Selection of sap well trees by a keystone species: The Red-naped Sapsucker (Sphyrapicus nuchalis)

CHRIS FLOYD1,2, MEGAN KOESTER1, and JON AMES1
1Department of Biology, University of Wisconsin-Eau Claire; 2Rocky Mountain Biological Laboratory, Crested Butte, CO

What is a keystone species?

- The keystone at the top of an arch holds all of the stones in place; without it the arch would collapse.
- Similarly, a keystone species has disproportionately large effect on ecological communities: if the keystone is lost, biodiversity will suffer.
- Famous examples of keystone species include sea otters and beavers.

The Red-naped Sapsucker: a keystone engineer

- Our study subject is the Red-naped Sphyrapicus nuchalis).
- These woodpeckers excavate their nest cavities in aspen woodlands of the Rocky Mountains.
- Sapsuckers are considered keystone species for two reasons:
 - Old sapsucker nests provide essential nesting space for other cavity-nesting species, such as bluebirds and tree swallows.
 - Sapsuckers drill sap wells in shrubs and trees.
 - These wells supply a rich food resource to many species of insects and birds that rob the wells.

Objectives and significance

- Objective: learn more about the sap-feeding preferences of sapsuckers, as inferred from patterns of sap well scars in aspens.
- Significance: we must understand the feeding requirements of keystone species to adequately conserve them and the communities that depend on them.
- Our work will also shed light on the effects of sap wells on aspens, a tree of considerable economic and ecological importance.

Study sites

- Aspen woodlands in the East River Valley, near Crested Butte, Colorado
- Elevation: 2750-3000 m
- Data collected in June-July
 - 2011: 44 sites
 - 2012: 40 sites

Methods

- Sites chosen using randomized latitude-longitude points and Google Earth.
- Each site was a randomly-oriented 0.1 ha rectangular plot composed of a 50 m long center line and two lines running parallel to and 10 m from the center line. Each plot was split into ten 10 x 10 m subplots.
- In each subplot two aspens were selected—one with sapsucker wells/scars and one without. Aspens were selected by looking along an imaginary line bisecting the subplot (running perpendicular to center line) and selecting the sap-well-bearing aspen closest to the line and nearest non-sap-well-bearing aspen closest to the line.
- Only living aspen trees with a DBH (diameter at breast height) of ≥ 5 cm were selected.
- Characteristics measured for each selected aspen included: DBH; height; crown ratio (proportion of tree height supporting live foliage); and presence/absence of canker, heartrot fungus (P. tremulae), scars, wind damage, lesions, or abnormal growth.
- The number and height of sap well clusters was recorded; for each cluster the number of rows was counted (rows are usually clustered).
- The relative ages of the scar rows were ranked from 1-8 as shown below:

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (fresh)</td>
<td>Sapsucker well still uncarved or slightly carred</td>
</tr>
<tr>
<td>2 (woody scar tissue)</td>
<td>Sapsucker well scarred, but not significantly scarred</td>
</tr>
<tr>
<td>3 (woody scar, raised, elongated, partially connected with other wells)</td>
<td>Sapsucker well scarred, raised, and partially connected with other wells</td>
</tr>
<tr>
<td>4 (woody scar, raised, elongated)</td>
<td>Sapsucker well scarred, raised, and partially connected with other wells</td>
</tr>
<tr>
<td>5 (woody scar, raised, elongated, partially connected with other wells)</td>
<td>Sapsucker well scarred, raised, and partially connected with other wells</td>
</tr>
<tr>
<td>6 (woody scar, raised, elongated)</td>
<td>Sapsucker well scarred, raised, and partially connected with other wells</td>
</tr>
<tr>
<td>7 (scar merged to extent that individual former wells can barely be distinguished)</td>
<td>Sapsucker well scarred, raised, and partially connected with other wells</td>
</tr>
</tbody>
</table>

Summary of results

- Aspens with sap wells were larger (greater DBH and height) than those without (Figure 1).
- Aspens with sap wells were significantly more likely to be infected with aspen heartrot fungus (Phellinus tremulae; Figure 2).
- We found no relationship between canopy ratio and any of the well/scar measurements.
- We found no relationship between tree size and number of wells.
- The vast majority of sap wells were drilled in the trunk below the canopy, approximately half way to the tree top (Figure 3).
- Trees with older sap well scars tended to be larger (Figure 4).

Conclusions

- Sapsuckers may prefer slightly larger aspens and the approximate middle of the trunk (below the canopy) for well placement.
- Our results suggest that aspens with sap wells do not accumulate well rows continuously throughout their lives, perhaps indicating a defensive response by the aspen to sap well drilling.
- There was little evidence that sap well drilling harmed aspens.

Acknowledgements

Our funding was provided by grants (Summer Research Experiences for Undergraduates) from the UWEC Office of Research and Sponsored Programs. We are also grateful for support from the UWEC Biology department and the Rocky Mountain Biological Laboratory.