
Optimization in Machine Learning�O. L. MangasarianyMathematical Programming Technical Report 95-01January 19951 IntroductionOptimization has played a signi�cant role intraining neural networks [23]. This has resultedin a number of e�cient algorithms [22, 3, 5, 29,31] and practical applications in medical diagno-sis and prognosis [34, 35, 27]. Other applicationsof neural networks abound [12, 30, 18, 13] . Inthis brief work we focus on a number of prob-lems of machine learning and pose them as opti-mization problems. Hopefully this will point tofurther applications of optimization to the bur-geoning �eld of machine learning.2 Misclassi�cation MinimizationA fundamental problem of machine learning isto construct (train) a classi�er to distinguish be-tween two or more disjoint point sets in an n-dimensional real space. A key factor in deter-mining the classi�er is the measure of error usedin constructing the classi�er. We shall proposetwo error measures: one will merely count thenumber of misclassi�ed points, while the otherwill measure the average distance of misclassi-�ed points from a separating plane. We will showthat the �rst leads to an LPEC (linear programwith equilibrium constraints) [24, 20] while thesecond leads to a single linear program [21, 4].However, the problem of minimizing the num-�This material is based on research supported by AirForce O�ce of Scienti�c Research Grant F49620-94-1-000036 and National Science Foundation Grant CCR-9322479.yComputer Sciences Department, University of Wis-consin, 1210 West Dayton Street, Madison, WI 53706,email: olvi@cs.wisc.edu.

ber of misclassi�ed points turns out to be NP-complete [11, 17], but we shall indicate e�ectiveapproaches [24, 2] that render it more tractable.For the sake of simplicity we shall limit our-selves to discriminating between two sets,although optimization models apply readily tomulticategory discrimination [6, 7]. Let A and Bbe two disjoint point sets in Rn with cardinali-ties m and k respectively. Let the m points of Abe represented by the m� p matrix A, while thek points of B be represented by the k� p matrixB. The integer p represents the dimensional-ity of the real space Rp into which the points ofA and B are mapped by F : Rn ! Rp, beforetheir separation is attempted. In the simplestmodel p = n and F is the identity map. How-ever, more complex separation, say by quadraticsurfaces [21], can be e�ected if one resorts tomore general maps. (Note that complex separa-tion, like �tting with high degree polynomials, isnot always desirable, since it may lead to merely\memorizing" the training set.) The simplestand one of the most e�ective classi�ers in Rp isthe plane xw = � (1)where w 2 Rp is the normal to the plane,j�j=kwk2 is the distance of the plane to the originin Rp, x 2 Rp is a point belonging to F (A) orF (B), and k � k2 denotes the 2-norm. The prob-lem of training a linear classi�er consists then ofdetermining (w; �) 2 Rp+1 so as to minimize theerror criterion chosen. We note immediately thatif the sets F (A) and F (B) are strictly linearlyseparable in Rp, then there exist (w; �) 2 Rp+11



such that Aw = e� + eBw 5 e� � e (2)where e is a vector of ones of appropriate dimen-sion. Since, in general (2) is not satis�able, weattempt its approximate satisfaction by minimiz-ing the chosen error criterion.2.1 Minimization of Number of Misclassi-�ed PointsLet s : R ! f0; 1g determine the step func-tion that maps nonpositive numbers into f0g andpositive numbers into f1g. When applied to avector z 2 Rp, s returns a vector of zeros andones in Rp, corresponding respectively to non-positive and positive components zi; i = 1; : : :p;of z. The problem of minimizing the number ofmisclassi�ed points then reduces to the followingunconstrained minimization problem of a discon-tinuous function:min(w;�)2Rn+1ks(�Aw + e� + e)k+ks(Bw � e� + e)k (3)where k � k denotes some arbitrary, but �xednorm, on Rm or Rk. The sets F (A) and F (B) arelinearly separable in Rp, if and only if the min-imum of (3) is zero, and no points are misclas-si�ed, otherwise the minimum of (3) \counts"the number of misclassi�ed points if the 1-normis used. In [24] it was shown that (3) with the1-norm is equivalent to the following LPEC:minimizew;�;r;u;s;v er + essubject to u+ Aw � e� � e = 0r = 0r(u+Aw � e� � e) = 0�r + e = 0u = 0u(�r + e) = 0v �Bw + e� � e = 0s = 0s(v �Bw + e� � e) = 0�s + e = 0v = 0v(�s+ e) = 0 (4)It turns out that problem (4) is extremely di�-cult to solve. In fact, almost every point (w; �) 2

