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Abstract

A theoretically justifiable fast finite successive linear approximation algorithm is proposed
for obtaining a parsimonious solution to a corrupted linear system Az = b 4 p, where the
corruption p is due to noise or error in measurement. The proposed linear-programming-based
algorithm finds a solution = by parametrically minimizing the number of nonzero elements in z
and the error || Az — b — p |[1. Numerical tests on a signal-processing-based example indicate
that the proposed method is comparable to a method that parametrically minimizes the 1-norm
of the solution x and the error || Az — b — p ||1, and that both methods are superior, by orders
of magnitude, to solutions obtained by least squares as well by combinatorially choosing an
optimal solution with a specific number of nonzero elements.

Keywords Minimal cardinality, least norm approximation

1 Introduction

A wide range of important applications can be reduced to the problem of estimating a vector z by
minimizing some norm of the residual vector Az — b arising from a possibly inconsistent system of
linear equations:

Ar =0, (1)

where A is an m X n real matrix and b is an m x 1 vector, and both A and b are subject to
error. Methods for solving such problems include least squares [15], total least squares [11, 14] and
structured total least norm [24, 13].

In this paper we consider the closely related problem of minimizing the 1-norm of the residual
vector Az — b, where b is subject to error and with the additional condition that only a specified
number k < n of columns of A are used. This is clearly a combinatorial problem which is closely
related to the NP-hard problem considered by Amaldi and Kann [2] and consisting of solving a
consistent system of linear inequalities or equalities with rational entries such that the solution z has
a minimal number of nonzeros. We shall solve our problem by a novel method, based on minimizing
a concave function on a polyhedral set, that has been successfully used in such machine learning
problems as misclassification minimization [17], and feature selection [6] and in data mining [5, 19].
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The idea behind using as few columns of A as possible to span b is motivated by the parsimony
principle of machine learning, known as Occam’s Razor [26, 4], which says in essence: “simplest is
best”. This principle is highly effective for generalization purposes [16, 25, 30] where, for example,
one wishes to use the “solution” z of (1) on new data not represented by the rows of [4 b] as would
be the case if either A or b is corrupted by noise. The use of the 1-norm will enable us to use a
finite algorithm based on the polyhedral concave minimization approach which, as indicated above,
has been successfully used on difficult machine learning problems. In particular we will eventually
cast the problem as that of minimizing a concave function on a polyhedral set and begin with the
following unconstrained minimization problem:

min (1 — A)||Az — b||; + Aé'|z|«, A€ [0,1) (2)
zERM
Here e is a column vector of ones, the prime denotes the transpose, | - | denotes the absolute value

function applied componentwise to a vector and (-). is the step function applied componentwise
also. The step function takes the value 0 if its argument is nonpositive, and the value 1 if its
argument is positive. The vector b will be corrupted by a noise vector p in our application. We
note immediately that when A = 0, problem (2) is the classical least 1-norm approximation problem.
When A = 1, problem (2) is trivially solved by # = 0 and is of no interest. We are interested in
solutions to problem (2) with A € [0, 1) that make €’|z|, <k for some desired k < n and such that
||[Az — b||1 is acceptably small. In fact problem (2) can be viewed as a multiobjective optimization
problem [8] with the the two objectives of parsimony in the number of nonzero components of z
and smallness of the error ||[Az — b||;. By letting A range over the interval [0, 1] the cardinality of
the nonzero elements of the solution z varies from a maximum of n to 0, while the error || Az — b||;
will be nondecreasing monotonically. Depending on the problem, one of those z’s will be the most
desirable. In many of the machine learning applications small values of A such as 0.05 often gave
parsimonious results that improved tenfold cross-validation [6]. We shall call problem (2), with a
possibly noise-corrupted b, the parsimonious least norm approximation problem (PLNA).

Our approach here for solving (2) will be to convert it to a concave minimization problem on
a polyhedral set (problem (12) below). We first show that this problem always has a solution
(Theorem 2.1 below). We then replace the discontinuous step function in the objective function of
(12) below by an exponential smooth function in problem (14) below, just as was done in [18, 6],
and relate the two problems. Our novel theorem (Theorem 2.1 below) shows that the continuous
problem yields an exact solution of the discontinuous problem once a repeating optimal vertex
is identified for increasing but finite values of the smoothing parameter «. We then prescribe a
linear-programming-based successive linearization algorithm SLA 3.1 for the solution of the smooth
problem and establish its finite termination in Theorem 3.2.

