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Product Design With Response Surface Methods

An Illustration of the Use of Scientific
Statistics for Adaptive Learning

George Box and Patrick Liu

In this article, methods for demonstrating the iterative process of investigation are presented. As one
example, it is shown how the sequential use of response surface technigques may be applied to devise
an improved paper helicopter design with almost twice the flight time of its original prototype. The
purpose of this paper is to demonstrate the process of investigation and how it can be catalyzed by
the use of statistics. Although individual designs and analyses are used these are the “trees” behind

which we hope the forest will be clearly visible.

Introduction

By the late 1940°s earlier attempts to introduce statistical
design at a major division of ICI in England using large
preplanned all-encompassing experimental designs had
failed. The “one-shot” approach with the experimental de-
sign planned at the start of the investigation when least
was known about the system was clearly inappropriate. In
this industrial environment, results from an experiment
were often available within days, hours, or sometimes even
minutes. Advantages offered by this greater immediacy
could be realized only by a philosophy of experimenta-
tion suited to the process of adaptive learning in which
ideas were modified as experimentation progressed — phi-
losophy which the skilled industrial investigator would
naturally use. Response Surface Methods (Box and Wil-
son, 1951) were developed as one means of filling this
need (see also Daniel, 1962).

Unfortunately, the one-shot experiment, where all aspects
of the problem — the appropriate factors to be studied, the
appropriate region in which to experiment, the form of
model to be fitted and so forth — are all assumed known in
advance, has received almost undivided attention by re-
searchers and teachers in statistics. This is presumably
because that form of experiment can be conveniently fit-
ted into a fixed mathematical framework, within which,
theorems can be proved and researchers, can develop “op-
timal” decision procedure, “optimal” experimental designs
and so forth.

Although in some experimental trials the one-shot approach
is necessary (for example in many medical trials), such
trials form only a very small part of the body of experi-
mentation needed in research and development. Conse-
quently, statisticians limited to this static mind-set have
usually been found te be a hindrance rather than a help to

adaptive learning and have thus excluded themselves from
an encrmous and comparatively unexpilored field where
statistical methods appropriate to changing rather than to
static ideas could be of enormous help. Unfortunately,
many researchers and teachers in statistics have similarly
hobbled their own activities. To rigorously explore the
consequences of supposedly available knowledge is, of
course, an essential part of scientific investigation, but what
is paramount is the discovery of new knowledge. There is
no logical reason why the former should impede the latter
but this is what has happened.

Since the time of Aristotle it has been known that the gen-
eration of new knowledge occurs as a result of deductive-
inductive iteration. Aristotle’s concept was developed and
restated by Grosseteste in the thirteenth century and later
by Francis Bacon, and is inherent in the Shewhart-Dem-
ing cycle for continuous quality improvement. It is a nec-
essary theme for any serious discussion of scientific in-
vestigation.

In this context of adaptive learning, it is recognized that
the appropriate factors to be studied, the regions of inter-
est in the factor space, the form of the models to be fitted
and so forth must all initially be guessed by the investiga-
tor and as s/he learns more about them, and that they will
almost invariably change. Thus for adaptive learning one
cannot hope to produce a rigid and unique “optimal” pro-
cedure. What can be done is to develop techniques which
when used in cooperation with the investigator, can cata-
lyze a process of iterative learning that can be used by
different investigators, start from different places and fol-
low different routes and yet have a good chance of con-
verging on some satisfactory solution when such exists,
In this paper we illustrate such a process using iterative
statistical methods to improve the design of a paper heli-
copter.
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Figure 1. The initial helicopter design.

The prototype design for a paper helicopter, shown in Fig-
ure 1, was kindly made available to us by Kipp Rogers of
Digital Equipment Corporation. The objective of our ex-
periment was to find an improved helicopter design giv-
ing consistently longer flight times. Our test flights were
carried out in a room with a ceiling 102 inches (8’ 6™)
from the floor. The wings of each tested helicopter were
initially held against the ceiling and the flight time was
measured with a digital stop watch.