Rp+1 is a stationary point, since a small pertur-bation of a plane xw = � in Rp that does notcontain points of either F (A) or F (B) will notchange the number of misclassi�ed points. Inorder to circumvent this di�culty, a parametricimplicitly exact penalty function was proposedfor solving (4) in [24] and implemented success-fully in [2] by an approach that also identi�esoutlying misclassi�ed points. A fast hybrid al-gorithm for approximately solving the misclas-si�cation minimization problem is also given in[11].Another approach to solving (3) is by uti-lizing the highly e�ective smoothing technique[9, 10] that has been used to solve many mathe-matical programs and related problems. In thisapproach, the step function s(�) is replaced bythe classical sigmoid function of neural networks[18]: s(�) �= �(�; �) := 11 + e��� (5)where � is a positive real number that approaches+1 for more accurate representation of the stepfunction. With this approximation, the uncon-strained discontinuous minimization problem isreduced to an unconstrained continuous optimiza-tion problem, that is however nonconvex. By let-ting � grow judiciously, e�ective computationalschemes for tackling the NP-complete problemcan be utilized. An important application of themisclassi�cation error (3), is its use in construct-ing the more complex nonlinear neural networkclassi�er of Section 3 below.2.2 Minimization of Average Distance ofMisclassi�cations from Separating PlaneAs early as 1964 [8, 21], the distance of mis-classi�ed points from a separating plane was uti-lized to generate a linear programming problemfor obtaining a separating plane (1) that approxi-mately satis�ed (2) by minimizing some measureof distance of misclassi�ed points from the plane(1). Unfortunately, all these attempts [22, 16, 15]contained ad hoc ways for excluding the null solu-tion (w = 0) that plagued a linear programmingformulation for linearly inseparable sets. How-ever, the robust model proposed in [4], which2



consists of minimizing the average of the 1-normof the distances of misclassi�ed points from theseparating plane, completely overcame this di�-culty. The linear program [4] proposed is this:minimizew;�;y;z eym + ezksubject to Aw + y = e� + eBw � z 5 e� � ey; z = 0 (6)The key property of (6) is that it gives thenull solution w = 0 if and only if eAm = eBk ;in which case w = 0 is guaranteed to be notunique. Computationally, the LP (6) is very ro-bust, rarely giving rise to the null solution, evenin contrived examples where eAm = eBk : In theparlance of machine learning [18], the separatingplane (1) is referred to as a \perceptron", \linearthreshold unit" or simply \unit", with threshold� and incoming arc weight w. This is in anal-ogy to a human neuron which �res if the inputx 2 Rp, scalar-multiplied by the weight w 2 Rp,exceeds the threshold �.3 Neural Networks as Polyhe-dral RegionsA neural network can be de�ned as a general-ization of a separating plane in Rp; and can bethought of as a nonlinear map: Rp ! f0; 1g.One intuitive way to generate such a map is todivide Rp into various polyhedral regions, eachof which containing elements of F (A) or F (B)only. In its general form, this problem is againan extremely di�cult and nonconvex problem.However, greedy sequential constructions of theplanes determining the various polyhedral regions[22, 25, 1] have been quite successful in obtainingvery e�ective algorithms for training neural net-works much faster than the classical online (thatis training on one point at a time) backpropaga-tion (BP) gradient algorithm [32, 18, 26]. OnlineBP is often erroneously referred to as a descentalgorithm, which it is not.In this section of the paper we relate thepolyhedral regions into which Rp is divided, to