For comparative purposes we shall also employ Vapnik’s support vector machine approach [29, 3]
of minimizing the size of the solution vector z as well as the error ||[Az — b||1, thereby decreasing
the VC dimension [29, p 76] (a capacity measure) and improving generalization. We shall do that
by parametrically minimizing the 1-norm of z as well as the 1-norm of the error Az — b:

min (1= X)[|Az = bl + Al (3)

We shall call this problem, with a possibly noise-corrupted b, the least least norm approximation
(LLNA) problem and solve it by solving the equivalent linear programming formulation:

min {1=Ney+rez| —y<Az-b<y, —z<a<z} (4)
($7y7z)eRn+m+n



A word about our notation and background material. All vectors will be column vectors unless
transposed to a row vector by a prime superscript /. For a vector z in the n-dimensional real space
R™, |z| will denote a vector of absolute values of components z;, ¢ = 1,...,n of . The scalar
product of two vectors # and % in the n-dimensional real space will be denoted by z'y. For a linear

program mi§ c'z, the notation arg vertex mi)r} 'z will denote the set of vertex solutions of the linear
rE re

program. For € R™, the norm ||z||; will denote the 2-norm: (x’x)%, while ||z||; will denote the

e
1l-norm: Z |2;|. For an m X n matrix A, A; will denote the ith row of A and A;; will denote the
element iln_lrow ¢ and column j. The identity matrix in a real space of arbitrary dimension will be
denoted by I, while a column vector of ones of arbitrary dimension will be denoted by e. The base
of the natural logarithm will be denoted by ¢, and for y € R™, £7¥% will denote a vector in R™ with
component €Y, ¢ =1,...,m. For a function f: R* — R that is concave on R", the supergradient
df(z) of f at x is a vector in R™ satisfying

fly) = fl@) < 0f(2))'(y — 2) (5)
for any y € R™. The set D(f(z)) of supergradients of f at the point z is nonempty, convex, compact

and reduces to the ordinary gradient V f(z), when f is differentiable at = [22, 23]. For a vector
x € R", card(z) will denote the cardinality of the nonzero elements of z.

2 The Concave Minimization Problem

In this section we shall consider the minimization problem
. h/ .
min f(s) + ph'lslx, (6)

where f is a concave function on R* which is bounded below on S, x is a nonnegative real number,
h is a nonnegative vector in R¥ and S is a polyhedral set in R* not containing straight lines that
go to infinity in both directions. Note that if the objective function of (6) is concave (which it
is not in general because of the nonconcavity of h'|s|.) then by [23, Corollary 32.3.3] problem (6)
has a solution and by [23, Corollary 32.3.4] it has a vertex solution since S contains no straight
lines that go to infinity in both directions. However despite this lack of concavity we shall show
precisely the existence of a vertex solution by a novel approach which approximates the step func-
tion on the nonnegative real line from below by an exponential. This smooth approximation will
also serve as a means for generating a finitely terminating algorithm at a stationary point of (6).
Another important feature is that an exact solution of (6) is obtained from a solution of the smooth
approximation for a finite value of the smoothing parameter.

We state now our smooth approximation of (6) as follows

min f(s) + k' (e = ==*), (7)
where « is a positive number. We have the obvious relation
Wsl. > h'(e —ekl) vs e RE. (8)

Hence the smooth problem (7) minimum provides an underestimate to the minimum of problem
(6). This fact will be used to establish exact solution of the latter by the former in the following
principal theorem of the paper which also provides a method of solution as well.



Theorem 2.1 Existence of Exact Vertex Solution for Finite Value of Smoothing Pa-
rameter Let [ : R* — R be bounded below on the polyhedral set S that contains no straight lines
going to infinity in both directions, let f be concave on R, let h > 0 and let u be a fived positive
number. Then for a sufficiently large positive but finite value o of «, the smooth problem (7) has
a vertex solution that also solves the original nonsmooth problem (6).

