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Abstract

The field of computer vision can play a significant role in mea-
suring features that describe the physical appearance of maize ker-
nels. Extending a computer vision system to an almost automatic
process can create a high througput solution that provides accurate
data. Previously, such a system was designed in order to show a proof
of concept. In order to fully realize that design, both positives and
negatives needed to be considered to develop the fully functioning
imaging platofmr. After developing and putting the system to use,
it was discovered the original design was unable to account for all
shapes, sizes, and colors of maize kernels. This lead to a redesign and
implementation of the feature extraction method. The end result has
led to an imaging platform that can provide accurate feature data at
a high throughput rate.
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1 Introduction

Computer vision has become a strong field within Botany. The tools can
be used to classify types of gains or identify plant species [11, 12]. More
recently, computer vision is being used along with machine learning tools to
find important shape and color features for maize kernels [8]. Combining
these results with genetics and other physical features, it may be possible
to identify favorable traits within maize kernels through new processes. In
order to obtain these shape features, the process must remain the same, but
it is not uncommon for maize kernels to exhibit varyingly different physical
characteristics. I have focused on improving and upgrading a method used
to gather shape and color features of maize kernels.

1.1 Maize

Maize kernels are the subject of this experiment. Three regions of the kernels
were targeted for features as seen in figure 1. The top view of the kernel
corresponds to the region of the germ. In order to create color features,
images of the cap were also gathered. Finally, the side of the kernel was
examined to obtain the three orthogonal views of the kernel. The tip of the
kernel (side opposite of the cap) can be seen in the top or abgerminal view.
While this was not a targeted part of the kernel, this portion did have an
effect on the segmentation as seen later.

(a) Cap View (b) Side View (c) Abgerminal View

Figure 1: Imaged regions of the maize kernels.
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1.2 Background

Previously, work completed by Navdeep [4] focused on creating an experi-
mental setup to gather data and classify maize kernels. The process involved
three steps. First, images of the kernels were gathered using three digital
cameras. Next, a selection of common features used in classification were
extracted from the images. This step involves segmenting the image so only
the pixels representing the kernel are identified. Finally, using machine learn-
ing algorithms, the features were used as a method to classify the different
kernels. This final step shows the features are useful in order to identify the
different mutations.

The goal of my work was to develop a system that could process any
maize kernel, regardless of shape, size, or color, to be imaged on the same
platform. As a temporary solution, two different setups had been used. One
with a dark background and another with a light background. This forced
the users to adjust and recalibrate the setup. In addition, software written
to extract features needed to distinguish if an image used a light kernel on
a dark background or a dark kernel on a light background. Switching to a
uniform setup speeds up the work flow and helps to remove bias created by
having to frequently adjust the workstation setup.

1.3 Goals

The goal of my work here was to design, implement, and upgrade a more
permanent system that would accomplish the same objective as laid out
by Navdeep. This led to many adjustments such as mounting cameras to
fixed locations and improving code to be faster and more reliable. Most
significantly, these changes have led to a system that is more robust under a
wider variety of kernel appearances.

In the original problem, all of the kernels used had a light color as seen
in figure 2. An object with this appearance is almost ideal when it comes to
segmentation. Placed on a black background, a computer has little trouble
identifying which pixels refer to the background and which refer to the kernel.

The problem is the kernels used here do not accurately represent all the
wide variety of possible kernel appearances. If a kernel has a darker color, it
completely vanishes against a black background. Figure 3 shows this effect.
Probably the most obvious solution would be to use a white background for
the dark color seeds, but this has many problems which are described in
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Figure 2: In previous work, the typical kernel used had a light color and
placed against a dark background as seen here. The background and kernel
pixels can then be identified.

a later section. Due to this new problem, my goal became to improve the
imaging system such that it would be able to identify kernels of any shape,
size, or color.

(a) View of the Cap (b) View of the germinal side of the kernel

Figure 3: How a dark colored kernel appears on a dark background.
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2 Image Features

The purpose of this entire system is to extract a selection of features that
can be used to describe the shape and color of every kernel imaged. These
features then become not only the final result, but also a means of evaluation.
All of the features can only be identified after creating a mask which will label
which pixels are background and which are part of the maize kernels.

Several different types of features are commonly used in classification of
plant seeds [8, 12]. Area, major axis length, minor axis length, and eccentric-
ity make up the most intuitive features. In addition, six of the Hu Moment
Invariants [5] are used to give a total of 10 shape features per view.

