
* This research was partiall y supported by the Air Force Off ice of Scientific Research
under grant  F49620-94-1-0036, and by the NSF under grant CCR-9306807.

† Computer Sciences Department, University of Wisconsin, Madison, Wisconsin 53706.

Fast Equi-Partitioning of Rectangular
Domains using Stripe Decomposition*

Wayne Martin †

February 5, 1996

Abstract

This paper presents a fast algorithm that provides optimal or near optimal solutions to the
minimum perimeter problem on a rectangular grid.  The minimum perimeter problem is to
partition a grid of size M×N into P equal area regions while minimizing the total perimeter of
the regions.  The approach taken here is to divide the grid into stripes that can be fill ed
completely with an integer number of regions.  This striping method gives rise to a knapsack
integer program that can be eff iciently solved by existing codes.  The solution of the knapsack
problem is then used to generate the grid region assignments.  An implementation of the
algorithm partitioned a 1000×1000 grid into 1000 regions to a provably optimal solution in
less than one second.  With suff icient memory to hold the M×N grid array, extremely large
minimum perimeter problems can be solved easily.

Introduction
The focus of the algorithm presented here is the Minimum Perimeter Equi-partition problem,
MPE(M, N, P).  In this problem one is to partition an M×N rectangular grid into P equal area
regions while minimizing the total perimeter of the partition.  The one restriction of this algorithm is
that all regions must have the same area.  The area of each region is defined by A MN P=  so the
restriction is equivalent to P evenly dividing MN.

The minimum perimeter problem has several applications in parallel computer systems.  In solving
partial differential equations numerically, a grid is partitioned among the available processors.
Using a five point numerical method, each grid element must communicate with its North, East,
South, and West neighbors [DT91].  In assigning processors to the regions of the grid, one wants to
minimize the communication between the processors while equalizing the number of grid elements
assigned to each processor.  This assignment process is analogous to the minimum perimeter
problem.  Another area of application is in image processing and edge detection in computer vision
systems implemented on parallel hardware [Sch89].  Here again the rectangular image needs to
partitioned among the processors to minimize inter-processor communication.

In order to calculate a lower bound for the minimum perimeter problem, Yackel and Meyer [YM92]
have shown that the minimum perimeter of a single region with area A is determined by Π*(A).

(1)  Π* ( )A A= 2 2

If the entire grid could be tiled with shapes of the optimal perimeter without overlapping then an
optimal solution would be found.  Because one cannot do any better than this optimal tili ng, a lower
bound for the objective function of MPE(M, N, P) is given by z.

(2) z = P Π*(A)

The minimum perimeter problem is a special case of the graph partitioning problem which is NP-
complete.  MPE(M, N, P) can be formulated as a quadratic assignment problem with MNP binary
variables and MN+P constraints.  Details of this formulation are given in Christou and Meyer



2

[CM95b].  Unfortunately, the QAP approach quickly becomes unsolvable as the grid size becomes
moderately large.

The algorithm developed here takes an approach that considers the geometry of the problem. The
method breaks the total area into a series of completely fill ed stripes.  For example, figure 1 shows
optimal striped solutions to MPE(7,7,7) and MPE(32,31,32).  The MPE(7,7,7) solution consists of
three stripes: two of height 2 and one of height 3.  The MPE(32,31,32) solution has stripes of height
5 and 6.  The motivation for the striping approach is twofold.  First, in observing the optimal
solutions produced by Christou and Meyer’s PERIX-GA method ([CM95a] and [CM95b]), most of
the optimal solutions exhibit a striped form.  Second, the proofs of lower bound convergence make
use of a stripe filli ng argument [CM95a].  Thus a stripe filli ng algorithm should be an effective way
to solve the MPE problem.

                 

Figure 1 - Optimal Solutions of MPE(7,7,7) and MPE(32,31,32)

The algorithm consists of three phases.  First, the possible completely fill ed stripe heights and
corresponding perimeters are determined.  The second phase is to solve a knapsack problem.  The
final phase takes the results of the knapsack problem and generates the region assignment grid.  The
following three sections describe in detail each of these phases.

Phase I - Perimeter of the Regions within a Stripe of Height hi

The first part of the process is to determine the heights of the stripes that can be fill ed with a whole
number of regions.  Such heights will be termed “valid.”  Given hi as a possible stripe height,

{ }1≤ ≤h A Mi min , , the area of the entire stripe, ai, is calculated.