Proof Note first that the smooth problem (7) is equivalent to the following concave minimization
problem

(m)inT f(s) 4+ ph'(e — e=%), where (s,2) € T :={(s,2)| s €S, —z <s < z}. 9)
s,z)€

Since the objective function of this problem is concave in (s, z) on R** and is bounded below on T,
it follows by [23, Corollaries 32.3.3 and 32.3.4] that it has a vertex (s(«a), z(«)) of T" as a solution
for each o > 0. Since 7' has a finite number of vertices, one vertex, say (S, z), will repeatedly solve
problem (9) for some sequence {ag, a1, ...} T co. Hence for ay; > oy,

f(s(e) + ph!(e — e=i#(@i))y

— : h(e — e~z
(S{g)nele(S)Jru (e —e7%)

F(5) + ph'(e —e77)

= minf(s) + ph'(e - emailsl) (10)
< Inff(s) + phlsl.,
where the last inequality follows from (8). Letting i — oo it follows that
F() 4 B8] = ;o () i (e = £5%) < inf.f(5) + |- (1)

Since 5 € 9, it follows that s solves (6). Since (8§, 2) is a vertex of 7', it follows that § is a vertex of
S.a

This theorem immediately suggests an algorithmic approach for solving our problem (2) as
follows. We first rewrite (2) as the following equivalent problem

(nin (1=XNey+Aclz]., S:={(z,y)|zeR", ye R™, -y <Az —-b<y}, Ae[0,1) (12)
z,Yy)E

By making the identifications

S:(i)vk:n—l_mv f(s):e’y,,u:%,h:(g), (13)

problem (12) and hence problem (2) becomes a special case of problem (6) which we shall solve
in its smooth version (7). More specifically the smooth version of (2) is the following concave
minimization problem:

( mi? . (1= N)ey+ Ae'(e —7?%), where T :={(z,y,2)| —~y< Az —-b<y, —z<a <z} (14)
Yz S

By solving this problem for a sufficiently large positive « it follows by Theorem 2.1 that we have
solved our original problem (2). We turn our attention now to solving (14) by a finitely terminating
successive linearization algorithm.



3 The Concave Minimization Algorithm

The finite method that we shall propose is the successive linear approximation (SLA) method of
minimizing a concave function on a polyhedral set which is a finitely terminating stepless Frank-
Wolfe algorithm [9]. In [18] finite termination of the SLA was established for a differentiable concave
function, and in [20] for a nondifferentiable concave function using its supergradient. We state now
the SLA for problem (14) which has a differentiable concave objective function.

Algorithm 3.1 Successive Linearization Algorithm (SLA) Start with a random 2° € R,
y0 = |4z — b|, 2* = |2°|. Having (2',y", 2") determine

(7t y L 2y carg min (1 - N)e'y + /\oe(e_azi)’z (15)
(z,y,2)€T
Stop when (z°,y', 2') € T and
(1= Ney + A=)z = (1 — Ny + Aa(z77 )z T (16)

By [18, Theorem 4.2] we have the following finite termination result for the SLA algorithm.

Theorem 3.2 SLA Finite Termination The SLA 3.1 generates a finite sequence {(z',y', 2%)}

with strictly decreasing objective function values for problem (14) and terminating at an @ satisfying
the minimum principle necessary optimality condition

(1= Ne'(y —y) + Aa(e™) (2 — 21) > 0, ¥(2,y,2) € T (17)

4 Application and Numerical Testing

We wish to determine whether z-component suppression or z-norm reduction of an observed linear
system Az = b+p which is a corruption of a true system Az = b, leads to an improved approximation
of the true system. One can relate this to a machine learning framework by treating the first system
as a training set, and the second system as a testing set [12]. The linear systems used are based
upon ideas related to signal processing [10, 28] and more specifically to an example in [1, Equation
)]

We consider the following true signal ¢(¢) : [0, 1] — R:

3
gt)=> 2,27 te[0,1],a=[0 4 7], 2=[05 2.0 — 1.5]. (18)
i=1

We assume that the true signal ¢(¢) cannot be sampled precisely, but that the following observed
signal can be sampled:

g(t) = (g(t) + error), sampled at times: t; =t At, At =0.04, 1 =0,1,...,25. (19)