Design I : An Initial Screening Experiment

After considerable discussion it was decided to begin by
testing the eight factors (input variables) each at two lev-
els listed in Table 1 and with plus and minus limits shown
there. The response (output variable) was the flight time.
The initial experimental plan defined sixteen helicopter
types set out in Table A.1. (In general, the letter A before
a table or figure means that the table or figure will be

found in the Appendix.) The experimental design is a 2%*

fractional factorial (see for example Box et al, 1978). Each
of the sixteen types of helicopter was dropped four times
and the flight times recorded in centiseconds (units of one
hundredih of a second). The mean flight times y and the
standard deviations are also shown in the Table A.1, to-
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gether with the quantity 100 log s which we will call the
dispersion . It is well known (Bartlett and Kendall, 1946)
that for the analyses of variation there are considerabie
advantages in using the logarithm of the sample standard
deviation s rather than s itself. To avoid decimals, we have
used 100 log 5 in our analysis and we refer to this quantity
as the dispersion. The effects calculated from the mean
flight time ¥ will be called location effects. Effects cal-
culated using the dispersion 100 log s will be called dis-
persion effects. Visual observation suggested that larger

variation of flight times was usually associated with in-

stability of the helicopter design.

The effects are shown as regression coefficients thus
the censtant term is the overall average and each of
the remaining coefficients is one half of the usual fac-

tor effect. Normal plots for these effects are shown in
Figure 2(a) and (b). Figure 2(a) for location effects shows
that factors describing three of the dimensions of the heli-
copter — wing length £, body length L, and body widih W -
all have distinguishable effects on mean flight time but
that of the five remaining “qualitative” variables only fac-
tor C (corresponding to the application of a paper clip to
the body of the helicopter) is appreciable and is negative.

The plot for dispersion effects in Figure 2(b) shows ef-
fects for wing length £, body length L, body width W, pa-
per clip C and for the string of interactions
PL+2C+WT+FM. Also, the signs of the coefficients are
such that changes in the dimensional variables £, L, and
W, which gave increases in the mean flight time, were
also associated with reductions in dispersion. However
the addition of a paper clip, while reducing the dispersion,
also decreased the flight time. We made a judgment that
for the moment we would concentrate on increasing flight
times and not use the paper clip. We could reconsider this
later if instability became a problem. Also, we decided
that we would not attempt to interpret or to separate out
by additional runs, the interaction string at this time.

Factor -1 +1
1. Paper Type P regular bond
2. Wing Length (inches) ¢ 3.00 4.75
3. Body Lenth (inches) L 3.00 4.75
4. Body Width (inches) W 1.25 2.00
5. Fold F no yes
6. Taped Body T no yes
7. Paper Clip C no yes
8. Taped Wing M no yes

Table 1. Factor levels used in Design I: an initial 2%}
screening experiment.
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Figure 2(a). Design I-Normal plots for location effects

Jrom y.

On this basis a linear model for estimating mean flight
times in the immediate neighborhood of the experimental
design was

§=223+28x, — 13x, - 8x, m

where the coefficients are those in Table A.1 suitably
rounded.

Equation (1) is usually called a linear regression model
since the coefficients 223, 28, -13, and -8 are those that
would be obtained by fitting the equation by least squares.
The contour diagram of Figure 3 is a convenient way of
conveying visually what is implied by Equation (1). For
example, the equation implies that combinations of X X
and x, on the 240 contour plane should all produce alter-
native helicopter designs with flight times of about 240
centiseconds.

Steepest Ascent Using the Results from Design 1

Now, since increasing the wing length £ and reducing the
body length L and body width W all had a positive effects
on mean flight time, it might be expected that helicopter
design with greater wing lengths and with reduced body
lengths and body widths might give even longer flights.
We can determine such helicopter designs by exploring
the direction at right angles to the contour planes indi-
cated by the arrow in Figure 3. In the units of x,, x,, and x,
this is the direction of greatest increase at a given distance
from the design center and is called the direction of steep-
est ascent.

