extend
the Arm class.

2) ObjectiveTerm: ObjectiveTerm is an abstract class
that defines the interface to specify properties of the motion
that we are trying to achieve through optimization. The inter-
face is fairly simple, an ObjectiveTerm is a callable object
with variable parameters. When called an ObjectiveTerm
calculates the scalar value of this term in the objective for
the current state and returns the squared sum of that value,
||ObjectiveTerm|?, to the caller. Table [I| lists the parameters
that are available to ObjectiveTerm calls for performing
calculations. An ObjectiveTerm is initialized by providing
four flags to specify whether the term uses the current state,
current point positions, current state velocity, and/or current
point velocity. These flags determine what information is
needed by the ObjectiveTerm to calculate the objective
value. Figure [ details the members of the ObjectiveTerm
class.

3) Constraint: Constraint is an abstract class that defines
the interface for a strict requirement of the motion that must
be met. Constraint can be either an equality, inequality, or
both. By convention, equality constraints are satisfied when
they evaluate to O and inequality constraints are satisfied
when they evaluate to greater than or equal to 0. Like
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Fig. 6. Class diagram for the KeyVector and StateSequence classes.

ObjectiveTerm, a Constraint is initialized by providing
four flags to specify whether it uses the current state, current
point positions, current state velocity, and/or current point
velocity. Additionally, Constraint is initialized with three
boolean values that determine whether it considers the third
dimension (Z axis), whether it has an equalty component,
and whether it has an inequality component. Constraint
is not a callable object, but instead is evaluated by calling
the constraint function using the variable parameters from
Table [l Calls to the constraint function return two lists
of evaluations, an equality list and an inequality list. If
a Constraint is not an equality or inequality it should
leave that list empty. Figure [3] details the members of the
Constraint class.

4) KeyVector: KeyVector and StateSequence provide
storage and functions for the robot configuration in each
keyframe of the Spacetime problem. StateSequence is
an abstract class that stores the number of keyframes
and the number of state variables. KeyVector implements
StateSequence and stores the value of all active state
variables for each of the keyframes in a large list. KeyVector
provides functions to extract and write the state at a given
keyframe. Figure [6] details the members of the KeyVector
and StateSequence classes.

5) Spacetime: Spacetime contains all of the problem
parameters (the robot, constraints, and objective terms) and
provides functions to evaluate the current problem state. Figure
[7] details the members of the Spacetime class.

A spacetime problem is initialized with a Robot and
the number of keyframes to optimize over. The Spacetime
class will use the Robot number of variables and the
number of keyframes to create the initial KeyVector. A
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Fig. 7. Class diagram for the Spacetime class. The class contains the robot
and problem description. It provides member functions, used by a Solver, to
evaluate the current solution state.
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Fig. 8. Class diagram for the Solver class. The class contains is initialized
with a Spacetime problem and utilizes the Spacetime evaluation functions to
optimize the KeyVector for the given ObjectiveTerms and Constraints.

Constraint can be added at a specific keyframe by pass-
ing the keyframe and Constraint to the Spacetime
member function addConstraint. A Constraint can be
added at all keyframes by passing the Constraint to the
Spacetime member function addAllTimeConstraint. An
ObjectiveTerm can be added to the problem by calling
the Spacetime member function addPointObjective with
the ObjectiveTerm and a weight for the term. The weight
can be changed by calling the Spacetime member func-
tion changeWeight with the ObjectiveTerm and the new
weight. Finally, the Spacetime member list excludeKeys
can be used to specify keyframes that should should not
consider Constraint objects when optimizing the trajectory.

When a spacetime problem is being solved, the Solver
can make use of the Spacetime member functions eval and
evalG. eval returns the sum of ObjectiveTerm values,
the list of equality Constraint evaluations, and the list
of inequality Constraint evaluations for the current state
vector. evalG returns these three evaluations as well as the
derivatives for each of the three evaluations.



6) Solver: solver defines the interface to a solver that
minimizes the summation of each ObjectiveTerm while still
satisfying each Constraint for the Robot and number of
keyframes defined in the Spacetime problem. The Solver
is initialized with a Spacetime problem (and any additional
parameters needed by the specific solver). The Solver is
a callable object and when called performs optimization
by utilizing the Spacetime evaluation function, eval and
evalG. The output of the call should return the optimized
the state vector (a Robot state for each keyframe) for the
given Spacetime problem. Figure [§] details the members of
the Solver class.

We include an implementation of a sequential quadratic
programming (SQP) solver, sLsoPsolver. We have used
this solver exclusively to date. However, there is no reason
why other solvers could not be implemented as long as they
implement the Solver class correctly. SLSQPSolver provides
additional solver parameters:

e _iter: The maximum number of iterations.

e _acc: The accuracy threshold.

e _x0: The intial condition of the state vector.

e _verbose: Toggles whether solver termination informa-
tion is output.

e _callback: The optional post processing callback.

e _doBounds: Whether to use the Robot state variable
bounds (xUBounds and xLBounds).