(3) a Nhi i=

Next, the number of regions within the stripe, pi, is determined.

(4) p
a

Ai
i=

If the value of pi is an integer then the stripe can be fill ed completely and hi is declared valid.
Otherwise, this stripe height is no longer considered.  Equation (4) can be rewritten using equation
(3) and the definition of A to get equation (5).  This implies that if P/M (or equivalently N/A) is an



3

integer, all stripe heights will be valid.  The condition that N/A is an integer means that the number
of columns is a multiple of the area.  Considering this geometrically it becomes obvious that all
stripe heights will fill completely when N/A is an integer.  In any event, a height of { }min ,A M  will

always be a valid (though generally undesirable) stripe height.

(5) p
a

A

N

A
h

P

M
hi

i
i i= = =

Figure 2 shows a completely fill ed stripe of height hi  = 3, area A = 7, and N = 14.  Applying
equations (3) and (4) gives ai = 42 and pi = 6.

N

h
i

w
i

Figure 2

The width of the largest rectangle that will fit inside a region of area A and height hi is determined by

(6) w
A

hi
i

=








 .

The cells of the region that are not in the largest rectangle are denoted as the fringe.  The number of
cells in the fringe is calculated as

(7) f A h wi i i= − .

For the example in figure 2, wi = 2 and fi = 1.  Also seen in figure 2 is that the pattern of the cell
shapes repeats itself every three regions.  At the boundary between the repeating patterns the border
is a vertical li ne and does not contain a step.  To determine how often the pattern repeats, the
following calculations are performed.  If fi = 0 then each region is rectangular and repeats every one
region (r i = 1).  For fi > 0 the repeat count, r i, is determined as

(8) r
th

f

th

f
ti

i

i

i

i

= =








min , ,...integer,  12 .

The final step is to calculate the total perimeter of all the regions in the stripe.  The perimeter of the
outside of the stripe is simply 2(N + hi).  The number of boundaries between regions within the
stripe is (pi - 1) of which (pi/r i - 1) are vertical li nes of length hi and the remaining borders have a
step in them giving a length of (hi + 1).  Putting this all together gives the formula for the total
perimeter of the regions within the stripe, ci.



4

(9)

( )

( )

c N h
p

r
h p

p

r
h

N p h
p

r

i i
i

i
i i

i

i
i

i i
i

i

= + + −






 + − − −

















 +













= + + −




















2 1 1 1 1

2 1

Phase II - Construction and Solution of the Knapsack Problem
At the end of phase I, the algorithm has generated n stripe heights and their corresponding perimeters
(hi and ci, i=1,...,n).  Phase II constructs a knapsack integer program to determine the combination
of stripe heights that will completely fill the entire grid and produce the minimum total perimeter.
The value of xi represents how many stripes of height hi are in the optimal striped solution.  The
knapsack problem is formulated as follows.

(10)

minimize

subject to 

integer

x
i i

i

n

i i
i

n

i

c x

h x M

x i n

=

=

∑

∑ =

≥ =

1

1

0 1, , ,...,

Using the integrali ty of x and the fact that h x Mi i ≤  must hold for each i, it is possible to define a
bound (bi) on the xi variables. This bound helps in finding the solution of the knapsack problem.

(11) x b
M

hi i
i

≤ =










Theorem 1 shows that the integer program in (10) always has a feasible solution and, since x is
bounded, (10) also has an optimal solution.  This implies that when MN P  is an integer, the
MPE(M, N, P) problem has a feasible solution that is in striped form.

Theorem 1  If 
MN

P
 is an integer then the integer program in (10) has a feasible solution.

Proof:  Case 1)  M A≤ .  This case is trivial since a feasible solution to (10) is one stripe of height
M which contains all P regions.

Case 2)  M > A.  For this case, one stripe of height M is invalid since the equations for calculating ci

are only for h Ai ≤ .  By equation (5), a stripe height of A is valid since p
N

A
A Ni = =  is an integer.

A stripe of height A consists of N rectangular regions of width 1 and height A.  To construct the

feasible solution, the majority of the grid will be fill ed with k stripes of height A where k
M

A
= 




.