To calculate a series of points along the direction of steep-
est ascent you don’t need a contour plot. You can do this
by starting at the center of the design and changing the
factors in proportion to the coefficients of the fitted equa-
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Figure 2(b). Dispersion effects from 100 log s.

tion. Thus the relative changes in X, X, and x, are such
that for every increase of 28 units in x,, x, is reduced by 13
units, and x, by 8 units. The units are the scale factors
5, =0.875, 5, =0.875, and sy =0.375 which are the
changes in ¢, L, and W corresponding to a change of one
unit in x,, x,, and x, respectively.

In our investigation we chose the first point P, to give a
helicopter with a 4 inch wing length and we then increased
£ by 3/4 inch increments adjusting the other dimensions
accordingly. This produced the designs corresponding to
P, P, P, and P, shown in Figure 4. Experiments along
such a path can be run sequentially and the spacing of the
points along the path can be made a matter of judgment
guided by results as they occur. For example, you might
have decided to take a large jump initially and try the de-
sign P, right away. This would have given a disappoint-
ingly low result causing you to back track and perhaps to

Figure 3. Design I: contours of the mean flight times.
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Figure 4. Data for 5 helicopters on the path of steepest
ascent calculated from Design I.

test P, or P, next. In our investigation we ran experiments
in sequence at all the five points making ten repeat drops
at each point. As you see from Figure 4, P, gave the long-
est average flight time of 347 centiseconds — the best re-
sult obtained so far. Further exploration along this path
(designs P, and P,) gave lesser mean flight times and higher
standard deviations.

Since none of the qualitative variables we tried in this and
previous experimentation (including heavy paper, fold at
the wing tip, fold at the base, etc.) seemed to produce any
positive effects we decide to fix the overall features of the
design and explore more thoroughly the effects of the di-
mensional variables — wing length #, wing width w, body
length L, and body width W using a full factorial experi-
ment.

Design II: A Factorial Experiment in Wings and
Body Dimensions

At about this time discussion with an engineer led to the
suggestion that a better way to characterize the dimen-
sions of the wing might be in terms of wing area A={w,
and length to width ratio Q={/w. In subsequent experi-
mentation this reparameterization was therefore adopted.

A 2* factorial in the four dimensional variables A, O, W, L

Factor -1 +1
1. Wing Area = fw(inch?) A | 9.00 | 12,96
Wing Length
—_— . .
o, Wing Width " Q|22 | 278
3. Body Width inches (inches) W | 1.25 2.00
4. Body Length (inches) L 2.00 3.00

Table 2. Design II: factor levels used in 2*experiment.
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centered close to the previous best conditions is set out in
Table 2. Data are given in Table A.2. The normal piot for
mean flight times in Figure 5(a) showed large location ef-
fects for wing area A and body length L but that for dis-
persion did not show any evidence of real effects. It was
decided, therefore, to try to gain further improvement of
flight times by using steepest ascent based on the two large
effects using the model

$=326+8x, —17x, 2)

where x, and x, are recoded variables for wing area (A)
and body length (L), respectively.

The path was explored by making ten drops at each of five
different conditions set out in Figure 6. Interpolation sug-
gests that the best design along this path required wing
area A to be about 12.4 and body length about 2.0 at which
the average flight time was 370 centiseconds ~ a further
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Figure 5(b). Design II: Normal plots of dispersion
effects.
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Figure 6. Data of 5 helicopters on the path of steepest
ascent calculated from Design II.

valuable improvement. It is also worth noting that the
dispersions for the five tested helicopters on this path were
not large and these helicopters were extremely stable.

After this investigation had been completed a review of
the results showed that the path of ascent had been slightly
miscalculated. The relative changes in x, and x, which
should have been 8:17 but were mistakenly taken to be
8:11. This rather minor deviation is unlikely to have made
much difference. It is worth noting the error we made
arose from accidentally switching certain experimental
runs. It underlines the importance of checking and re-
checking experimental procedures. It also ilustrates that
in an iterative scheme of this kind, errors tend to be self-
correcting.