7) Built-In Extensions: While the space of potential exten-
sions for objectives, constraints, and robots is virtually infinite,
we have built some of these constructs into STrOBE for our
own research. These are included in the optimizer because
we have found them to be particularly useful. These built-in
extensions can use used by including them from the proper
“built-in” Python file. Figure 0] details our built-in extensions.

Our built-in ObjectiveTerms are:

e StateValue: Minimizes the distance from the problem’s
state vector to a given state vector.

e StateVelocity: Minimizes the state space velocity
(straight lines in state space).

e StateAcceleration: Minimizes the state space accel-
eration (smooth curves in state space).

e PointVelocity: Minimizes the point velocity of a given
Robot point.

e PointAcceleration: Minimizes the point acceleration
of a given Robot point.

e ElbowVelocity: Minimizes the PointVelocity for all
of the Robot points.

e AncaLegible: The legibility objective proposed by Dra-
gan et al. [9].

e ProbFieldLegible: Minimizes the value of the deriva-
tive of a Guassian distribution centered at a goal position
for a selected Robot point.

e Legibles: Minimizes the vector from a selected Robot
point to a goal position.

e LegibleG: Minimizes the vector from an user inferred
position to a goal position.
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Fig. 9. The listing of built-in ObjectiveTerms, Constraints, and Robots
currently provided by the STrOBE trajectory optimizer. Each extends either
the base ObjectiveTerm, Constraint, or Robot classes to achieve a desired
motion property, motion requirement, or robot kinematics, respectively.

e PointDistance: Attempts to keep a selected Robot
point at least a given distance from a specified point.

e AlignAxis: Keeps the dot product (alignment) of the
selected axis of a Robot point and a given vector as
close to 1 as possible.

Our built-in Constraints are:

e Marker: Not really a constraint! This simply marks a
given position, but returns empty lists.

e Nail: An equality Constraint that keeps a selected
Robot point at a specified position.

e alignAxis: An equality Constraint that keeps the dot
product of the selected axis of a Robot point and a given
vector equal to a given value.

e alignAxisGT: An inequality Constraint that keeps
the dot product of the selected axis of a Robot point
and a given vector greater than a threshold.

e AboveFloor: An inequality Constraint that keeps a
selected Robot point greater than a threshold along the
Y axis.

e VariableBetween: An inequality Constraint that
keeps a selected state variable within a certain range.

e StateVelocity: An inequality Constraint that keeps
a selected state variable’s velocity below a certain thresh-



Minimize Velocity X Minimize Acceleration )(
4 4
N /
4 4
4
‘4 B f/,' B
\ \ [
\ S/ \
[ — LY
»
) \\ '(/V'vyr\»»»..;s;A“‘::s(
\ '
A e (
x"vw ! \>>>»“>>>“‘>:X |
,//

Fig. 10. An example of different trajectories synthesized for a point robot
with STrOBE. The point robot moves from the starting location through an
intermediate waypoint using two different objectives: minimum velocity (left)
and minimum acceleration (right). The point robot must also avoid three
obstacles in its path (gray circles). The start, intermediate, and end points are
specified using position constraints at given time steps (begin, end/2, end).
The obstacles are specified by all-time minimum point distance constraints.

old.

e pointDistance: An inequality Constraint that keeps
a selected Robot point’s distance from a given position
greater than a minimum distance.

e allPointsDistance: An inequality Constraint that
keeps each of the Robot points’ distances from a given
position greater than a minimum distance.

Finally, our built-in Robots are:

e Particle2DRobot: A 2D particle robot specified by a
single point.

e TwoLink: A simple 2D robot with two links and two
joint variables (a base joint and a joint connecting the
links).

e UR5: An extension of the Arm subclass of Robot. Spec-
ifies the kinematics for a Univeral Robots URS and has
six joint variables.

e Mico: An extension of the Arm subclass of Robot.
Specifies the kinematics for a Kinova Mico and has six
joint variables.

e Reactor: An extension of the Arm subclass of Robot.
Specifies the kinematics for a Trossen Robotics Phan-
tomX Reactor and has five joint variables.

D. STrOBE Usage

This section describes how to make use of our trajectory
optimizer and provides examples of using STrOBE to produce
various trajectories. Using STrOBE to synthesize trajectories
is a straightforward process:

1) Create a Robot.

2) Create a Spacetime problem initialzed with the Robot

and number of keyframes.

3) Add ObjectiveTerms and problem Constraints to
the Spacetime problem.

4) Initialize the Solver with the Spacetime problem and
any relevant parameters. Note: It is a good idea to help
the solver by setting known states (due to constraints for
example) of the state vector in the initial condition.

5) Call the solver to solve the Spacetime problem.