This will l eave ′ = −M M kA  rows remaining to be fill ed with ′ = −P P kN  regions.  If
′ = ′ =M P 0  then a feasible solution has been found: k stripes of height A.  Otherwise it must be

shown that ′M  is a valid stripe height.  Equation (5) is used again to show ′M  is valid since,



5

p
P

M
M

PM kPA

M

PM kMN

M
P kNi = ′ = − = − = −  is an integer.  Thus a feasible solution consists

of k stripes of height A and one stripe of height ′M . �
The optimal solution to problem (10) is not necessarily unique.  An example of non-uniqueness can
be found in the problem MPE(12,12,12).  For this problem, solutions of three stripes of height four
and four stripes of height three are both optimal.

Phase III - Grid Assignment
The final phase of the algorithm is to take the solution of the knapsack problem and generate the
assignment grid.  For each xi of the solution vector not zero, xi stripes of height hi are added to the
assignment grid.  The striping procedure follows that given in [CM95a].  Below is the pseudo-code
for the grid assignment phase.

inputs N - Number of columns in grid,
A - Area of each region,
h - Array of stripe heights,
x - Solution of the knapsack problem,
n - Number of elements in h and x.

output grid - Two dimensional array of the region assignments.
begin assign_grid
    toprow := 1
    proc := 1
    count := 0
    for i := 1 to n
        for j := 1 to x[i]
            bottomrow := toprow + h[i] - 1
            for col := 1 to N
                for row := toprow to bottomrow
                    grid[row,col] := proc
                    count := count + 1
                    if (count = A) then
                        proc := proc + 1
                        count := 0
                    end if
                end for
            end for
            toprow := bottomrow + 1
        end for
    end for
end assign_grid

Program Implementation
The implementation of this algorithm was coded in FORTRAN and was written as a callable
subroutine.  The inputs to the subroutine are M, N, and P and the declared dimensions of the grid
array.  The output is the minimum perimeter found and a two dimensional array of the grid
assignments.

The MSP (Minimum Striped Perimeter) subroutine makes use of three other subroutines which
correspond to the three phases described earlier.  The first subroutine, GEN_STRIPES, generates
the valid stripe heights and corresponding perimeters.  Initially, stripe heights between hmin and hmax



6

are considered (see (12)).  If no valid heights are found between hmin and hmax, the range is

expanded to { }[ ]1,min ,A M .

 (12) h A h Amin max= =1
2

2and

The second subroutine is KNAPSACK.  It takes the stripe heights and perimeters generated in
GEN_STRIPES and solves the knapsack problem using Martello and Toth’s MTB2 routine
[MT90].  The MTB2 routine requires that the problem be formulated as a bounded maximization
problem as shown in (13).

(13)

maximize

subject to 

integer

y
i i

i

n

i i
i

n

i i i

c y

h y K

y b y i n

=

=

∑

∑ ≤

≤ ≤ =

1

1

0 1, , ,...,

The MTB2 subroutine also requires that ci, hi, and bi all be positive integers.  The following steps
are taken to put (10) into the required form.  First a variable substitution is made.

(14) y b xi i i= −

Substituting (14) into (10) and (11) and writing as a maximization problem yields

(15)

maximize

subject to 

integer

y
i i

i

n

i i
i

n

i i
i

n

i i
i

n

i i i

c y c b

h y h b M

y b y i n

= =

= =

∑ ∑

∑ ∑

−

= −

≤ ≤ =

1 1

1 1

0 1, , ,...,

Dropping the constant term from the objective function and letting K h b Mi i
i

n

= −
=
∑

1

, problem (15)

is almost in the form required by MTB2.  The only difference is the strict equali ty constraint in (15)
versus the inequali ty in (13).  Theorem 2 shows that for the data from the MPE problem, the optimal
solution of (13) will always satisfy the inequality constraint as an equality.

Theorem 2  An optimal solution to the integer program (13) must satisfy the inequality constraint
as a strict equality when the ci, hi, and bi are generated by the MSP algorithm.

Proof by contradiction:  Assume that y*  is optimal for (13) and that h y K h b Mi i
i

n

i i
i

n
* < = −

= =
∑ ∑

1 1

.

Define D h b M h yi i
i

n

i i
i

n

= −








 −

= =
∑ ∑

1 1

* .  Obviously D ≥ 1.  If D A≤  then it can be shown that D is a

valid stripe height.  By equation (5)



7

( ) ( )p
P

M
D

P

M
h b h y P

P

M
h b y P p b y P

D i i i i
i

n

i

n

i i i
i

n

i i i
i

n

= = −








 − = − − = − −

== = =
∑∑ ∑ ∑* * *

11 1 1

 which is an

integer.  Let i  be the index such that h Di = .