Design III: A Sequentially Assembled Composite
Design

The (-1, 0, 1) levels shown in Table 3 were now used in a
further 2* factorial arrangement in the factors A, QWL

referred to as Design Ma. This was centered around the
best point so far reached. The resuits are shown in Table
A.9. It seemed likely at this stage of the investigation that
further advance with first order steepest might not be pos-
sible and that a full second degree equation might be needed
to represent the flight times in the new experimental re-
gion that had been reached. This was not certain however,
s0 a new 2* factorial experiment in A, Q, W, and L was run
with two added center points. Depending on the resuits
obtained, this could become the first block of a second
order composite design. The analysis for Design Mla is
shown in Table A.4 and the normal plot for the mean flight
times is shown in Figure 7. The corresponding plot for
dispersion effects failed to show anything of interest and
is not given. We see from Figure 7 that, for average flight
times some two factor interactions are quite large and ap-
proaching the size of certain main effects suggesting that
we should add further runs which will allow estimation of
the remaining second order (quadratic) terms. A second
block was therefore added consisting of eight axial points
with four additional center points. This is set out in Table
A.3 and referred to as Design IIIb. '

An analysis of variance for the completed design is given
in Table 4. There is, somewhat weak, evidence: of lack of
fit, nevertheless for this analysis we have used the overall
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Figure 7. Design Illa Normal plot of lo

cation effects.

Factor -2 -1 0 +1 +2
Wing Area (= {W) [inch? ] A 11,20 | 11.80 | 12.40 | 13.00 | 13.60
Wing Length/Width Ratio (— %,) 0 198 | 225 | 252 | 278 | 3.04
Body Width [inch] W 075 | 100 | 125 | 15 1.75
Body Length [inch] L .00 | 1.50 | 2.00 | 250 | 3.00

Table 3. Factor levels. The levels (-1,0.1) were used ina 2 Jfactorial Design Hla. By adding Design IIb a second
block including axial and center points using the levels (-2,0,2), a central composite design was produced.

CQPI Report No. 150, May 1998
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Source DF SS MS F
Blocks 1 16.81 16.81 1.73
Regression 14 2506.54  207.610 21.35
Linear 4 151000 377.500 38.82
Square 4 282,54 70.636 7.26
Interaction L6 1114.00 185.667 19.09
Residual Emror 14 136.15 9.725
Lack of Fit 10 125.40 12.540 4.67
Pure Emor L4 10.75 2.688
Total 29  3059.50

Table 4. Design I analysis of variance for completed
composite designs. CC in Lack-of-Fit: Curce contrast.

residual mean square of 9.9 as the error variance. The
overall F ratio for the fitted second degree equation is
21.35, exceeding its five percent significance level of
Fy05.1414~248 by a factor of 8.61. Thus complying with
the argument of Box and Wetz (1973) (see also Box and
Draper, 1986) that a factor of at least four is needed to
ensure that the fitted equation is worthy of further inter-

pretation.

Proceeding further with the analysis we find that the fitted
equation is

$ =372.06-0.08x +5.08x,+0.25x,-6.08x,

-2.041:12-1.66122-2.54132—0.16x42
-2.8&x1x2-3.7lex3+4.38xlx4
+4.63x2x3-1.50xrt4—2.13x3r4

‘We have shown the constant term and the four linear terms
on the first line, the four quadratic terms on the second
line, and the six interaction terms on the third and fourth
lines. The standard errors for these linear, quadratic, and
interaction effects are respectively 0.64, 0.60, and 0.78.
This second degree equation in four variables Xy Xy Xog X,
contains 15 coefficients and in its “raw” form is not easily
understood. We briefly review methods of analysis which
can make its meaning clear and allow further progress. A
fuller account of such analysis is given, for example, in
Box and Draper (1987). Here we first illustrate the analy-
sis in Figures 8 and 9 for constructed examples in just two
variables x,and x,.