Figure shows a simple example of optimizing a point
robot’s motion for two different objectives in an environment
with three obstacles. Figure [TT] shows motions synthesized for
two of the built-in robot arms using two different objectives.
To provide a concrete example of using STrOBE, the following
Python script produces the solution on the left in Figure [T0}

from trajopt.solver.slsqp import SLSQPSolver

from trajopt.spacetime.spacetime import Spacetime

from trajopt.robot.builtinRobots import Particle2DRobot

from trajopt.spacetime.builtinObjectives import PointVelocity

from trajopt.spacetime.builtinConstraints import Nail, pointDistance

# Timesteps and Waypoints
nsteps = 51 # number of keypoints

last = nsteps — 1
middle = last/2

startPoint = (0,0,0)
midPoint = (5,0,0)
endPoint = (5,5,0)

pointID = 0 # the point we are interested in
pointVelocityWeight = 1.0

# Create Robot
robot = Particle2DRobot(1)

# Create Spacetime Problem
st = Spacetime(robot, nsteps)

# Setup Objective (minimum velocity)
st.addPointObjective(PointVelocity(pointID), pointVelocity Weight)

# Setup Constraints

st.cO = Nail(pointID, startPoint, True) # start

st.cl = Nail(pointID, midPoint, True) # intermediate waypoint
st.c2 = Nail(pointID, endPoint, True) # end

st.c3 = pointDistance(pointlD,1,5,2.5,0,True) # obstacle

st.c4 = pointDistance(pointID,1,1.5,-0.5,0,True) # obstacle
st.c5 = pointDistance(pointlD,1,1.5,2,0,True) # obstacle

st.addConstraint(0, st.cO)
st.addConstraint(middle, st.cl)
st.addConstraint(last, st.c2)
st.addAllTimeConstraint(st.c3)
st.add AllTimeConstraint(st.c4)
st.addAllTimeConstraint(st.c5)

# Help the solver a bit by configuring known states in x0
st.defaultState[last] = [endPoint[0], endPoint[1]]
st.defaultState[middle] = [midPoint[0], midPoint[1]]

# Create Solver and solve the Spacetime problem
solver = SLSQPSolver(st,_callback=True)
solution = solver()

E. STrOBE Limitations

STrOBE does have some limitations which could be ad-
dressed to improve its usefulness. Major limitations in the
current version are no guarantee of convergence, lack of robot
dynamics, lack of support for non-uniform time steps, lack of



Fig. 11.
arms included in STrOBE as built-in robot arms, a Kinova Mico (left)
and a PhantomX Reactor (right). The robot arms move from the starting
configuration to the ending configuration using two different objectives:
minimum joint velocity (white) and minimum end-effector point velocity
(green). The start and end configurations are specified using state constraints
at given time steps (begin, end).

An example of different trajectories synthesized for two robot

collision detection, and lack of support for complex geometry.
Additional features that could improve usability include pars-
ing Unified Robot Description Format (URDF) files to import
new robots as well as ROS and Movelt integration.

The extremely general nature of our problem definition and
implementation is a great asset, but also carries an important
limitation. STrOBE is not guaranteed to converge to a solution.
This is why it is extremely important to “help” the solver by
setting up the initial condition, defaultState, to contain
any known (constrained) states. Another technique we use to
encourage convergence is to start from an initial trajectory. We
often perform interpolation from the known starting state to
an ending state to initialize the solver.

Robot dynamics are not currently implemented within the
framework. However, robot dynamics can be implemented
within the spacetime framework by describing them as con-
straints of the robot. This approach was described by Witkin
and Kass [10] in their implementation of spacetime constraints.
To date we have not had a need for robot dynamics as our
research has focused mostly on end-effector paths. Thus, robot
dynamics are not currently implemented.

Currently, STrOBE assumes that keyframes are spaced one
time step apart. However, it is conceivable that instead of
finding the robot state at the next time step one may want
to allow timesteps to vary in length. In particular, we may
want to distribute keyframes more densely at times with high
curvature. We may also want to add timing constraints that
adhere to the dynamic limits of the robot. Adding support for
timing information is an important feature for a future version.

STrOBE does not currently support complex geometries
and as such there is no collision detection. Currently, the
system does support adding constraints to maintain a minimum
distance from a point. So, collisions can be avoided by adding
point distance constraints. However, an important future fea-
ture is to support complex geometric models, so planning can
be achieved in complex scenes.

Finally, adding ROS support would greatly improve the
system’s ability to be used with a wide variety of robots
as well as driving robots directly from the optimizer. This
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Fig. 12.  The high-level design of our RobotSim testing framework. Within
a Unity scene two main components drive the game, the Task and the Robot.
The Robot is a chain of Unity GameObjects that includes the robot geometry
and a Controller script. The Controller script receives new trajectories from
the game and executes them on the specific Robot. The Task handles game
play, human I/O, game settings, measurement, and communication with the
external web site.

could potentially be achieved without much modification to
the system since ROS supports Python.