Aside from the shape, color can also provide features when classifying
different varieties of maize kernels [1, 8]. In this project, average Red, Blue,
Green, Hue, Saturation, and Value/Intensity are examined leading to a total
of 6 color features. The last 4 features are referred to as Color Matching
Features and histograms of the Hue and Saturation values.

2.1 Color Space

Three different color spaces were used in this work: RGB, HSV, and grayscale.
A grayscale image was used most commonly. Each pixel has a single value
ranging from 0-255. Thresholding, a method described later, can only be
applied to a single color channel at a time, so all images are converted to
grayscale at some point.

The RGB and HSV color spaces have three channels each. In an RGB
image, the red, green, and blue channels can all range from 0-255. The
saturation and value channels of HSV range from 0-255 as well, but hue can
take a value from 0 to 360.

2.2 Thresholding

The threshold method converts a single channel image into a binary image
with all pixel values having a value of 0 or 1 (or a maximum value such as
255). When applying a threshold, a limit value is chosen and under normal
conditions, every pixel with a value above the limit is set to 1 (or a maximum
value) and everything else is given a value of 0. Equation 1 is a formal
description of this method.
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J(x, y) =

{
maxV al if I(x, y) > limit
0 otherwise

(1)

2.3 The Mask

In order to obtain all of the image features used to describe the kernels in
this experiment, a mask image is created through thresholding. The mask is
defined as a binary image where all the pixels have either a value of 1 or 0
as seen in figure 4. The process to compute this mask is described in section
2.2.

Figure 4: A mask image used for finding feature values.

The purpose of the mask is to limit feature analysis only to pixels that
correspond to the object of interest, a kernel in this case. In the mask, any
pixel that has a value of 1 represents a pixel that is part of the kernel in the
image. If a pixel has a value of 0, then it is labeled as part of the background
and can be easily ignored.

It is assumed the mask will always be a white object with a black back-
ground. If an object is brighter than its background, then this will be the
result of applying a threshold. In the case the object is darker than the
background, it is simple to negate the result since it is a binary image and
will produce the expected result.

In the shape analysis, the features are found by using this mask image
directly. Since pixels with value 0 contribute nothing to these features, it is
important to correctly label the background pixels.
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Unlike the shape analysis, the color values of the pixels are required.
Instead of reading the mask directly, the analysis uses it as a guide. For each
pixel in the mask, if the value is 1, that particular pixel in the color image is
examined, but if the value is 0, it is skipped over.

2.4 Raw Moments

There are 10 different shape features for each view creating a total of 30
shape features. All of these features are based on raw image moments. The
raw image moments can be described by the following equation

Mij =
∑
x

∑
y

xiyjI(x, y) (2)

One key moment is M00 or area. The subscripts determine the power of
the weight of each pixel, but in this case, since the subscripts are both 0, the
weights will be 1. The above equation then simplifies to

M00 =
∑
x

∑
y

I(x, y) (3)

This can now be seen as simply summing over all pixels in the image.
Taken one step further, if a threshold were to be applied to the image, then
all pixels would either have a value of 0 or 1. Computing the value of M00 for
this image becomes simply counting the white pixels. The same process can
be looked other moments such as M01 or M11 moments. These raw image
moments are used to describe the following shape features that are computed
in this analysis: area, major axis, minor axis, and eccentricity.

2.5 Central Moments

The central moments are based on the raw moments and invariant to trans-
lation [5]. In addition, they are key to defining the Hu Moment Invariants
used as image features. Using the raw moments described previously, the
centroid of the 2D images can then be computed by the following equation.

(x̄, ȳ) =

(
M10

M00

,
M01

M00

)
(4)

The centralized moments are computed in a similar manner, but instead
of basing the weight on the distance from the (0,0) point, the centroid is used.
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These are denoted by the symbol µ. Unlike the previous raw moments, the
central moments are independent of translation due to being based on the
centroid rather than a fixed point.

µij =
∑
x

∑
y

(x− x̄)i (y − ȳ)j I(x, y) (5)

This results in µ01 and µ10 having a value of 0. The normalized central
moments are computed by the following

ηij =
µij

µ
1+(i+j)/2
00

(6)

Since these are normalized around µ00, η00 is equal to 1.
Even though the central moments are invariant to translation, they can

still be affected by scaling and rotation. A much more robust feature would
be the Hu Moment Invariants. In addition to being invariant to translation
like the normalized central moments, the Hu moments are invariant to scale
and rotation transformations. Hu Moment Invariant I7 in 10 is skew invariant
[5].