Look at Figure 8. Suppose that in the circle indicated in
Figure 8(c) a suitable design has been run centered on the
point O (x,, = 0, x,, = 0) yielding the second degree equa-
tion shown in 8(a). Figure 8(b) shows a computer plot of
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the corresponding response surface which contains a maxi-
murm.

A plot of ¥ contours of the surface is shown in Figure
8(c). Contour plots of this kind are very helpful in under-
standing the meaning of a second degree equation when
there are only two or three input variables (x) but such
methods are not available when there are more input vari-
ables. Canonical analysis, however, which we now ex-
plain makes it easy to understand the meaning of any fit-
ted second degree equation for any number of such vari-
ables. Canonical analysis goes in two steps the mathemat-
ics is sketched in Figure 8(d) and illustrated geometrically
in Figure 8(c): {) the origin of measurement is shifted from
O to 8 where § is the center of the contour system (in this
case the maximum); if) the axes rotated about S so that
they lie along the axes of the elliptical contours which are
denoted by X, and X,.

In this way the quadratic equation of 8(a) is expressed in
terms of a new system of coordinates X, and X; in the sim-
pler form §=87.7-9.0X2 -2.1X7.

By inspection of this canonical form one can understand
the meaning of the quadratic equation without a contour
plot. In this case, since the coefficients -9.0 and -2.1 which
measure the quadratic curvatures along the X, and X, axes

are both negative, the point S (at which y, = 87.7) must

@ $=B1.6+94x +T1x;—T.4sf —3.72f - 5311y

M)

©

@ Position of S xy, =0.46, X2p =0.60 5, =877
Shi:&ofOrigin Elaxl--OA& iz’xg—o.w
Rotation of Axes X, = 0.88% +0.48%,
X, = -0.48%, +0.58%,
Canonical Form ~~ §=87.7-9.0x2 -21x2

Figure 8. Canonical analysis of second degree equation
representing a maximim.



Product Design With Response Surface Methods 7

be a maximum. Also you can see that, if you move away
from § in either direction along the X, axis, 7 falls off
much more rapidly than that if you move similarly along
the X, axis. Thus you know the contours are drawn out
(attenuated) along the X, axis which has the smaller coef-
ficient.

Now look at Figure 9. Equation 9(a) produces the re-
sponse surface shown in 9(b) which represents a “saddle”
or minimax whose contours are shown in 9(c). Again it is
easy to understand the nature of the surface without any
graphical aid using the canonical form of equation which
turns out to be $=87.7-9.0X7 +2.1X2.

Since the coefficient of X? is negative and that of X?is
positive, the center of the system S is a maximum as we
move along the X, axis but is a minimum along the X,
axis. Thus we know at once that the surface is a minimax,
In particular, this implies that movement away from S along
the X, axis in either direction gives larger values of 3
suggesting the existence of more than one maximum. In
response surface studies such saddles are rather rare; but,
as we shall see, they can occur.

Analysis for the Helicopter Data

If we apply the canonical analysis outlined above to Equa-
tion (3) obtained for the helicopter data we get:

Position of §

X, =0.86 x, =-033 x, =-0.84

x,=-012 § =3714 )

Shift of Origin

'il = x; - 0.86 iz =Xa + 0.33

5
jg = X3 +0.84 24 =Xy +0.12 ( )

Rotation of Axes

X, = 0.39% —0.45%, +0.80%, — 0.07%,
X, =~0.76%, - 0.50%, +0.12%, +0.39%,
X;= 0.52% -0.45%, - 0.45%, +0.57%,
X, = —0.04%, ~0.58%, - 0.37%, - 0.72%,

Canonical Form

(6}

y=371.4-4.66X] -3.81X} +3.27X2-1.20X? ()

Now we had thought it likely that we would find a maxi-
mum at § in which case all four squared terms in (7) would
have had negative coefficients. However, the coefficient
+3.24 of x; is positive and its standard error is about 0.61
(roughly the same as that of a quadratic coefficient in Equa-

@ F=843+ 111k + 4.1y —6.5x7 —0.4xF ~9.4x7

(b}

(e

[BIm

3§ LFTHY
T -
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L4
I
LHAE

Wii s
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+ Tt
3

LY E]