III. ROBOTSIM STUDY FRAMEWORK

Our main interest in trajectory optimization to-date has been
optimizing robot arm motions to convey intent. To evaluate the
effectiveness of intent-expressive trajectories synthesized by
STrOBE we designed a task and modeled it in the Unity game
engineﬂ This section describes the design and implementation
of our human-robot collaborative performance study frame-
work, RobotSim. This section assumes a reader has a working
knowledge of the Unity game engine. If you would like to try
the game yourself a demonstration is available onlineﬂ

A. RobotSim Design

RobotSim is designed as a collection of components that can
be used to simulate a robot task and also allow for humans to
interact with the simulation. The framework is composed of
two main concepts, Robot and Task. Currently in RobotSim
we provide three robots, and one task. Each robot is actuated
by a Controller, which moves between trajectory Poses by
fitting and following a SmoothLinearSpline or using basic
point interpolation (PiecewiseLinearFunction). The robot
executes these trajectories to perform a portion of a task. The
human playing the game performs the other portion of the
task. Measurements are collected at the frame-rate of the game
(typically 60 Hz) to evaluate the collaborative performance of
the human and robot. Figure [I2] provides a basic overview of
the RobotSim framework.

Currently, the RobotSim framework supports three robot
arms: a Trossen Robotics PhantomX Reactorﬂ a Kinova

3https://unity3d.com/
4http://graphics.cs.wisc.edu/Demos/RobotSim/
Shttp://www.trossenrobotics.com/!
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Fig. 13.
robot arms: Mico (top), Reactor (middle), and URS (bottom). The robot arm
picks up the cylinder from the feeder and places it on the track (the black
line). Users control the plate to try and “catch” the cylinder.

The RobotSim testing framework with each of the three supported

Miccﬂ and a Universal Robots URSﬂ The choice of these
robots has mostly been due to availability. Our lab currently
owns a PhantomX Reactor and a Mico arm. This allows us
to test robot trajectories in simulation before testing them in
person, which typically requires longer study times due to the
serial nature of in-person robot studies. The choice of arms
also provides a good sample of different robot arm kinematics
with different degrees of freedom (DoF): the Reactor has only
5-DoF and a human-arm-like shoulder-elbow-wrist configura-
tion, the Mico has 6-DoF and a non-anthropomorphic series
of axial wrist joints with angular offsets, and the URS has an
anthropomorphic design with more capability than the Reactor
because of its 6-DoF.

The RobotSim framework includes a single collaborative
task, Game_1DWorkspace, at this point in time. In this task,
the robot places cylinders at locations along a linear track,
and a participant moves a plate (controlled by his/her mouse)
where they think the robot is going to place the cylinder. We
typically motivate this task as performing a chemistry exper-

6http://www.kinovarobotics.com/|
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Fig. 14. Class diagram for the Robot class.

iment by combining the reactive components (the plate and
cylinder). The game measures how the participant’s inference
of the goal position changes over time. These measurements
allow us to compare collaborative performance created by
various motion types. To encourage participants to make their
best guess at all times without waiting, we have included an
optional “contact loss” mechanism. This mechanism simulates
loss of control of the plate by creating static on the game
camera and preventing the user from moving the plate. Figure
shows the simulated task for each of the three robot arms.

B. RobotSim Implementation

In this section we detail the various classes and other
structures used in RobotSim. The function, structures, and
usage of each component are briefly described.

1) Robot GameObject Prefab: Each robot in RobotSim has
a chain of Unity GameObjects which include the meshes and
textures used to render the robot. These GameObjects are
attached to each other as a kinematic chain starting from the
base link and ending at the end-effector. The chain’s parent
is an empty GameObject with the same name as the robot.
This root GameObject is tagged as a Robot and includes a
Script component of type Controller. In the options for
the script component, the correct RobotTypes is selected
from a drop down list. The Controller script provides
control of the model of the robot. This chain is saved as a
Unity prefab object for easily importing into new scenes.

The three available robot models currently supported by
RobotSim and their kinematic descriptions are from open-
source ROS packages. The three supported robots are: a
Universal Robots URﬂ a Kinova Micﬂ and a Trossen
Robotics PhantomX Reactof™}

2) Robot: Robot is an abstract class designed to allow
communication between the generic Controller class and
the Robot GameObject Prefab. For each actual robot,

Shttps://github.com/ros- industrial/universal_robotl

https://github.com/RIVeR-Lab/wpi_jaco
ttps://github.com/a-price/reactor_d escriptionl
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Fig. 15. Class diagram for the Controller class.

the Robot class is extended and the following members are
initialized: NAME, NUM_NON_EE_JOINTS, NUM_EE_JOINTS,
JOINT_NAMES,JOINT_AXIS, and JOINT_VELOCITIES.
These members provide information about the kinematics and
prefab link names to the program. See Adding A New Robot
(Section for more details on these members.

Figure [T4] details the public members provided by Robot.
These functions allow querying the parameters described
above as well as retrieving (GetCurrentPose) or setting
(SetPose, SetJointAngle) the current joints angles. Also
shown in the figure is the RobotTypes enumeration, which
stores the currently available robot types.

3) Controller: Controller is the class responsible for ex-
ecuting trajectories on the current scene Robot. Controller
is derived from the Unity MonoBehaviour class; so, it updates
every frame when Unity calls its Update function. The
Controller should be attached to the root GameObject
of the robot prefab. The public member robotType allows
selecting the correct robot from the available options in the
Robot Types enumeration.