We further assume that we do not know the true signal g(¢) (18), and we attempt to model it
as:

10
gy =t t€[0,1],a=[04 7 01 23 3.9 41 6.9 7.1]. (20)
i=1



The problem now is to compute the coefficients z;, j = 1,...,10, of §(¢) (20) so that we
can adequately recover g(t), given only the noisy data §(¢;) (19). Notice that by substituting the
following coefficient vector 2* into (20), (t) = g(¢):

z*:=100520 —1.500000 0 0] (21)

Thus the true linear system (testing set) Az = b is then given by:

Ajj=e % bi=g(t), i=0,...,25, j=1,...10, (22)

and is solved exactly by z* of (21).
The observed linear system (training set) Az = b+ p is then given by:

Ay =74 b = g(t),
< p; = random number with mean = 0 & standard deviation =1, > (23)
1=0,...,25, 5=1,...,10.

We will refer to a solution of problem (14), with b of (14) replaced by b + p, computed by the
Successive Linearization Algorithm (SLA 3.1) as a PLNA solution. Similarly, we shall refer to a
solution of problem (4), with b replaced by b+ p as an LLNA solution. We note here that for all
experiments, the value of & in the negative exponential of (14) is 5.0. Scalars are considered zero
if they are in the interval [~1le — 8,1e — 8]. The components of the initial starting point z° for
SLA 3.1 were sampled from a normal distribution with mean = 0 and standard deviation = 1. The
components of the initial point were sampled then fized for all runs as:

2% = [-0.5077 0.8853 —0.2481 —0.7262 —0.4450 —0.6129 —0.2091 0.5621 —1.0639 0.3516]".

(1)

We now focus our attention on four approaches and compare solutions obtained by the PLNA
and LLNA methods with solutions obtained by least squares and by a combinatorial search.

4.1 Comparison of PLNA, LLNA and Least Squares

We compute solutions of the observed system Az = b+ p, where A, b, and p are defined in (23),
by PLNA, LLNA and by least squares. These solutions are then evaluated by the observed system
(training set) residual |[Az — b — p||; and the true system (testing set) residual ||Az — b||; and
graphically comparing the recovered signal §(¢) (20) to the true signal g(¢) (18).

The PLNA solution z()A) of Az = b+ p, for a given A is computed by solving by SLA 3.1 the
concave minimization problem (14) with b replaced by b+ p as follows:

( mi?T (1=Ney+Are(e—c), T:={(z,y,2)| —y< Az —b—p<y, —z<z <z} (25)
x,Y,2)€E

The LLNA solution z(A) of Az = b+ p, for a given A is computed by solving the linear program
(4) with b replaced by b+ p as follows:

min {1=Ney+rz| —y<Az—-b-p<y, —z2<a<z} (26)
($7y7z)eRn+m+n



The least squares solution is a minimizer of ||Az — b — pl||2 and is a solution to the normal
equations:

A'Az = A'(b+ p). (27)

Although the 26 x 10 matrix A defined by (23) has rank 10, the matrix A’A is numerically
singular with smallest eigenvalue less than 107, Thus we resort to a singular value decomposition
approach for solving (27).

We determine an approximate solution z(ls) to (27) by the following method which utilizes the
singular value decomposition [27]. Ordinary MATLAB [21] commands such as @ = A\(b+ p) for
our perturbed system Az = b+ p give an 2 with an error ||z — z*||; = 2.1379¢ 4 08 compared to
|z — 2*||2 = 2.6675e + 03 given by the method described below, where 2* is efined by (21) and the
perturbation vector p components are sampled from a normal distribution with mean = 0, standard
deviation = 1.

Algorithm 4.1 Least Squares via Singular Value Decomposition. Let A € R™*" with
m > n. Let 7 be a small positive tolerance.

1. Determine the economy singular value decomposition of A [21, svd(A,0)], U € R™*" S €

A=USV', (28)

where U'U = V'V =1, (the n x n identity matriz), and S = diag(oy,...,0,), 0; > 041 >
0,i=1,....n—1.