T

{d) Position of § Xig ={.38, Xy = 0.65 j‘yj = 87‘7 .
Shift of Origin F=x—038, Bex;-065
Rotation of Axes ~ Xp= 0.89F +0.48%,
Xy = -0.48% +0.89%,
Canonical Form §=81.7-9.0x} +2.1x}

Figure 9. Canonical analysis of second degree equation
representing a saddle.

tion (3)). This implies that the response surface almost
certainly has a minimum in the direction represented by
X,. If this is so, we will be able to move from the point S
in either direction along the X, axis and get increased flight
times.

Now X, expressed in terms of the centered %’s is

X; =0.52%, — 0.45%, — 0.45%; +0.57%,. Thus beginning
at S one direction of ascent along the X, axis is such that
for each increase in %, of 0.52 units, %, must be reduced
by 0.45 units, X, reduced by 0.45 units, and %, increased
by 0.57 units. The units are those of the design given in
Table 3. To follow the other direction of ascent you must
make precisely the opposite changes. Before we explore
these possibilities further, we consider a somewhat differ-
ent form of analysis.

Ridge Analysis

In the original paper by Box and Wilson (1951) the appli-
cation of the method of steepest ascent to response sur-
faces was discussed in general and in particular for sec-
ond degree equations as well as for linear models. For
two variables the general concept can be understood by
considering again the two dimensional contour represen-
tation of the minimax surface in Figure 9(c). As shown in
Figure 10 suppose a series of concentric circles are drawn
centered at point O with increasing radius ». It can be

CQPI Report No. 150, May 1998
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Factor A 0 w L w £ w L y s
Coded factor X Xy X; le inches | inches | inches | inches | centi-sec | centi-sec
Coefficient 0.52 0.46 -0.45 0.57
X= 5.50 3.73 2.92 -3.34 295 291 5.03 0.42 3.48 332 12.7
X,= 4.80 3.37 -2.60 -3.02 2.82 5.12 0.50 3.28 373 5.8
X= 4.20 3.05 2.32 275 2.74 5.19 0.56 3.10 395 5.9
X= 3.30| 2.59 | -1.91 | -2.35% 2.64 5.29 | D.66 2.85 402 7.5
X= 2.67 2.25 -1.62 -2.06 2.57 5.35 0.74 2.67 395 6.6
X,= 1.86 1.83 -1.25 -1.70 2.49 5.43 0.83 2.44 385 9.0
X;= 0.70 1.23 0.71 -1.18 2.38 5.53 0.96 2.11 374 10.2
Xa= 0.30 1.03 0.53 -1.00 2.34 5.56 1.00 1.99 372 7.6
X,= 0.00 0.87 .39 -0.86 2.31 5.59 L04 1.91 370 6.9
X.=-0.70 0.51 0.07 -0.55 2.25 5.64 1.11 1.71 376 6.3
X.=-1.05 0.32 0.09 -0.39 222 5.66 1.15 1.61 379 8.4
X=-1.82| -0.17 0.53 0.04 2.15 5.72 1.26 1.34 387 9.0
X,=-251| -0.43 0.76 0.27 2.11 5.75 1.32 1.19 406 54
X=-3.47 | -0.93 1.21 0.70 2.04 | 5.81 1.43 0.92 416 6.2
X,=-3.70]| -1.05 1.31 0.81 2.02 5.82 1.45 0.85 399 8.8
)23= 4.22 -1.32 1.55 1.04 1.99 5.84 1.51 0.70 350 33.2

Table 5. Experimental data on second order steepest ascent path.

shown that as the radius ris increased the circles will touch
the contours of any response surface at a series of points
at which the rate of increase or decrease in response with
respect to 7 will be greatest. In the units of x the path
formed by such points is thus one of maximum gradient
and hence of steepest ascent or descent. For a first degree
equation, such as Equation (1), this is a straight line path
at right angle to the planar contour surfaces as in Figure
(3). More generaily, the path is curved. For a second de-
gree equation, points along the paths of maximum gradi-
ent can be found for different values of r by solving a
series of linear equations. A. E. Hoerl (1959) developed
an extended a technique of this kind under the general
heading of Ridge Analysis and illustrated its use with many
applications (see also R.W. Hoerl, 1985),