a neural network with one hidden layer of linearthreshold units. It turns out that every such neu-ral network can be related to a partitioning of Rpinto polyhedral regions, but not the conversely.However, any two disjoint point sets in Rp can bediscriminated between by some polyhedral par-tition that corresponds to a neural network withone hidden layer with a su�cient number of hid-den units [19, 25].We describe now precisely when a speci�cpartition of Rp by h separating planesxwi = �i; i = 1; : : : ; h; (7)corresponds to a neural network with h hiddenunits. The h separating planes (7) divide Rp intoat most t polyhedral regions, where [14]t := pXi=0  hi ! : (8)We shall assume that F (A) and F (B) arecontained in the interiors of two mutually ex-clusive subsets of these regions. Each of thesepolyhedral regions can be mapped uniquely intoa vertex of the unit cube in Rh;fzjz 2 Rh; 0 5 z 5 eg (9)by using the map:s(xwi � �i); i = 1; : : : ; h (10)where s is the step function de�ned earlier, andx is a point in Rp belonging to some polyhedralregion. If the r polyhedral regions of Rp con-structed by the h planes (7) are such that ver-tices of the cube (9) corresponding to points inA, are linearly separable in Rh from the verticesof (9) corresponding to points in B by a planezv = �; (11)then the polyhedral partition of Rp correspondsto a neural network with h hidden linear thresh-old units (with thresholds �i, incoming arcweights wi; i = 1; : : : ; h) and output linear thresh-old unit (with threshold � and incoming arc weightsvi; i = 1; : : : ; h [23]) . This condition is neces-sary and su�cient for the polyhedral partition3



of Rp in order for it to correspond to a neu-ral network with one layer of hidden units. Formore detail and graphical depiction of the neuralnetwork, see [23]. \Training" a neural networkconsists of determining (wi; �i) 2 Rp+1; i =1; : : : ; h; (v; �) 2 Rh+1; such that the followingnonlinear inequalities are satis�ed as best as pos-sible: hXi=1 s(Awi � e�i)vi = e� + ehXi=1 s(Bwi � e�i)vi 5 e� � e (12)This can be achieved by minimizing the num-ber of misclassi�ed points in Rh by solving thefollowing unconstrained minimization problemminwi;�i;v;�ks(� hXi=1 s(Awi � e�i)vi + e� + e)k+ks( hXi=1 s(Bwi � e�i)vi � e� + e)k (13)where the norm is some arbitrary norm. If thesquare of the 2-norm is used in (13) instead ofthe 1-norm, and if the step function s is replacedby the sigmoid function in (13), we obtain an er-ror function similar to the error function that BPattempts to �nd a stationary point for, and forwhich a convergence proof is given in [26], andstability analysis in [33]. We note that the clas-sical exclusive-or (XOR) example [28] for whichF is the identity map and A = " 1 00 1 # ; B =" 0 01 1 #, gives a zero minimum for (13) withthe following solution:(w1; �1) = ((2 � 2); 1); (w2; �2) = ((�2 2); 1)(v; �) = ((2 2); 1) (14)It is interesting to note that the same solu-tion for the XOR example is given by the greedymultisurface method tree (MSMT) [1]. MSMTattempts to separate as many points of A and Bas possible by a �rst plane obtained by solving(6), and then repeats the process for each of the

ensuing halfspaces, until adequate separation isobtained. For this example, the �rst plane ob-tained [4] is (w1; �1) = ((2 � 2); 1), whichseparates f(1; 0)g from f(0; 0); (0; 1); (1; 1)g. Thesecond plane obtained is (w2; �2) = ((�2 2); 1),separates f(0; 1)g from f(0; 0); (1; 1)g, and theseparation is complete between A and B. Theseplanes correspond to a neural network that givesa zero minimum to (13), which of course is not al-ways the case. However, MSMT frequently givesbetter solutions than those generated by BP andis much faster than BP.4 ConclusionVarious problems associated with neural networktraining have been cast as mathematical pro-grams. E�ective methods for solving these prob-lems have been brie
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