2.6 Shape Features

The final result are the 10 unique shape features used for describing the
images. Area of the object has already been described previously as the M00.
Major axis and minor axis are computed directly from the central moments
by finding the eigenvalues of the following matrix.

A =

[
µ20 µ11

µ11 µ02

]
(7)

λi =
µ20 + µ02

2µ00

±

√
(µ20 − µ02)

2 + 4 ∗ µ2
11

2µ00

(8)

and eccentricity from its definition

eccentricity =

√
1 − λ2

λ1
(9)

The final set of shape features are the Hu Moment Invariants [5] , which
are defined by the normalized central moments.
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I1 = η20 + η02
I2 = (η20 − η02)

2 + 4η211
I3 = (η30 − 3η12)

2 + (3η21 − η03)
2

I4 = (η30 + η12)
2 + (η21 + η03)

2

I5 = (η30 − 3η12) (η30 + η12)
[
(η30 + η12)

2 − 3 (η21 + η03)
2]+

(3η21 − η03) (η03 + η21)
[
3 (η30 + η12)

2 − (η21 + η03)
2]

I6 = (η20 − η02)
[
(η30 + η12)

2 − (η21 + η03)
2]+ 4η11 (η30 + η12) (η21 + η03)

I7 = (3η21 − 3η03) (η30 + η12)
[
(η30 + η12)

2 − 3 (η21 + η03)
2]−

(η30 − 3η12) (η03 + η21)
[
3 (η30 + η12)

2 − (η21 + η03)
2]

(10)

2.7 Color Features

There are 6 features based directly on the color values developed by Navdeep
[4]. These cover the mean Red value, mean Green value, mean Blue value,
mean Hue, mean Saturation, and mean Value/Intensity. The image of the
cap is captured as an RGB image, then converted to HSV to add three
additional features.

For each image, only pixels corresponding to the maize kernel are used;
background pixels are avoided with the use of a mask. The mask, being a
binary image, will represent regions of interest in the original as described in
section 2.3. If a pixel is part of the kernel in the image, it contains a value
of 1, otherwise it is a value of 0. The important pixels can then be noticed
by only using the color values when the same pixel in the mask has a value
of 1.

For a single layer, the analysis starts by breaking its color values down into
bins. In the case of the red, green, blue, saturation, and value layers, only 8
bins were used. These layers can have a maximum value of 255 creating bins
of width 32, but since hue can have a max value of 360, this particular value
was reduced to 9 bins. This has the effect of reducing the size of the color
space, eliminating the total number of pixels with unique color combinations.

The final goal in examining the color layers is to compute the average
value of pixels in each layer. In order to eliminate outliers, only the top
90% most common color combinations were used. Once the color values are
binned, a list is made for each unique RGB or HSV color combinations. The
number of pixels for each combination are counted then sorted. The desired
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maximum number of pixels can then be picked out by selecting bins of unique
colors, starting with the most common color, until the total number of pixels
chosen added up at least the 90% limit. The final average color value was
representative of which bin the average pixel would be attributed with.

2.8 Histogram Matching

The Histogram Matching features are based on metrics used to compare
probability densities. A histogram for each color image was built using the
OpenCV histogram routines from the hue and saturation layers. In addition,
the same histogram was created of a reference image. This reference image
chosen has been used for all the data. This image itself is not particularly
important as long as it is used for all images.

The reference histogram will be denoted by H0 and the histogram for
each image will be denoted as H1. Both of these are used together with four
different metrics.

Pearson’s Chi-Squared test is the first comparison used and is described
by equation 11. The test can be used to measure goodness of fit [2].

dchi−squared (H0, H1) =
∑
i

(H0(i) −H1(i))
2

H0(i)
(11)

The second measure is the Bhattacharyya Distance [3]. This distance
tests for similarity between the two histograms and follows a distribution
similar to chi-squared, but the result is being used to compare other im-
ages and not as an assessment of one particular kernel. OpenCV is used to
compute this distance, but use computes Hellinger Distance for this value as
described by equation 12

dHellinger (H0, H1) =

√√√√1 − 1√
H̄0H̄1N2

N∑
i

√
H0(i)H1(i) (12)

The third matching feature is the sum of the intersection between H0 and
H1 and is described by equation 13. The value is as straight forward as it
seems. The two histograms are intersected, so each bin is set to the minimum
of the two histograms then they are all summed together.
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dIntersect =
N∑
i

min (H0(i), H1(i)) (13)

The Earth Mover’s Distance is the final matching feature [10]. This de-
scribes the amount of work it takes to transform one distribution into another.
Setting H0 as a consumer and H1 as the supplier, OpenCV is then used to
implement the Earth Mover’s Distance algorithm.