For illustration, Figure 10 shows, for the minimax surface
of Figure 9, the paths of maximum gradient (two of steep-
est ascent and two of steepest descent originating from S.)
In this example where O is close to S these paths converge
very rapidly onto the axes of the canonical variables X,
and X,. Indeed these axes are themselves the path of steep-
est gradient if we start at S instead of O. For the helicop-
ter example the paths of ascent can be followed either by
ridge analysis from the origin O or by following the X,
axis from the origin S. By either method, we obtained for
this example almost identical results.

Mean flight times and dispersion for a series of helicopter

CQPI Report No. 150, May 1998

designs along the X, ridge summarized in Table 5. To bet-
ter understand these results we also show the dimensions
of the tested helicopters in terms of the original variables
_wing length ¢, wing width w, body length L, and body
" width W,

These tests fully confirm what was implied by the earlier
analysis — that we can indeed get a longer flight times by

S down
\ \
| 0&\.; B
. ‘\ X

Figure 10. Second order steepest ascent and ridge
analysis for the example of Figure 9.
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340
320
170
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114
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Figure 1. Characteristics of helicopters along X, axis.

proceeding in either of two directions. Namely by increas-
ing wing width w, body length L and reducing body width
W and wing length £ or by doing precisely the reverse.
For sixteen helicopter designs along this path, Figure 11
shows graphically the mean flight times and standard de-
viations of flight times together with the dimensions of
the associated helicopter. It will be seen that in either di-
rection mean flight times of over 400 centiseconds can be
obtained. These are almost twice the flight time of origi-
nal helicopter design. In both directions mean flight times
go through maximum. The standard deviations are appar-
ently constant except at the extremes where rapid increase
occurred owing to instability,

At this point we decided to stop the present investigation
although we fully expect that ways can be found to get
longer flight times. We hope that others may be interested
in doing this.
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Appendix 11

Run|P £ L WF T CM )7 5 | 100l0gs location| dispersion
1] -1 -1 -1 -1 -1 -1 -1 -1{236| 2.1 31 | | constant 222.8 82.7
27 1 -1 -1 -1 -1 1 1 1]185| 4.7 671 P 5.8 3.2
3010 1411 1 -1 1 1|25 27 I AR 27.7 4.1
4y 1 1 -1 -1 1 1 -1 -1318] 5.3 72| | L -13.2 9.7
50-1-11-1 1 1 1-118]| 77 g9 || W -8.3 15.6
6| 1 -1 1-1 1 -1 -1 1{195| 7.7 89| | F. 3.7 5.1
71 -1 1 1 -1 -1 1 -1 1/246| 9.0 96| | T 1.4 0.6
8| 1 1 1 -1 -1 -1 1 -1229| 32 450 (€ -10.9 9.8
9 -1-1-1 11 1- 119]11.5] 1061 (M -4.0 5.7
10| 1 -1 -1 1 1 -1 1-11203{100]| 100/| |P¢ +LC+WM+FT 6.0 -0.7
11-1 1-1 1- 1 1-1230( 29 46 | | PL+ £C+WT+FM 0.2 -13.4
120 1 1 -1 1 -1 -1 -1 11261{153] 118} | PW+fM+LT+FC 5.0 0.6
13{-1 -1 1 1- -1 1 1}168] 113} 105 | PF+{T+LM+WC 7.0 -4.9
14 1 -1 1 1 -1 1°-1-11197|11.7] 107 | | PT+{F+LW+CM 5.2 -4.0
150 -1 1 1 1 1 -1 -1 -1{220| 160} 120 | PC+fL+WF+TM -3.3 -0.9
160 1 1 1 1 1 1 1 1{241! 68 83 | | PM+£W+LF+TC 42 2.1

Table A.1 Design I: layout, data, and estimates of 2?;4 screening design.