2. Determine the index r such that o; > 7 fore=1,...,r.

3. Set U € R™ to be the first r columns of U, V. € R™ o be the first r columns of V and
S € R™*" to be diag(oy,...,0.).

4. Compute z(Is) = V.S~'U'(b+ p), which is a solution to:

min %x’x, Timfa | Vie=S0"b+p) } ~ {a | A'Az = A(b+ p)). (29)
zeT

For all runs 7 was fixed at 0.0001, which for our specific matrix A defined by (23), led to r =6
in the above algorithm. That is we discarded the last 4 columns of U and V.

The PLNA problem (25) and the LLNA problem (26) were both solved for values of A €
{0,0.01,0.05,0.10,0.20, ..., 0.90,0.95,0.99, 1.0}. Figures 1 - 3 display results averaged over 5 noise
vectors p € R™ with elements sampled from a normal distribution with mean = 0, standard
deviation = 1. The average ||p|[y = 21.1008 and ||b||; = 20.1777.

In Figure 1 we plot averages of ||[Az(A) — b — pl|; for the various values of A, measuring how
“well” the PLNA and LLNA solutions solve the corrupted observed linear system. Also plotted
is the average of ||Az(ls) — b — p||1, measuring how “well” the least squares solution (Algorithm
4.1) solves the observed system Az = b+ p. As can be proved, the PLNA and LLNA errors are a
non—decreasing functions of A and are worse than the corresponding least squares error. However
on the true system the results are reversed. See next paragraph.

In Figure 2 we plot averages of ||Az(A) — b||; for both PLNA and LLNA for various values of
A, measuring how “well” the PLNA solution (25) solves the true linear system. Also plotted is the
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Figure 1: Average ||[Az(X) — b — p||1 versus A, where z(A) is a PLNA solution (25) in the curve
marked PLNA and is an LLNA solution of (26) for the curve marked LLNA, compared with average
|Az(ls) — b — p||1, where x(ls) is the least squares solution (27) by Algorithm 4.1. The results are
averaged over 5 noise vectors p. The PLNA and LLNA solutions were computed for values of
A =10,0.01,0.05,0.10,0.20,...,0.90,0.95,0.99, 1.
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PLNA and is an LLNA solution of (26) for the curve marked LLNA, compared with the average
||Az(Is) — b||1, where z(Is) is the least squares solution (27) solved by Algorithm 4.1. These results
are averaged over 5 noise vectors p. The PLNA and LLNA solutions were computed for values of A =
0,0.01,0.05,0.10,0.20,...,0.90,0.95,0.99,1. Numbers above/below the curves labelled “PLNA”
and “LLNA” at various values of X indicate the average number of nonzero elements in z(\) and
when followed by a second number, that number denotes |[z(A)][;.



average of ||Az(ls) — b||1, measuring how “well” the least squares solution (Algorithm 4.1) solves
Az =b.

In Figure 3 we compare averages of 1-norm distances from the true solution z* (21) to the
PLNA and LLNA solutions z(A) and the averages of 1-norm distances from z* to the least squares
solution z(ls). Recall that the true solution 2* is such that Az* = b. Note that for A > 0.01, the
PLNA and LLNA distances are smaller than the least squares distance. For A & 1, (A) &~ 0 and
even though |[z(\) — 2*||; is small, this solution is poor from a signal recovery point of view since
the zero vector gives the worst discrepancy between the true signal and the recovered signal at 26
discrete points (see Figure 2).

In Figure 4(a) we plot the true signal, the observed signal and the signal recovered by solving,
for one noise vector p, PLNA (25) with A = 0.30 and LLNA (26) for A = 0.80. Figure 4(b) displays
the true signal, the observed signal and signal recovered for the same problem by least squares
(27) solved by Algorithm 4.1. This is probably the most significant result. The signal recovered by
both PLNA and LLNA is considerably closer to the the true signal than that obtained by the least
squares solution.