If D > A then in the proof of theorem 1 it was shown that a stripe height of A is valid so let i  be the
index such that h Ai = .

Define y yi i= *  for i i≠  and y yi i= +* 1.  This y  is feasible because i  was chosen based on the

value of D. Since ci ≥1 for all i, it follows that c y c yi i
i

n

i i
i

n

= =
∑ ∑>

1 1

* , but this contradicts the

assumption that y*  was optimal.  Therefore the inequali ty constraint in (13) will always be satisfied

as an equality for any optimal solution y* . �
The knapsack integer program (13) is passed to MTB2 to find the optimal solution.  Once found,
substitution (14) is reversed and the optimal value z* of (10) is calculated from the optimal value z**
returned by MTB2.  The value z* is the total perimeter for the solution of the MPE(M, N, P)
problem.

(16) z c b zi i
i

n

* * *= −
=
∑

1

The third and final subroutine is GEN_GRID.  This routine takes the solution of the KNAPSACK
routine and fill s in the assignment grid.  A special option was added to the subroutine for extremely
large problems.  If the dimensions of the assignment grid array are passed in as zeroes then this
routine is not called.  This was done so that perimeters could be calculated for problems for which
the grid assignment array would not fit into memory.

The main MSP subroutine also has extra code to check the transverse of the problem.  If the original
problem MPE(M, N, P) is not solved to optimali ty and M N≠  then the routine also solves MPE(N,
M, P).  The better solution of the original and the transpose is passed to the GEN_GRID subroutine.
The GEN_GRID subroutine makes sure that the output grid is in the correct orientation regardless of
whether the original or the transpose was used.

Computational Results
This section presents the computational results of the presented algorithm.  The program was tested
on a Sun SPARCstation-20 workstation.  First, table 1 compares the striping algorithm developed
here (MSP) with the genetic algorithm PERIX-GA [CM95b] running on a cluster of 33
SPARCserver-20 computers.  The times in the table all i n seconds and the “Error” columns are the
percent error from the lower bound.  The first observation is that the running times for MSP are
extremely fast.  Second, the quali ty of the solutions from MSP are as good as or better than PERIX-
GA in all cases except MPE(17,17,17).  In this case PERIX-GA found an optimal solution where
MSP did not.  This is because the optimal solution is not in a striped form so MSP could not find it.



8

Problem Lower PERIX-GA MSP

M N P Bound Err (%) Time Err (%) Time

7 7 7 84 0 196.1 0 0.01
13 13 13 208 0 227.8 0 0.01
17 17 17 306 0 268.6 0.65 0.01
32 31 256 2048 0 230.2 0 0.01
101 101 101 4242 0.05 219.1 0.05  0.04
200 200 200 11600 0 261.0 0 0.07
256 256 256 16384 0 105.1 0 0.09
512 512 512 47104 1.63  279.0 0.14 0.25
1000 1000 1000 128000 0.45 1660.5 0 0.67
2001 2001 2001 360180 - - 0.08 2.18

Table 1 - Comparison of MSP and PERIX-GA

The next table compares MSP with PERIX-GA and two other popular graph-partitioning methods,
the spectral bisection method and the geometric mesh partitioning method.  The Chaco package
version 2.0 was used for the spectral bisection method [HL95].  The geometric method was
implemented in MATLAB as described in Gilbert, Mill er, and Teng [GMT95]. Both the spectral
bisection and the geometric mesh partitioning methods have the restriction that the number of regions
be a power of two.  The times and error values for these methods were taken from [CM95b].

Problem Lower SPECTRAL GEOMETRIC PERIX-GA MSP

M N P Bound Err (%) Time Err (%) Time Err (%) Time Err (%) Time

32 31 8 368 6.52 1.8 5.43 43.6 2.17 84.0 1.09 0.01
32 31 256 2048 6.73 4.3 -2.73* 152.3 0 80.4 0 0.01
32 30 64 1024 6.25 3.0 6.25 90.4 0 50.9 0 0.01
100 100 8 1136 9.33 9.0 7.36 111.0 2.64 81.9 5.63 0.04
128 128 128 5888 14.13 85.5 7.13 539.9 1.65 67.6 1.63 0.04
256 256 256 16384 13.25 227.8 4.15 3304.2 0 105.1 0 0.09
512 512 512 47104 - - - - 1.63 279.0 0.14 0.25

Table 2 - Comparison of MSP to other methods

This table also shows that MSP is very fast compared to the other methods.  It also produced
solutions that were as good or better than the other methods with the exception of MPE(100,100,8)
for which PERIX-GA found a better solution which did not have a striped form.  The
MPE(32,31,256) problem presented some diff iculties because the area, A=32⋅31/256, is not an
integer.  A modification to the program was made to break the problem into two parts.  Specifically
MPE(32,28,224) with area 4 and MPE(32,3,32) with area 3.  Each of these subproblems were
solved separately then the assignment grids where appended together.  The asterisk on the geometric
partitioning result indicates that the solution found was unbalanced (i.e. some regions had area other
than 3 or 4).