3 Data Collection

There are three steps involved with obtaining the image features mentioned
in section 2. First, the images must be acquired using digital cameras. Next,
each image must be thresholded in order to create the mask used in the
feature extraction. Finally, this mask can be used to obtain the features.
However, this mask is an important step because if it does not accurately
portray the actual kernel, then the feature values will be off as well.

3.1 Equipment

The first step of the entire project would be the cameras. As seen in figure 5,
three cameras were used to gather the data, each one is mounted orthogonal
to the other. This allows images to be gathered from views along the x, y,
and z-axis. The kernels are placed such that we gather data from the cap of
the kernel, the germinal side, and the side of the kernel. Each of the cameras
connect through a PC using Firewire. The cameras along the y and z-axis
only produce grayscale images while the cap of the kernel in the x-axis is
imaged in color.

In the original setup, the cameras were not mounted and free to move.
Combined with clumsy tripods, bumping and moving the cameras was a
common problem, so in this final iteration, each of the cameras are firmly
mounted to adjustable platforms and locked in place. This allows for simple
positioning of the cameras while preventing movement of the cameras that
could be caused by a slight bump or vibration.

Slight adjustments in the kernel position can produce different results [4].
This has led to the development of the tool by Navdeep used specifically for
placing the kernel as seen in figure 6. Each time a kernel is to be imaged, this
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Figure 5: Model of the station used for gathering images.

tool is lined up with edges to ensure that everything is square. A small notch
in the tool allows for placement of the kernel in the correction orientation
and position.

Figure 6: Tool built to position maize kernels.

The most difficult part of any experiment is to gather good data, so
finding a solution that would allow the apparatus to be used equally for dark
and light color kernels took several attempts to solve as described in section
4. The ideal computer vision setup uses a while object on a black background
or vice versa. This allows for easy segmentation and feature extraction for
the object being imaged.

Unfortunately, as the experiment proceed, a wider variety of kernels were
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used. These had a wide color range which can be bright yellow to a dark
green than the ones used in the original tests. This prevented the use of a
solid background of either white or black. In addition, not only can ambient
light affect some data such as color values, but it can also cast shadows, so the
solution needed to be at least somewhat invariant to this effect. The final
solution uses backlights behind the kernels using electroluminescent (EL)
panels. There were several advantages to this approach.

The first advantage was that this can be used for both dark and light
colored kernels. Instead of lighting up the kernel from a single direction, the
kernel blocks out the light and creates a silhouette of the object. In addition,
the panels are not extremely bright and allow us to also identify interior
features of the kernels. While this is not currently taken advantage of this,
it is definitely an area to expand on in the future.

The second advantage is the reduction/elimination of shadows, oil, and
dirt. Previous efforts used a painted background with ambient or ring lights
to eliminate external effects, but one of the major problems was when dirt/dust
in the air or oil from a person’s hands ended up on this background. This
began to create spots and shadows in the images that could appear near the
kernel, causing the segmentation to return an object that was larger than the
actual kernel. By using a backlight, the light diffused around the oil, dirt,
and shadows eliminating them from the segmentation results.

The major disadvantage comes from the color and direction of these pan-
els. Due to the lights being behind the kernels, the kernel can still be in-
fluenced by ambient light. The effects of shadows are minimized, but there
is still a noticeable difference in color analysis if the external lighting is ad-
justed. Finally, due to the nature of EL, it’s difficult to obtain true white
light panels. The ones used here have a slight blue tint regardless of be-
ing labeled as white light. While this does not affect the shape features, it
does cause some problems with color analysis if trying to compare to kernels
outside of this set.

3.2 Feature Extraction

The second step to obtaining data is to perform segmentation and feature
extraction on the gathered images. Segmentation is performed in three steps
and relies on a mask image. The mask is a binary image that has a value of 1
when a pixel is important (part of the kernel) and 0 for all other background
pixels. This allows the feature extraction implementation to only focus on
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pixels that are part of the kernel and not the background.
In the final approach used, the background of the image is first removed.