4.2 Comparison of PLNA and LLNA with Combinatorial Search

In this section, we reformulate our PLNA problem so that the solution x(A) has a fixed number of
nonzero elements, for k € {1,2,...,n}:

(@(A),y(A),z(A)) € arg min (1= A)e'y 4+ Ae'e™? (30)
(z,y,2)€T

—y<Ar—b-p<y, —z<z <z
# of nonzero elements of z =k

T := {(ac,y,z) ‘

We also formulate the LLNA similarly as follows:

(@) HO) 2 € g min (1= A)ey + A's (31)
z,Y,2)€
Similarly, for k& € {1,2,...,n}, the combinatorial search solution z. is obtained by solving:
T. € arg mgl {||Az — b —p|[1 | # of nonzero elements of z = k}. (32)
zER™

Notice that z. is determined by enumerating all subsets of size k of a set of n elements, or (})
subsets. This is a rather expensive procedure computationally requiring two orders of magnitude
more time than PLNA and LLNA.

Figure 5 displays results averaged over 5 noise vectors p € R™ with elements sampled from
a normal distribution with mean = 0, standard deviation = 1 (average ||p||; = 21.1008, ||b|| =
20.1777). Plotted are averages of ||Az(A) — b — p||; and ||Az. — b — p||; for each k measuring how
“well” the PLNA, LLNA and combinatorial solutions solve the observed system. Also plotted are
averages of ||Az(A) — bl|; and ||Az. — b||; for each k, measuring how “well” the solutions solve the
true system.

Figure 6 displays the average 1-norm distance between z* of (21) and the solutions obtained by
PLNA, LLNA and combinatorial search. The averages are over 5 noise vectors p.

Figure 7(a), which for convenience duplicates Figure 4(a), displays the true signal, the observed
signal and the signal recovered by solving PLNA (25) for the value of A = 0.30 and the signal
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Figure 3: Average ||z (X) — 2*||; versus A, where z()) is a PLNA solution (25) in the curve marked
PLNA and is an LLNA solution of (26) for the curve marked LLNA, compared with the average
|z(ls) — 2*||1, where z(ls) is the least squares solution (27) solved by Algorithm 4.1. The true
solution z* (21) is such that Az* =b. The PLNA and LLNA solutions were computed for values
of A=0,0.01,0.05,0.10,0.20, .. ., 0.90, 0.95, 0.99, 1.
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(b) Dashed curve is the recovered signal §(t) with
coeflicient vector z(ls) determined by least squares
solution (27) solved by Algorithm 4.1.  Note:
||Az(ls) — b|| = 8.9733.

Figure 4: Signal Recovery. Solid curve is the true signal ¢(¢). Circles are the observed signal

g(t;) sampled at discrete times and the dashed curves are the recovered signals.
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(a) Dashed curves are the recovered signal §(t) with
coeflicient vector x(A) determined by (25) with A =
0.3 and ||Az(A) — b||1 = 4.7410 for PLNA, and by
(26) with A = 0.8 and ||Az(A) — b|]|1 = 4.7076 for
LLNA.

Figure 7: Signal Recovery. Solid curve is the true signal ¢(¢).

(b) Dashed curve is the recovered signal §(t) with
coefficient vector z. determined by combinatorial
search with k£ = 2 (32). Note: ||Az. —b|[; = 6.7826.

Circles are the observed signal

g(t;) sampled at discrete times and the dashed curves are the recovered signals.

recovered by LLNA (26) for A = 0.8. Figure 7(b) displays the true signal, the observed signal and
signal recovered by combinatorial search solution z. of (32) for k = 2.

4.3 Observations

We make the following observations with respect to the comparison between the PLNA, LLNA

solutions and least squares solutions.

1. For all values of A > 0.05 tested, the average observed system (training set) residual || Az (ls)—
b—p||1 was strictly less than the average ||Az(A) —b—p||; for both PLNA and LLNA. The least
squares Algorithm 4.1 for solving (27) produced “better” solutions to the observed system
Az = b+ p. See Figure 1. However......

2. For values of A € [0.01,0.90] tested, the PLNA average true system (testing set) residual

||[Az () —bl|1 was strictly less than the average ||Az(ls) —b||; indicating that PLNA produced
“better” solutions to the true system Az = b in comparison with least squares. For values of
A € [0.01,0.80] tested, the average true system residual with solutions determined by LLNA
was also strictly less than the corresponding least squares true system residuals. See Figure
2. PLNA with A = 0.3 and an average of 2.2 nonzero terms achieved an error reduction
of 38.85% over the corresponding error obtained by the least squares solution. LLNA with
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A = 0.8 produced an average 1-norm true system residual that was 52.98% less than the least
squares residual.