Run A o w L J"7 5 | 100logs location | dispersion
1] -1 -1 -1 -1} 331] 90 95 constant | 325.6 116.8
2 1 -1 .1 1| 339|226 136 A 8.1 5.2
3. 41 1 -1 -1] 335|143 116 Q 0.7 9.8
4 1 1 -1 -1 348 |17.3 124 W -1.8 7.3
5 -1 1 -1 330 9.1 96 L -16.7 3.2
6 1 -1 1 -1 354|119 | 108 AQ -1.6 0.3
71 1 - 1 1 -1 355|149 | 118 AW 0.6 -10.3
8 1 i 1 -1} 346 [15.1 118 AL 3.6 -12.7
9| -1 -1 -1 1| 301|119 108 ow 2.4 0.4
10 1 -1 -1 131 326 |14.9 117 QL 3.1 4.8
1l A 1 -l 1{ 313|377 | 158 WL 5.8 3.5
12 1 1 - 1] 327|255 141 AQW 0.9 7.0
13 -1 -1 1 1| 299 |30.3 148 AQL 1.8 5.0
14 || 1 1| 319 3.0 48 AWL 1.3 5.7
15| -1 1 1 1| 2771239 138 QWL 3.1 3.3
16 1 1 1 1| 310|105 102 AQWL 3.9 4.3

Table A.2 Design Il: layout, data, and estimates for 2* design

CQPI Report No. 150, May 1998



12 ' Appendix

Run | Biock A Q W L J_; 100iog s
1 1 -1 -1 -1 -1 | 367 72
2 1 1 -1 -1 -1 1 369 72
3 1 -1 1 -1 -1 374 74
4 1 1 1 -1 -1 370 79
5 1 -1 -1 1 -1 | 372 72
6 1 1 -1 1 -1 | 355 81
7 1 -1 1 1 -14 397 72
3 1 1 i 1 -1 | 377 99
9 1 -1 -1 -1 1| 350 90

10 1 1 -1 -1 1| 373 86
1 1 -1 1 -1 1| 358 92
12 1 1 1 -1 1| 363 112
13 1 -1 -1 1 11 34 76
14 I 13 -1 1 1| 355 69
15 1 -1 1 1 1] 370 ]
16 1 1 1 1 1| 362 71
17 1 o 0 0 0| 377 31
18 1 0 0 0 0| 375 74
19 2 2 0 0 0 361 111
20 2 2 0 0 0| 364 93
21 2 0 -2 0 0| 35 100
22 2 0 2 0 0| 373 80
23 2 0 0 2 0] 361 71
24 2 0 0 2 0 360 98
25 2 0 0 0 2 | 380 69
26 2 0 0 0 2| 360 74
27 2 0 0 0 0| 370 86
28 2 0 0 0 0] 368 74
29 2 0 0 0 6| 369 89
30 2 0 0 0 0 | 366 76

Table A.3 Central composite design and data; Block 1: Design Illa, Block 2: Design Il
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Appendix 13

coefficients coefficient| Std. Error

constant 367.2 constant 372.06 1.29
A 0.4 A -0.08 0.64
c 5.4 ] 5.08 0.64
w 0.5 W 0.25 0.64
L L -

6.6 6.08 0.64
AQ 3.0 A’ 2.04 0.60
AW 3.7 o -1.66 0.60
AL 4.3 w? -2.54 0.60
ow 4.7 L 0.16 0.60

—_———————|

OL 1.5 AQ 2.88 0.78
WL 2.0 . AW 3.75 0.78
AQW 0.0 AL 4.38 0.78
AQL -1.8 ow 4.63 0.78
AWL 0.7 gL -1.50 0.78
QWL 0.3 WL 2.13 0.78
AQWL 0.2

Table A.5. Central Composite Design; estimated

4. ign llla: esti ] X ,
Table A.4. Design llla: estimated coefficients for mean coefficients for mean flight times.

Jlight times.
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