This is accomplished by keeping a set of empty background images with each
set of kernels helps to eliminate the edge effect from the imaging setup. As
seen in figure 7a, the kernel is placed on top of a platform, which creates an
undesirable edge effect. In order to remove this, images of each view with-
out kernels are captured beforehand and included with each set of kernels.
Maintaining background images for each set is required due to the EL panels.
Instead of suddenly failing, the panels slowly grow dimmer over time, so the
background will, in effect, change between kernel sets. The effect will be
more noticeable between 30-50 sets rather than just 1-2.

When creating the mask, this background image can be subtracted from
the kernel image to give the result as seen in figure 7b. If a background
image does not exist, variations in pixel values across a set of kernels can
be used. Since a single dataset can contain 15 or more different kernels in
a short time frame, the unnecessary background pixels can be considered
constant throughout an entire dataset. This fact can be used to create a
pseudo-background image and eliminate the unnecessary edge.

Next, a threshold is applied to the image. A static threshold level is used
since the background of the image has been removed and can be considered
almost little to no variation and close to zero. Since lighting is the same in
every image, this also avoids boundary changes in the object. That is, if a
variable threshold is used, then pixels with value X included in image A that
should be included in image B might be zeroed due to a slightly different
threshold value. The result of this threshold can be seen in figure 7c.

(a) An image of a ker-
nel taken using the plat-
form.

(b) Same image after
subtracting out the
empty background.

(c) A mask can then be
created by thresholding
the image.

Figure 7: Stages of segmenting an image
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The final step is to ensure the only object in the binary image is the
kernel itself. This is a necessary step in case there are extra artifacts in the
image after applying the threshold. The kernel object is chosen simply by
removing all blobs except the largest one. At this point, the shape and color
analysis previously mentioned can be applied.

This process is followed for the front and side views of a kernel, but the
top view is a much simpler process. Since the camera is looking directly at
a seed with the EL panel covering the entire view, a simple threshold will
segment out the kernel as seen in figure 8.

Figure 8: The pericap view of a kernel, a border around the image has been
added to show the actual edges of the image.

4 Updating the Pipeline

The pipeline for this project is intended to be automatic. There should be
no adjustment or assembly required to gather data for a large set of kernels.
In the first version, the imaging station produced excellent results, but the
selection of kernels used were limited. The ideal kernels had a solid, light
color and a smooth, flat shape. Since its color is light, the kernel will create
a sharp contrast against a black background. A smooth, flat kernel is ideal
because it creates almost no shadows that affect image segmentation. The
background, method of lighting, and segmentation algorithm can all have an
effect on the final feature data.
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4.1 Imaging Background

The ideal conditions for segmenting out a single object in an image involve
either a dark object on a light background or a light object on a dark back-
ground. These two cases create a very sharp contrast between the edges of
the object.

Figure 9: An example of a light colored object on a dark background.

(a) View of the pericap of a dark kernel. (b) Top view, notice the tip.

Figure 10: Example of dark objects on a light background.

Figure 9 and 10 show this sharp contrast, but there are several issues.
First, with the light colored kernel, a significant portion of the bottom of the
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kernel is lost as a result of the shape of the seed. This could be considered
a shape feature in itself, but then many of the shape features described will
not be reporting accurate values. This can be fixed by adjusting the lighting,
but will be discussed in another section.

The alternative to a dark background is a white one, but this comes with
problems of its own as well. The major one being shadows as seen in figure
10a. This is not something can simply be removed through thresholding. As
seen in figure 11, the shadow can not be removed alone through the inverse
threshold function. As the threshold limit is increased, portions of the kernel
blob are also lost. The effect is even more significant with figure 10b. In this
case, the shadow follows along the edge of the kernel, so in a binary image,
this addition is not noticeable. The result is a larger area value.

Furthermore, despite the kernel being mostly a dark green color, the tip is
still white. As seen in figure 12, the tip of the kernel is lost when thresholding
an image before even trying to eliminate the shadow. Keep in mind, the final
goal of the pipeline is to be able to classify the kernels based on the extracted
features. If all dark kernels have a white tip, then overall, the dark kernels
will have a shorter major axis in this view. This may lead to the feature
being chosen when it is not an actual feature or it may not be considered
when this should be a similar feature.