Controller public member functions are shown in Figure
[[5] These members provide the ability to execute trajec-
tories (ExecuteTrajectory) that are specified as either
a single Pose or a Pose array. The Controller takes
the Poses to be executed and constructs a TimeFunction
for each Robot joint from the current position of the
Robot to the last Pose making sure each Pose is passed
through. The TimeFunction used is determined by which
ExecutionMethods enumeration option is passed to the
execution function.

Other members allow querying whether the Robot is cur-
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Fig. 16. Class diagram for the Pose class.

rently idle or ready to execute a new trajectory, setting the end-
effector position, querying the currently executing trajectory’s
duration, and querying the Robot object that the Controller
is currently controlling.

4) Pose: Pose is a class to store a single configuration
of the current Robot. A Pose contains a double value for
each of the non end-effector joints and can include grip-
per positions as well. Poses are initialized from a joint
angle list or array. These structures should be of length
NUM_NON_EE_JOINTS if no gripper information is to be
changed or of size NUM_NON_EE_JOINTS + NUM_EE_JOINTS
if the gripper value should change. Joint values can be passed
as either degrees or radians. Values for specific joints can
be updated or retrieved individually. Pose provides methods
to convert between radians and degrees as well as take the
difference in magnitude between two Poses. Figure[T6] details
the public interface for this class.

5) TimeFunction: A TimeFunction is an abstract class to
store a continuous function of time. A TimeFunction allows
assembling a Pose array into continuous trajectory functions
for each joint. This is necessary for the RobotSim framework
because the game updates at high frame rates. A function is
necessary to fill in the information between subsequent Poses
to allow the Robot to move smoothly.

TimeFunction is currently implemented by two classes,
SmoothLinearSpline and PiecewiseLinearFunction.
PiecewiseLinearFunction provides simple linear inter-
polation between subsequent Poses. SmoothLinearSpline
provides simple linear interpolation except near boundaries.
Corners are smoothed using 5" degree polynomials. The
options provided by the ExecutionMethods enumeration
should be used to select between these two function types for
trajectory execution. Both function types are constucted by
passing time (in seconds) as the x_data and the joint angle
values as the y_data. SmoothLinearSpline includes an
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Fig. 17. Class diagram for the FunctionsOfTime classes.

additional parameter to limit the maximum corner curvature.

Polynomial and its subclasses, LinearFunction
and QuinticPolynomial, are wused to  support
SmoothLinearSpline and PiecewiselLinearFunction.
All of these function classes are simplified C# implementations
of constructs found in the open-source ecl _geometr}E ROS
package. Figure details the TimeFunctions and their
members.

6) Game_IDWorkspace &  Settings_I1DWorkspace:
Game_1DWorkspace contains the game’s state machine
and measures data throughout each trial motion.
Settings_lDWorkspace sets and maintains the game’s
settings. Settings_1DWorkspace reads selected trajectory
files and provides functions to query and advance the current
trajectory file being executed by the game. The public
members for these classes are shown in Figure [I§]

Settings should be passed to the game by passing

a single string to the ConfigRun function provided
by Game_lDWorkspace. To call ConfigRun the
serving web page should invoke the JavaScript

https://github.com/stonier/ecl_core/tree/indigo-devel/ecl_geometry/
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function SendMessage ("Main Camera", "ConfigRun",
<SETTINGS STRING>) ;. This function is provided by Unity
in the compiled WebGL game to allow a web page to interact
with the game. The settings string should be formatted as
"<SETTING>=<VALUE>\n <SETTING>=<VALUE>\n ...".
All of the possible Settings_1DWorkspace settings are
described in Table [

At the end of each motion, Game_1lDWorkspace calls
the Settings_lDWorkspace UpdateData function.
UpdateData invokes the callback function callName
specified in the settings. The callback function should be
implemented externally in JavaScript to handle the data from
the game for this trial. The external callback should either
update a form element on the web page with hidden fields
for each data value or provide an AJAX call to write the data
to a database. The callback mode is specified by the option
chosen from the WebGLLoggingMode enumeration. Table
describes all of the data values passed back after each
motion.

7) Other Task Classes: Two additional classes support
our simulated task, Target and Plate. Target is a Unity
MonoBehaviour that should be attached to the scene’s cylin-
der that the robot places. Target allows the cylinder to attach
to the robot end-effector as well as translate up and down in the
feeder. Plate is also a Unity MonoBehaviour that should be
attached to the scene’s user controlled plate. Plate translates
the plate object to follow the user’s mouse and allows disabling
motion when contact loss occurs.

C. RobotSim Usage

RobotSim’s primary purpose is to be utilized as a web-based
game. To support this operation a web framework should be
developed to serve the game and provide a backend to record
measurements collected by the game. For our experiments we
have developed a study framework using PHP and a MySQL
database. The basic requirements of the web framework are
to check browser requirements (Google Chrome or Mozilla
FireFox with HTML5 and WebGL support), provide the game
configuration parameters via JavaScript, and store collected
data.
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TABLE II
ROBOTSIM GAME SETTINGS

Setting Default Description

MotionType 0 Selects the motion type to
use. This should be a single
integer for an option in the
MotionTypes enumeration.

