Metals in Hair as Predictors of Disease

Students: Rachael Korinek, Jared Ryan, Kristen Walters, Allison Malecek, Jonathan Jilek, Lindsey Mittendorf, Johnathan Boettcher.

Faculty: Dr. Crispin Pierce, Dr. Jill Ferguson.

Environmental Public Health Program, Watershed Institute for Collaborative Environmental Studies, University of Wisconsin – Eau Claire. Faculty/Student Research Collaboration supported by Differential Tuition.

Background

The link between metal concentrations in hair and human health effects has been shown in previously published literature. Bencko et al. (1986) determined that the best means of determining pollution’s effect on humans is to measure hair samples. The variability in air and water is too high, and hair is easy to store and transport. He concluded that hair analysis is an essential tool for measuring hazardous emissions of trace elements. Srogi (2006) also found that concentrations of elements in hair samples are a good indicator of metal exposure. This research opened the door to screening individuals and populations for metal exposure through hair sampling.

Objective

Our project aims to determine how increased levels of metals in hair samples contribute to human health. In collaboration with the University of Eastern Finland - Kuopio we are building upon the work of the Kuopio Ischemic Heart Disease (KIHD) study to determine if there are any indicators of future health implications from metal concentrations in hair samples. Particularly, we wish to establish correlations between specific metals and conditions that they may contribute to.

Methods

We measured concentrations of heavy metals in 67 hair samples collected in 1985-86 in Finland during baseline testing in the KIHD study. Hair samples were collected in Finland as part of Dr. Crispin Pierce’s Fulbright research and were analyzed by other students at UWEC using Inductively Coupled Plasma Mass Spectrometry (ICP-MS).

To determine disease risk, we utilized the biological data gathered during the KIHD study during their 20 years of follow up. The biological data consists of health markers, disease diagnoses, and test results for each individual.

The hair metal concentration data set consists of the results of each hair samples analysis for concentrations of 8 different metal isotopes: Lead 206 and 208, Chromium 52 and 53, Cadmium 111 and 114, Arsenic 75, and Selenium 77 (See Figure).

Regression and t-tests were performed using Microsoft Excel software. The majority of hair metal concentrations data was right-skewed so the log of hair metal concentrations was taken in order to achieve a normal. A correlation chart was created to generate correlation coefficients (R^2 values). The regression analyses that generated p-values <0.05 were considered significant (see Table). We conducted t-tests comparing the means of hair metal concentrations for health markers with binary results using the log metal concentrations against the discrete variables present in the health data, P-values <0.05 were again considered significant (see Table).

Results

Chromium and Phlegm in Winter Mornings:

Lead and Hematocrit:

When graphed, both isotopes of Lead (logPb206, and logPb208) were significantly and positively correlated with hematocrit level. Hematocrit, the proportion of blood volume made up of red blood cells, has been previously found to increase with long-term exposure to lead (Hsiao, 2001). The log of Lead 206 was positively correlated with hematocrit with an R^2 value of 0.0557 and a p-value of 0.0552 (see graph below). The relationship between the log of lead 208 and hematocrit was less significant with an R^2 value of 0.0554 and a p-value of 0.0552.

Conclusions

• The relationships between lead and hematocrit as well as chromium and phlegm in winter mornings were both significantly and positively correlated, and are relationships supported by previously published literature.

• A number other hair metal concentrations are significantly correlated with a variety of health markers. Some relationships were contradicted and other supported by previously published literature.

• More research should be done to further increase understanding as to how increased heavy metal load in the body contributes to disease risk or decreased functioning in a wide range of body systems.

• Future analysis of this data is planned. Analyzing more hair samples will increase significance and strengthen conclusions about the correlations.

References