9

The MSP program is also capable of handling very large problems.  One problem solved was
MPE(10000,10000,1000).  The grid size for this problem is 108 elements and the area assigned to
each processor is 105.  The large grid array size exceeded the computer memory available, thus
phase III of the algorithm (explicit generation of assignments) could not be completed.  Phases I and
II were run in 0.22 seconds to calculate a perimeter which was within 0.042% of the lower bound.
The solution consisted of 23 stripes of height 320 and 8 stripes of height 330.  Another interesting
large problem solved was MPE(20202,20202,20202).  This problem was solved to within 0.006% of
the lower bound in 3.59 seconds.  The solution had a non-trivial striping configuration of: 3 stripes
of height 138, 3 stripes of height 140, 4 stripes of height 143, and 127 stripes of height 148.

To see how the algorithm performs over a wider set of problems, four sequences of problems were
run.  The first sequence computed the percent from lower bound for MPE(N, N, N) for N from 5 to
1000.  The graph of the bound error versus N is shown in graph 1.  For this sequence the average
error from lower bound was 0.7%.  Of the 996 problems solved 32.6% were provably optimal and
71.4% had an error of less than 1%.  As the theory in [CM95a] and [CM95b] predicts, the error
bound seems to be approaching zero as N increases.

0

1

2

3

4

5

6

7

0 100 200 300 400 500 600 700 800 900 1000

N

%
 E

rr
or

 B
ou

nd

    MPE(N , N , N )
 0.7% average % error
 32.6% at lower bound
 71.4% below 1% error

Graph 1 - Percent from lower bound versus N for MPE(N, N, N)

Graph 2 shows the sequence MPE(N,5N, N).  This sequence tests how well the algorithm performs
on narrow rectangular domains.  Note that the same results would have been obtained for MPE(5N,
N, N) because the program solves both the original problem and its transpose.  The percentage of
solutions that are at the optimal lower bound is about the same as that for the MPE(N, N, N)
sequence.  But the average percent error and the percent below 1% error are much better.



10

0

1

2

3

4

5

6

7

0 100 200 300 400 500 600 700 800 900 1000

N

%
 E

rr
or

 B
ou

nd
    MPE(N , 5N , N )
 0.3% average % error
 32.5% at lower bound
 95.1% below 1% error

Graph 2 - Percent from lower bound versus N for MPE(N, 5N, N)

Graph 3 is for the sequence MPE(N, N,10N) for N from 50 to 10000 with an increment of 10. This
sequence tests the cases when the number of regions is large compared to the grid dimensions.  The
percentage of solutions at the optimal lower bound has increased to almost 44%.  But, as can be seen
from the graph, the percent error values are larger than the previous two sequences.

0

1

2

3

4

5

6

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

N

%
 E

rr
or

 B
ou

nd

   MPE(N , N , 10N )
 0.6% average % error
 43.8% at lower bound
 73.9% below 1% error

Graph 3 - Percent from lower bound versus N for MPE(N, N, 10N)



11

Graph 4 is just the opposite of graph 3.  This shows the sequence MPE(10N,10N, N) in which the
number of regions is small compared to the grid size.  Here only 12.7% of the solutions are at the
optimal lower bound, but the average error is lower than all the other sequences.

0

0.5

1

1.5

2

2.5

3

3.5

0 100 200 300 400 500 600 700 800 900 1000

N

%
 E

rr
or

 B
ou

nd

  MPE(10N , 10N , N )
 0.2% average % error
 12.7% at lower bound
 99.4% below 1% error

Graph 4 - Percent from lower bound versus N for MPE(10N, 10N, N)

To determine the algorithm performance for image processing type applications, tables 3 and 4 were
generated.  These tables show the percent from lower bound that MSP produced for grid sizes and
processor numbers that are all a power of two.  Table 3 is for square grids and table 4 is for
rectangular grids with proportions 2 to 1.  For the square grids, processor numbers of 16, 64, and
256 were omitted because the solution is just the trivial solution of breaking the grid up into square
regions.  For the same reason, columns 8, 32, 128, and 512 were omitted from the rectangular grid
results. Figure 3 shows a typical example of a power of two partitioning.