(a) t = 100 (b) t = 150 (c) t = 170

Figure 11: Shadows can not be removed through thresholding without de-
stroying the desired blob.

Different backgrounds also introduce an issue of repeatability. In the
case of the original imaging station, it was difficult to access the platform
where the kernel would sit. All the extra movement of setting up different
backgrounds for light/dark kernels increases the likelihood of bumping or
moving any part of the setup. This results in additional calibration and even
if everything is realigned, the experiment has already changed.
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Figure 12: Thresholding dark kernel on a white background.

4.2 Lighting

Along with the background used when gathering images, the lighting effects
around the setup can cause additional problems. Shadows are one such issue
that has already been mentioned. Of course, this also means that adjusting
the lighting of the imaging station could eliminate shadows. By applying
direct lighting to the top view of the kernel and limiting the aperture of the
camera, it was possible to obtain accurate shape features. It should be clear
that despite the seed being absolutely saturated with light in figure 13, the
shape is maintained even after thresholding. Detail of this part of the kernel
is lost though. This part of the kernel is called the germ and is not used
specifically in the analysis right now, but it is one of interest. Further down
the line, additional analysis may prove useful, but it would not be possible
in this approach.

Dirt and oil has a much more significant effect under this direct lighting.
While the shape of the kernel is visible clear, the lighting also causes other
reflective particles to appear as indistinguishable from the kernel. Normally,
if these particles appear to the side of the kernel, there is no problem, but oil
from a person’s fingers can appear directly beneath the kernel. In this case,
the oil will appear as an extension of the kernel, throwing the feature values
off.
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Figure 13: Flooding the kernel with light brings out the shape of the kernel
due to reflection.

4.3 Thresholding

Despite the background and lighting causing problems, the most difficult
challenge had to be applying an actual threshold level. Two types of thresh-
olding were considered: manual and automatic.

In both cases, a single value is used as a limit for all pixels. If a pixel
contains a value that is greater than the limit, that pixel is given a value of
1 (or 255). If a pixel contains a value that is less than or equal to the limit,
then the pixel is given a value of 0. This creates a mask for the image and
used for obtaining shape and color features.

Automatic thresholding was found using Otsu’s Method [9]. This at-
tempts to use pixel values in the image as a reference to find the threshold
limit without assistance from the user. Unfortunately, this approach failed
to produce useful results. In almost all the images, regardless of the kernel
color, there exists many kernel pixels that have a value close to that of the
background. Otsu’s Method does not pick up the slight transition from the
background to object. This, more often than not, results in a significant
portion of the kernel being removed from the mask as seen in figure 14. In
this particular example, using Otsu’s method reduced the area of the kernel
by 10%. Using an automatic method will also produce a different threshold
limit for each image. This means a pixel in image A could be removed, but
still appears in image B despite having the same value. This has the most
significant effect near the edge of the kernel.

Since automatic thresholding has failed, the next step is to find a global
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(a) subtracted image (b) Otsu Threshold (c) Fixed threshold

Figure 14: A typical result from using Otsu method.

threshold level that will work for all images that will be used. This allows
for consistency across all images, but then the lighting and background must
not change from one set of kernels to the next, regardless of shape or color.
Since the goal of applying the threshold is to create a mask, then background
subtraction is a strong candidate for reducing an image down to the point of
being able to apply a fixed threshold limit.

4.4 Backlighting

The final solution was to apply backlighting to the kernels. This creates light
from underneath/behind the kernel, creating an effect that works for both
dark and light kernels. In an image, this background should appear white,
but unlike a white background, shadows are eliminated and white portions
of a kernel will not be lost. Any shadows cast on to the background will
be diffused by the light produced. Previously, using a white background, it
was easy to lose light kernels on a white background, but with a backlight,
the kernel is actually blocking the light, so a light kernel will appear more
distinct, making it an easy object to threshold out.

With the current setup, background subtraction is required for this ap-
proach. The region behind a kernel is lit up, but the platform the kernel
rests upon is not, creating an edge effect as seen in figure 7a. Before images
are gathered on a set (about 16-32 kernels), an image of only the background
from each of the three cameras is recorded. Then, during the analysis, these
images are subtracted from the images of kernels. Since the background is
constant over a short period of time, those pixels have a value near 0 while
the kernel pixels will have a positive value.

