Run Time and Perceived Performance Influenced by External Feedback in Endurance Athletes

Jancik, A., Vang, J., Kiekhoefer, L., Lose, S.
Faculty Advisors: Don Bredle, PhD, Matthew Wiggins, PhD.
Department of Kinesiology, University of Wisconsin-Eau Claire

ABSTRACT

Purpose: Research on the impact of frequency of encouragement for run training has never been explored. To give insight into coaching methods for practices and competitions, knowing how much to encourage athletes is important. The purpose of this study was to gain insight into which amount of encouragement provides the most influence on running performance during training sessions for endurance runners. Methods: Twenty-three participants (8 males, 15 females) aged 18-27 years (20.3 ± 1.8 years) performed two-mile runs on three occasions on an indoor track, separated by a rest period of at least one full day. The three conditions were: no verbal encouragement, minimal verbal encouragement (every 400 m), or maximal verbal encouragement (every 50 m). Results: Maximal encouragement resulted in faster run time (16.39 ± 2.0 minutes) than no encouragement (16.87 ± 2.4) minutes (p < 0.05). Results for the minimal encouragement trial were not significantly different from maximal or no encouragement. Conclusion: This study suggests that under some circumstances, running performance may improve with higher frequencies of encouragement.

INTRODUCTION

Training is a necessity for all sports in order to prepare for competition and can be performed under differing conditions to produce a multitude of results depending on what the desired outcome may be.

Exercise performance is affected during training by athletes’ and coaches’ attitudes, relative success and failures, teammate’s behavior, and other psychological and physiological factors.

Most sporting events include encouragement by spectators, coaches, and players to motivate athletes.

MEANS AND STANDARD DEVIATIONS

<table>
<thead>
<tr>
<th>Subjects</th>
<th>TRIAL NO</th>
<th>TRIAL MIN</th>
<th>TRIAL MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>No=23</td>
<td></td>
<td>16.37±(±2.4)</td>
<td>16.77±(±2.1)</td>
</tr>
<tr>
<td>N=23</td>
<td>28.5±(±8.8)</td>
<td>26.3±(±10.6)</td>
<td>26.8±(±7.8)</td>
</tr>
</tbody>
</table>

METHODS

N=23 healthy, endurance runners consented, (15 females, 8 males) aged 20.3 ± 1.8 years (18-27). All subjects involved in some type of endurance exercise program at least 3 days/week for at least one hour duration with a moderate to vigorous intensity.

Exclusion criteria included not complying to the protocol of taking a day of rest between trials and participants who were not endurance athletes.

Participants were not given information about the major independent variable (frequency of encouragement).

Experimental Protocol

There were three trials of a 2-mile run each separated by a day of rest. The participant wore a Polar Heart Rate Monitor and watch. Watch display was covered by tape so as not to affect running pace.

Participant was instructed to complete a 400m warm up and then 16 laps at their “normal training pace”.

Researcher announced lap count completed by saying “1 lap down”, “2 laps down”, etc.

Halfway through, the subject indicated RPE. Elapsed time and heart rate were recorded.

As a cool down, the participant completed a 400m walk/jog.

Completion of the Subjective Exercise Experience Scale (SEES, 7) questionnaire which measures psychological well-being, psychological distress, and subjective fatigue, finished testing.

The questionnaire produces a score of 12 to 84, lower scores indicated a more positive experience and higher numbers indicated a worse experience. There were three open-ended questions as well.

Trial NO (Control)

The only communication during the run was the lap count.

Trial MIN (40min Encouragement)

The same researcher was present for all trials of that type. Laps completed was announced followed by the encouragement, and half of the time with the participant’s name. Encouragement was given off of the script below.

Trial MAX (50min Encouragement)

Four researchers administering encouragement, spaced 50m apart (on the four corners of the track) in the same order for all trials. Each researcher started at a different phrase on the above script.

RESULTS

PERFORMANCE

Run time was significantly faster in TRIAL MAX than TRIAL NO (p<.05).

Run time TRIAL MAX vs. TRIAL MIN approached significance (p=.055).

Twelve of 23 subjects increased average speed during TRIAL MAX.

PERCEIVED PERFORMANCE

SEES scores ranged from 14-57.

TRIAL MAX produced better SEES scores, though not significantly.

In TRIAL MAX, fewer participants mentioned not enjoying their experience (13%).

Nine out of the 23 participants specifically mentioned the encouragement from the facilitators as helpful during TRIAL MAX.

SUMMARY AND CONCLUSIONS

Encouragement may be utilized to improve performance during training.

Increase in frequency of motivation can improve exercise performance.

Future studies might include a greater variety of frequencies of motivation, different methods of study (running distance, different sports and physical activities, questionnaires), increase sample size, and different populations.

Applications of these findings include coaching styles for training, continued motivation for the athlete to participate in the sport.

If an athlete has a positive training experience, this will hopefully result in improved performance during a competition.

ACKNOWLEDGEMENTS

The authors would like to give a special thank you to all of the participants that took part in our research study and to Dr. Don Bredle and Dr. Matthew Wiggins for their support and guidance. Finally, we would like to recognize the Department of Kinesiology at the University of Wisconsin-Eau Claire for allowing us to use the equipment, indoor track, and supplies needed to make this research possible.