Definition. A time scale \mathbb{T} is a non-empty, closed subset of \mathbb{R}.

Definition. Let \mathbb{T} be a time scale and $t \in \mathbb{T}$. The forward jump operator $\sigma : \mathbb{T} \rightarrow \mathbb{T}$ and backward jump operator $\rho : \mathbb{T} \rightarrow \mathbb{T}$ are defined by

$$\sigma(t) = \inf \{ s \in \mathbb{T} : s > t \} \quad \text{and} \quad \rho(t) = \sup \{ s \in \mathbb{T} : s < t \}.$$

Notation. $f^\sigma(t) = f(\sigma(t))$.

Definition. The graininess function $\mu : \mathbb{T} \rightarrow [0, \infty]$ and the backwards graininess function $\nu : \mathbb{T} \rightarrow [0, \infty]$ are defined by

$$\mu(t) = \sigma(t) - t \quad \text{and} \quad \nu(t) = t - \rho(t).$$

Example. If $\mathbb{T} = \mathbb{R}$, $\mu(t) = 1$. This makes sense due to the density of \mathbb{R}, that is, adjacent values in \mathbb{R} are arbitrarily close to each other.

Definition. Let $f : \mathbb{T} \rightarrow \mathbb{R}$ and $t \in \mathbb{T}$, where sup $\mathbb{T} = \infty$. Then the Δ-derivative of f is defined by

$$f^\Delta(t) = \frac{f(t) - f(\rho(t))}{\mu(t)} \quad \text{and} \quad \sigma(t) = t \quad \text{provided the limit exists}. \quad \text{If the Δ-derivative of f exists, we say f is Δ-differentiable}.$$

Definition. Let $f : \mathbb{T} \rightarrow \mathbb{R}$ and $t \in \mathbb{T}$, where inf $\mathbb{T} = -\infty$. Then the ∇-derivative of f is defined by

$$f^\nabla(t) = \frac{f(t) - f(\sigma(t))}{\nu(t)} \quad \text{and} \quad \rho(t) = t \quad \text{provided the limit exists}. \quad \text{If the ∇-derivative of f exists, we say f is ∇-differentiable}.$$

2. Second-Order Dynamic Equations

There is an intimate relationship between the second-order dynamic equations shown below.

Delta-Sigma: \((p(t)x^\Delta)^\Delta + q(t)x = 0 \)

Delta: \((p(t)x^\Delta)^\Delta + q(t)x = 0 \)

Nabla-Hil: \((p(t)x^\nabla)^\nabla + q(t)x = 0 \)

Nabla: \((p(t)x^\nabla)^\nabla + q(t)x = 0 \)

and the dynamic Riccati equations. We can use the Riccati substitutions to solve for the four Riccati equations. The Riccati substitutions are:

$$z = \frac{p(t)x^\Delta}{x^\nabla} \quad \text{and} \quad w = \frac{p(t)x^\nabla}{x^\Delta}.$$

where x is a nonzero solution of the second-order equation.