3. For values of A > 0.1 tested, the average ||z(X) —2*||1, determined by both PLNA and LLNA,
was 2 orders of magnitude less than the average ||z (ls) — 2*||. Hence the PLNA and LLNA
solutions were “closer” to recovering the true signal ¢(¢) (18). See Figure 3.

4. Figure 4, shows the most significant comparison between PLNA, LLNA and least squares:
A much more accurate recovery of the true signal by both PLNA and LLNA than by least
squares.

We note the following with respect to the comparison between the PLNA, LLNA solutions and
the solutions obtained by combinatorial search.

1. For k =3,4,5,6,7, the average PLNA ||Az(X) — b||; was strictly less than the average ||Az, —
blly. For k = 1,2, the average PLNA |[Az(A) — b|[; was less than or equal to 1.634 times
the average ||Az, — b||;. For k = 3,5,6,7, the average LLNA ||Az(X) — b||; was strictly
less than the corresponding average true system residual with the combinatorial solutions.
For k = 1,2,4, the average LLNA |[Az()) — b||; was less than or equal to 1.114 times the
corresponding average ||Az, — b||. See Figure 5.

2. For k > 3, the average ||z(A) — 2*||1, for both PLNA and LLNA, was strictly less than the
average ||z, — z*||; by orders of magnitude. For k = 0, 1,2, average ||z(X) — 2*||; was less
than or equal to average ||z, — 2*||1. See Figure 6.

3. The minimum over k = 1,...,7 of the true system 1-norm residual of 5.3867 occurs for k = 2
with the solution obtained by combinatorial search. The true system residual for PLNA
with £ = 2 is 5.7330 and the true system residual for LLNA is 6.0022. We note that when
computing the PLNA and LLNA solutions for k = 2, the first value of A found (by a bisection
search) such that the solution has 2 nonzero elements was chosen. This fact accounts for the
discrepancy between the true system residuals in Figure 5 and Figure 2.

4. Figure 7 shows recovery of the true signal by both PLNA and LLNA which is as good or even
better than the recovered signal by a lengthy combinatorial search.

The time needed by each approach to compute a solution was determined by performing a
single run on a Sun SparcStation 20 with 96 megabytes of memory running MATLAB 5.1, using
the commands “tic” and “toc” [21]. All linear programs were solved with CPLEX [7] interfaced
with MATLAB. Solving the PLNA problem with A = 0.5 with initial point (24) and o = 5 took
0.4603 seconds. Solving the LLNA problem with A = 0.5 took 0.1978 seconds. Determining the
least squares solution by Algorithm 4.1 with 7 = 0.0001 took 0.0224 seconds. Determining the
solution by combinatorial search with & = 3 took 13.2008 seconds.

Solutions computed by PLNA and LLNA were at most superior or at least comparable to those
obtained by combinatorial search (32), yet needing two orders of magnitude less time to compute.

5 Conclusion

A theoretically justifiable fast finite algorithm has been proposed for solving linear systems cor-
rupted by noise or errors in measurement. The parsimonious approach (PLNA) attempts to set
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to zero as many components of the solution vector as possible while minimizing the residual error
of the corrupted system, whereas the least norm approach (LLNA) minimizes the norm of the
solution as well as the residual. Numerical evidence indicates that both these two approaches lead
to solutions with many zero components, and that such solutions may be closer by orders of mag-
nitude to the solution of the underlying uncorrupted system than other solutions of the corrupted
system obtained by either least squares or even by a time-consuming combinatorial search for a
solution with a minimal number of nonzero components. It is interesting to note that parametricly
minimizing the norm of the solution leads also to suppression of its components, and conversely
parametrically suppressing components of the solution also leads to a solution with a reduced norm.
Most importantly, PLNA and LLNA recover a much more accurate signal than that obtained by
least squares and much faster than that obtained by a lengthy combinatorial search.
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