AllowContactLoss False Is contact loss used {True,

False}?

WebGLLoggingMode 0 Selects the external data
callback mode to use. This
should be a single integer
for an option in the We-
bGLLoggingMode enumer-
ation.

The name of the external
JavaScript callback to pass
data to the web page.

WebGLLoggingCallname WriteObjective AJAX

The ID of the form element
that will store the data. This
is used for WebGLLogging-
Mode.Form.

WegGLLoggingFormname LoggingForm

MotionIndices new int[0] A comma separated list of
buckets, {1, ..., 6}, to select
motions from (in the correct

trial order).

LoseContactindices new bool[0] A comma separated list,
{True, False}, to determine
if a trial has contact loss (in

the correct trial order).

TABLE III
ROBOTSIM MEASURED DATA

Value Description

TimePoints A comma separated list of times. These are
the times each of the other raw data points are
recorded at.

MousePositionPoints A comma separated list of mouse positions on

the track.

ErrorPoints A comma separated list of error magnitudes
from the plate position to the robot’s target

position.

TimeFirstCorrect The time when the participant predicted the
target and did not move +e from the target for

the rest of the trial.

TotalMouseMovement | The integral of MousePositionPoints.

AreaUnderCurve The integral of ErrorPoints.

CriticalPointPosition The position of the plate when contact loss

occurred (or would have occurred).

UserldleTime The time it took after the motion started for the
participant to move the mouse.

AvgFPS The average game frame rate.

MinFPS The minimum game frame rate.

MaxFPS The maximum game frame rate.

PathDuration The total duration of the motion.

LostContactTime The time when contact loss occurred (or would
have occurred).

LostContact Was there contact loss {1,0}?

WriteTime The time/date the current trial completed.

TargetPosition The target position of the robot’s motion.

CoordSlope The slope of linear regression performed on
ErrorPoints from UserldleTime to TimeFirst-
Correct.

InvalidTrial Did the participant move the mouse at all {1,0}?

Building the game is straightforward. Unity can build the
game on a variety of platforms including WebGL, Linux, Win-
dows, OSX, etc. To utilize the web-based build option navigate
to File — Build Settings..., select the WebGL build
option, and make sure the correct scene is selected to build. A

prompt will ask for an output directory. Select a directory and
build the game. The built files can be directly integrated into a
web framework. Other platforms can potentially be used, but
may require additional modifications.

Because of the modularity of the different components, it is
relatively easy to take pieces from RobotSim and move them
into other scenes built in Unity. The Robot and Controller
scripts can be packaged into a Unity asset package with the
necessary geometry and material files. These assets can easily
be imported into other Unity projects and scenes. Please read
the Unity documentation for more details on exporting/import-
ing these assets packages.

In the next subsections we describe how to add new robots
and motion types into the current framework. These are the
most likely additional features a user might want to add and
the most practical to describe since building new scenes is
near limitless in scope.

D. Adding A New Robot

Adding a new robot is a fairly simple process. This section
describes building a new robot that can be controlled using
the Controller class and how to integrate motion files for a
new robot into the Game_1DWorkspace task.

The first step to add a new robot is to build the robot
GameObject chain. First add an empty GameObject into the
scene and give it the name of the new robot, <NEW ROBOT
NAME>. Select the Tag for this GameObject as Robot. Then
add each of the meshes for the robot as a chain starting from
the base mesh. The initial empty GameObject should be the
parent (root node) of this chain. Care should be taken when
following kinematic descriptions from other sources because
Unity uses a left-handed coordinate system. Many description
formats, such as ROS URDFs, are described in a right-handed
coordinate system. It is a good idea to save this GameObject
chain as a prefab for easily importing it into new scenes.

Once the chain is built, create a new script and define a
class, <NEW ROBOT NAME>, that extends the abstract class,
Robot. This new class will configure the parameters of the
robot for the Controller class. The following parameters
should be initialized as private members:

e const string NAME: The robot name, <NEW ROBOT

NAME>.

e const int NUM_NON_EE_JOINTS: The count of non
end-effector joints.

e const int NUM_EE_JOINTS: The count of joints for
the end-effector.

e static string[] JOINT_NAMES: The name of the
GameObject for each link in the robot chain starting
from the base (do not include the empty GameObject
root).

e static Vector3[] JOINT_AXIS: The axis of rotation
(typically static option of Vector3) for each of the joints
listed in the same order as JOINT_NAMES.

e double[] JOINT_VELOCITIES: The maximum joint
velocities (in degrees / second) for each of the joints listed
in the same order as JOINT_NAMES.



The new robot class constructor should use these parameters
to initialize the base Robot class. Any additional functions can
be added as necessary, but this is the minimum implementa-
tion.