Grid Size P

M N 8 32 128 512

32 32 2.17 0 0 0
64 64 1.09 2.17 0 0

128 128 1.65 0.54 1.63 0
256 256 1.37 0.82 0.14 1.63
512 512 1.52 0.41 0.41 0.14

1024 1024 1.59 0.48 0 0.41
2048 2048 1.62 0.52 0.07 0
4096 4096 1.64 0.53 0.10 0.02
8192 8192 1.65 0.54 0.12 0.03

16384 16384 1.64 0.55 0.13 0.08
32768 32768 1.65 1.09 0.41 0.20

Table 3 - Percent from lower bound for
square power of 2 grid sizes

Grid Size P

M N 16 64 256 1024

32 16 0 0 0 -
64 32 2.17 0 0 0

128 64 0.54 1.63 0 0
256 128 0.82 0.14 1.63 0
512 256 0.41 0.48 0.14 1.50

1024 512 0.48 0.10 0.41 0.03
2048 1024 0.52 0.19 0 0.38
4096 2048 0.53 0.23 0.03 0
8192 4096 0.54 0.25 0.05 0.03

16384 8192 0.55 0.27 0.06 0.05
32768 16384 0.54 0.27 0.10 0.03

Table 4 - Percent from lower bound for
rectangular power of 2 grid sizes



12

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 - MSP solution of MPE(512,512,128) within 0.41% of lower bound



13

Limitations
There are two main limitations to the MSP algorithm.  The first is that it may not give results as
good as PERIX-GA when the best solution is not in striped form (for example: MPE(17,17,17) and
MPE(100,100,8)).  The second limitation is that the algorithm cannot be directly extended to non-
rectangular domains or to problems where the area of each region is non-uniform.  In some cases
though, non-uniform area problems can be done if the problem can be spli t into two subproblems.
The two subproblems can be solved separately, then the results combined as in MPE(32,31,256)
described earlier.

Conclusions
This paper has presented an algorithm based on optimal stripe decomposition that provides very
good solutions to the Minimum Perimeter Equi-partition problem, MPE(M, N, P), on a rectangular
grid.  This algorithm has proven to be extremely fast compared to other graph partitioning methods
and can handle very large problems which are intractable for other methods.  The algorithm also has
the property that as the problem size increases the deviation from the lower bound decreases.

Acknowledgments
I would like to thank I. Christou and R. Meyer for allowing me to use their test results for the
spectral and geometric mesh partitioning methods and for the PERIX-GA method.  I also thank R.
Meyer for his guidance and direction on this project.

References
[CM95a] I . T. Christou and R. R. Meyer, Optimal equi-partition of rectangular domains for

parallel computation, Technical report MPTR 95-04, University of Wisconsin,
Madison, WI, Feb. 1995.  To appear in Journal of Global Optimization.

[CM95b] I . T. Christou and R. R. Meyer, Optimal and asymptotically optimal equi-partition of
rectangular  domains via stripe decomposition, Technical report MPTR 95-19.,
University of Wisconsin, Madison, WI, Nov. 1995.

[DT91] R. DeLeone and M. A. Tork-Roth, Massively parallel solution of quadratic programs
via successive overrelaxation, Technical report 1041, University of Wisconsin,
Madison, WI, 1991.

[GMT95] J. R. Gilbert, G. L. Mill er, and S. H. Teng, Geometric mesh partitioning:
Implementation and experiments, Proceedings of the 9th International Symposium on
Parallel Processing (1995) 418-427.

[HL95] B. Henderson and R Leland, The Chaco User’s Guide Version 2.0 (Sandia National
Laboratories, 1995).

[MT90] S. Martello and P. Toth, Knapsack Problems:  Algorithms and Computer
Implementations (John Wiley & Sons, 1990).

[Sch89] R. J. Schalkoff .,  Digital Image Processing and Computer Vision (John Wiley &
Sons, 1989).

[YM92] J. Yackel and R. R. Meyer, Minimum perimeter decomposition, Technical report 1078,
University of Wisconsin, Madison, WI, 1992.