There exists two major problems with the EL panels used for backlight-
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ing. First, it seems to be impossible to obtain white light panels. The “white
light” panels used have a distinct blue tint, unfortunately. This tends to be
reflected by the kernels causing the blue channel to be higher than previously
imaged kernels. The move to these panels was performed between experi-
ments, so while a comparison to previous images would not be appropriate
due to bias, it will not affect future work.

The second problem is one of lifetime. Unlike a lot most electronic equip-
ment, the EL panels have a theoretical infinte lifetime; they will never simply
fail or stop working. The trade off is a gradual dimming of the light produced
and after roughly 3000 hours, the light is too dim to produce comparable re-
sults. The trade off for a short lifetime is a low cost and easily replaced.
Across a single set of kernels, the light intensity can be considered constant,
but after 30 or 40 sets, this may not longer be true. As a result, a single back-
ground image for subtraction cannot be maintained. This has led to keeping
a new set of background images along with each kernel set. In the case a
background image does not exist, using one from a recent set or creating one
using pixel intensity variations can be used.

5 Evaluation Techniques

The features measured here will be used along with many other measurements
in order to identify unique characteristics of different kernel composition and
genetics. One method to identify unique features is through machine learn-
ing algorithms. Classification can show us if features can be used to correctly
identify different kernel types or mutants. Feature selection methods are ex-
cellent for reducing a large feature set and will work to pick out the important
features.

5.1 Classification

Classification focuses on trying to identify a classes by a list of features
given. These methods can then build a model that will be used to classify
future sets that do not have a class label. In order to build the model, there
exists supervised and unsupervised algorithms. In each case, a set is a list of
examples, one per kernel, each with a list of features and a label describing
how that kernel should be classified. In unsupervised learning, the labels are
absent and the algorithm must determine those on its own.
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The measure of success for these methods is typically accuracy, which is
the percent of examples correctly labeled. In order to provide an accuracy
value that’s less biased, cross validation is used. This involves splitting a
dataset into different N groups. One group is removed, while all of the others
are used to build a model for classification. Using the model, the removed
group is then classified and the accuracy is reported. This is repeated N
times, one for each group. The final accuracy reported is the average over
all iterations.

5.2 Feature Selection

The goal if feature extraction is to obtain a subset of features that will be the
most optimal. This is different from classification which focuses on accuracy
of labeling a test data set [7]. There are several methods for solving the
problem of feature extraction.

A Filter Based Selection is one typical approach with the Relief Algo-
rithm [6] being such an example. This method is a good option for picking
out individual independent features that are relevant to the class, but tends
to miss features that can be highly predictive when combined with other
features. Redundant features are usually chosen as well rather than just an
optimal subset.

A common feature selection approach is Wrapper Based Selection. In-
stead of finding strong, individual features, the selection process is treated as
a search problem. The most widely used methods of wrapper selection are
forward selection and backward elimination. In this case, forward selection
was used, which tends to be the faster approach. Backward elimination is
more likely to selected features that work well together [7].

Given a training set with N features, forward selection method begins by
trying to classify the data using an empty feature set. Since the class label is
given with a training set, the algorithm will stop at this point if only one label
was given, otherwise it will continue. The algorithm continues by choosing
the very first feature of the feature set and then creating a classification model
with a specified algorithm (Bayes Net, SVM, etc.). The model is evaluated
using the accuracy metric and then repeated for each feature in the feature
set. Since there are N features, this creates N models, of which the best is
chosen based on accuracy.

The chosen feature f3 is then ranked as the best feature. Using this
newly selected feature as its base set, the algorithm repeats its previous step,
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Figure 15: In each step of the forward selection method, multiple models
using different features are created.

but this time. Instead of classifying with only one feature at a time, f3 is
included in each model as well. This time, N-1 models are created, the best
feature pair is selected, and everything is repeated. The algorithm continues
until classification accuracy reaches 100% or it reaches the end of the feature
set. These steps can be seen in figure 15. Backward elimination is similar,
except it starts by classifying with all features and removes features instead
of adding them.

The forward selection algorithm focuses on features that have strong pre-
diction power both as independent features and in combination with other
features. This method can pick out redundant features, but it is only impor-
tant that the features are not strongly dependent on each other.