Finally, add the new robot to the Robot Types enumeration
using the same name as the class created for the new robot,
<NEW ROBOT NAME>. Also, add a case for the new robot
enumeration to the switch statement in Extensions that
returns a robot of the new class, <NEW ROBOT NAME>. Select
the base GameObject and add a Script component of
type Controller. In the options for the Script component
choose the newly added Robot Types from the drop down list.

To add motion files for a new robot to
the Game_1DWorkspace task, create new di-
rectories, Resources/Motions/<NEW ROBOT
NAME>/1DWorkspace/<MOTION TYPE>/<BUCKET>/,
for each of the six buckets for each motion type that
motions have been synthesize for. Add the properly named
motion trajectory files (POSX_POSY.txt) into the correct
bucket folder under the correct motion type. Be sure that
the ready (ready.txt), cylinder pickup (pickup.txt),
and ready to place (readyToPlace.txt) pose files are
placed in the directory Resources/Motions/<NEW ROBOT
NAME>/1DWorkspace/.

E. Adding New Motion Types

Adding new motion types is a simple process. First, create
the proper new directories, Resources/Motions/<ROBOT
NAME>/1DWorkspace/<NEW MOTION TYPE>/<BUCKET>/,
for each of the six buckets. Second, Add the properly named
motion trajectory files (POSX_POSY.txt) into the correct
bucket folder under the new motion type. Finally, add a new
option in the MotionType enumeration. The name of the
enumeration must be the same as the directory for the motion
files, <NEW MOTION TYPE>.

FE. RobotSim Limitations

Currently there are several limitations of the study frame-
work. The most important is the lack of support for joint types
other than revolute joints and lack of support for complex
joints. Another current limitation is the lack of support for
complex end-effectors.

None of the robots we simulate use joints other than revolute
joints. As such, we have had no need to develop the capability
to include other joint types, such as prismatic. It is possible
to extend our framework to include other joint types. This
will require adding an additional vector to the Robot class
and subclasses that specfies the joint type for each joint. Then
the functions to set the robot model’s pose can be updated
to change behavior (such as translating instead of rotating)
based on each joints’ type. Complex joints (joints with more
than one axis of rotation) are also not implemented. These
could be implemented by splitting up each axis of rotation
into a separate joint and connecting each individual joint with
zero length “virtual” links.

Anther major limitation is support for complex end-
effectors. Currently the robots we use have only 2 fingers with
each finger having a single rotational actuator. By comparison,
a complex end-effector may have many dependent links be-
tween the actuator and the gripper. An idea to implement these
advanced end-effectors may be to define them as robots since
they are essentially robots themselves.

G. RobotSim Web Study Tips

When running the study framework with live participants
it is especially important to limit the possibility of bad data
and cheating. A few simple mechanisms can be added to
a web framework to greatly improve the quality of data
collected by RobotSim. These mechanisms including checking
for HTMLS support, preventing mobile devices, checking the
user’s browser, and handling refreshes by using a trial queue.

The simplest check for HTMLS support is to use JavaScript
to attempt to create a canvas object on the page. The WebGL
build uses a canvas to display the game; so, failing this
check is a good indication that an out-dated browser is being
used or the user’s browser settings will not allow game play.
Additionally, checks should be performed to screen out web
browsers that are not currently supported by Unity (as of
this writing only Google Chrome or Mozilla FireFox are
supported). Finally, mobile devices should be prevented from
playing the game. Mobile devices can be detected using PHP.

Other mechanisms to ensure data quality are a trial queue
and frame rate tracker. The game provides and records the
user’s frame rate by default. It is advisable to conduct a trial
run of the game before the study (using only a few trials)
and filter out participants whose average frame rate is below
a reasonable threshold (we typically use 15 fps). It is also a
good idea to track the remaining trials (bucket selections) in
a queue on the server. By popping an element off the queue
every time a motion is completed by the game (this can be
detected when the game updates the recorded measurements),
the current game settings can be kept server side. If the
participant refreshes the page, the server can check if the trial
queue is empty. If the queue is not empty the game can be
reloaded with only the remaining motion trials. If a queue is
not used, a refresh will result in the game starting over.

These simple mechanisms can ensure high quality data.
Typically we see less than 10% bad data. The game will help
detect bad data by flagging motions that no mouse movement
was detected as InvalidTrial.

IV. DISCUSSION

We have described the design, implementation, usage, and
limitations of two systems that were developed to synthesize
and evaluate robot arm motions. STrOBE is a general purpose
motion synthesizer implemented using spacetime constraints.
RobotSim is a game built using the Unity game engine that
measures the collaborative performance between a human and
a robot arm. STrOBE can be used to produce trajectories that
can be evaluated using RobotSim.



STrOBE can make use of potentially many different non-
linear solvers. In our implementation we utilize a sequential
quadratic programming optimizer freely available from the
Python package scipy.optimize. While our primary objec-
tive has been to synthesize intent-expressive motions, STTOBE
can be readily extended to include a variety of constraints
and objectives. RobotSim is much more specialized for eval-
uating a specific quality of a trajectory, intent-expressiveness.
However, the modularity of RobotSim does allow adapting
the robots and the controller to other environment and tasks.
For example, we have packaged the RobotSim robots and
controller into a Unity package and imported them into other
simulation tools developed with Unity.

We plan to release STrOBE and RobotSim as open source
software in the near future. We hope that releasing this soft-
ware to the research community will encourage further explo-
ration of and discussion about achieving intent-expressiveness
in robot motion. We also believe using a common evaluation
task/framework, such as RobotSim, will be beneficial for
ensuring accurate comparisons between different methods of
synthesizing intent-expressive motion.

ACKNOWLEDGMENTS

I would like to thank my advisors Dr. Michael Gleicher
and Dr. Bilge Mutlu. Without their support, guidance, and
feedback none of my work at UW would have been possible.
I am especially grateful to my wife, Jennifer, whose love and
support allowed me to begin graduate school and has kept me
pressing forward. Finally, I would like to thank my mom, dad,
and sister for shaping me into the person I am today.

REFERENCES

[1] M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, and S. Schaal,
“Stomp: Stochastic trajectory optimization for motion planning,” in
Robotics and Automation (ICRA), 2011 IEEE International Conference
on, May 2011, pp. 4569-4574.

[2] N. Ratliff, M. Zucker, J. A. Bagnell, and S. Srinivasa, “Chomp: Gradient
optimization techniques for efficient motion planning,” in Robotics and
Automation, 2009. ICRA ’09. IEEE International Conference on, May
2009, pp. 489-494.

[3] D. Bortot, M. Born, and K. Bengler, “Directly or on detours? how
should industrial robots approximate humans?” in 2013 8th ACM/IEEE
International Conference on Human-Robot Interaction (HRI), Mar.
2013, pp. 89-90.

[4] C. Lichtenthdler and A. Kirsch, “Legibility of Robot Behavior : A
Literature Review,” Apr. 2016, working paper or preprint. [Online].
Available: https://hal.archives-ouvertes.fr/hal-01306977

[5] S. J. Blakemore and J. Decety, “From the perception of action to the
understanding of intention,” Nature Reviews Neuroscience, vol. 2, no. 8,
pp. 561-567, Aug. 2001.

[6] F. Thomas and O. Johnston, The Illusion of Life: Disney Animation.
New York: Disney Editions, 1981. [Online]. Available: http://opac.inria.
fr/record=b1129024

[7]1 L. Takayama, D. Dooley, and W. Ju, “Expressing thought: Improving
robot readability with animation principles,” in 2011 6th ACM/IEEE
International Conference on Human-Robot Interaction (HRI), Mar.
2011, pp. 69-76.

[8] M. Zhao, R. Shome, I. Yochelson, K. E. Bekris, and E. Kowler, “An
Experimental Study for Identifying Features of Legible Manipulator
Paths,” in International Symposium on Experimental Robotics, Jun.
2014.

[9]1 A. Dragan and S. Srinivasa, “Generating Legible Motion,” in Robotics:
Science and Systems, Jun. 2013.

[10] A. Witkin and M. Kass, “Spacetime constraints,” in Proceedings of
the 15th Annual Conference on Computer Graphics and Interactive
Techniques, ser. SIGGRAPH *88. New York, NY, USA: ACM, 1988, pp.
159-168. [Online]. Available: http://doi.acm.org/10.1145/54852.378507

[11] M. Gleicher, “Retargetting motion to new characters,” in Proceedings
of the 25th Annual Conference on Computer Graphics and Interactive
Techniques, ser. SIGGRAPH ’98. New York, NY, USA: ACM, 1998, pp.
33—42. [Online]. Available: http://doi.acm.org/10.1145/280814.280820

[12] A. Dragan, K. Lee, and S. Srinivasa, “Legibility and predictability of
robot motion,” in Human-Robot Interaction, Mar. 2013, pp. 301-308.

[13] M. Gleicher, “Comparing constraint-based motion editing methods,”
Graph. Models, vol. 63, no. 2, pp. 107-134, Mar. 2001. [Online].
Available: http://dx.doi.org/10.1006/gmod.2001.0549


https://hal.archives-ouvertes.fr/hal-01306977
http://opac.inria.fr/record=b1129024
http://opac.inria.fr/record=b1129024
http://doi.acm.org/10.1145/54852.378507
http://doi.acm.org/10.1145/280814.280820
http://dx.doi.org/10.1006/gmod.2001.0549

	Introduction
	STrOBE Trajectory Optimizer
	A Brief Introduction to Spacetime
	STrOBE Design
	STrOBE Implementation
	Robot
	ObjectiveTerm
	Constraint
	KeyVector
	Spacetime
	Solver
	Built-In Extensions

	STrOBE Usage
	STrOBE Limitations

	RobotSim Study Framework
	RobotSim Design
	RobotSim Implementation
	Robot GameObject Prefab
	Robot
	Controller
	Pose
	TimeFunction
	Game_1DWorkspace & Settings_1DWorkspace
	Other Task Classes

	RobotSim Usage
	Adding A New Robot
	Adding New Motion Types
	RobotSim Limitations
	RobotSim Web Study Tips

	Discussion
	References