5.3 WEKA

All of the analysis here is completed using the WEKA libraries
(http://www.cs.waikato.ac.nz/ml/weka/). These are maintained by the Uni-
versity of Waikato. The API for Java allows for both classification and feature
selection algorithms. In addition, to the Java API, there is a GUI that allows
for a simpler use of the libraries.
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SVM Bayes Net Neural Network Naive Bayes
I2 (front) Area (side) I1 (front) Area (side)
I2 (side) Major Axis (side) I3 (side) Major Axis (side)

Major Axis (side) I2 (top) Major Axis (side) Minor Axis (side)
Minor Axis (side) I5 (top) Eccentricity (side) Eccentricity (top)

EMD Red Value Hue Red Value
Red Value Blue Value Saturation Hue

Green Value Hue Value/Intensity Saturation
Blue Value Value/Intensity Green Value (strd)

Hue
Area (side, strd)

Major Axis (front, norm)
Blue Value (norm)

Table 1: Selected features from 10 lines of kernels.

6 Results

The following results were obtained by classifying 10 different kernel lines.
In addition to the 40 features discussed in section 2, the same features nor-
malized and the same features standardized are included for a total of 120
features.

6.1 Feature Selection

Five different algorithms were used along with Greedy First Search to through
forward feature selection. The features selected with four of the five methods
are listed in table 1. The random forest method was used, but it was unable
to produce any significant results, so it is not included in the results. Where
applicable, labels denoting the view, normalization, and/or standardization
are included.

Several of the features are repeated across different classifiers. The pri-
mary goal of the feature selection is to reduce a feature set, which this algo-
rithm has accomplished.

It should be pointed out that several of these features such as major and
minor axis for the side are repeated across classifiers. This could indicate
that certain features are more unique and may have a stronger relation to
other characteristics of the kernels.
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Neural Network Bayes Net Random Forest Naive Bayes SVM
Classified using...

Naive Bayes 77.7% 80.41% 20.95% 85.81% 82.43%
Bayes Net 75.68% 79.05% 6.76% 80.41% 76.35%

Random Forest 83.11% 79.73% 18.92% 81.76% 79.73%
SVM 72.3% 77.7% 11.49% 87.16% 86.49%

Neural Network 83.11% 81.76% 18.92% 87.16% 88.51%

Table 2: Classification accuracies of the previous reduced sets using different
classifiers.

6.2 Classification

As mentioned, each of these reduced sets are now classified with each of the
different algorithms listed before with accuracy as the unit of comparison.
The results are listed in Table 2.

Overall, most of the sets can be classified with nearly 80% accuracy. The
random forest set shows poor results across the board. This is a result of the
feature selection method as it only selected a total of two features before it
was able to improve its accuracy.

A further breakdown can be found by looking at the reduced set and
classifier that produced the highest accuracy. Each group only has 14-15
kernels, so even if just one kernel is misclassified, this can be a 6-7% reduction
in accuracy.

6.3 Errors

Occasionally, errors in the images arise and cause problems. Typically, the
resulting feature values will be extreme outliers, so finding these errors is
relatively simply by viewing the statistical distribution of values. Sometimes,
more difficult problems arise. If a seed is too large to fit within the view of the
camera, part of it will be cut off by the edge of a camera. Since the images are
gathered manually, this and similar problems are avoided by checking each
individual image before it is saved, but not everything is caught. Automatic
checking systems are developed when a new problem is found, but this can
only be accomplished for mistakes that have been discovered.
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7 Conclusion

Previously, a method had been developed to gather and identify features re-
lated to maize kernel characteristics. This process was still in its experimental
stages when several problems involving segmentation had been discovered.
Through the construction of a more permanent station and modifications
to lighting, a more robust system has been developed. In addition to still
providing useable results, the process can handle a greater variety of maize
kernels.

There are two improvements that I would like to see happen with this
design. First, an more automatic method of imaging the kernels should be
explored. Currently, each kernel is placed by hand in the appropriate position
in front of the three cameras. In terms of efficiency, this is a slow process.
Instead, if a approach can be developed that only requires the user to load
up the imaging station with a tray of kernels, this could cause a significant
increase to the imaging process.

The second goes back identifying the kernel within an image. Even though
this system is stable and works for a wide variety of kernels, it may be
possible that a kernel with a new shape/color appears that will not comply
with what has been designed. A new approach would be to develop features
that actually define when a pixel is part of the kernel and when a pixel is part
of the background. These features could then be used along with machine
learning to identify not only current kernels, but possibly new ones that may
cause problems in the future.
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