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ABSTRACT

Convergence properties of the generalized gradient projection algorithm in the presence
of data perturbations are investigated. It is shown that every trajectory of the method is
attracted, in a certain sense, to an e-stationary set of the problem, where £ depends on
the magnitude of the perturbations. Estimates for the attraction sets of the iterates are
given in the general (nonsmooth and nonconvex) case. In the convex case, our results imply
convergence to an e-optimal set. The results are further strengthened for weakly sharp
and strongly convex problems. Convergence of the parallel algorithm in the case of the
additive objective function is established. One of the principal applications of our results is
the stability analysis of the classical backpropagation algorithm for training artificial neural
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1 Introduction

We consider the following general optimization problem

(1.1) min f(x),

reX

where X is a convex compact set in R”, and the objective function f : X — R is at least
Lipschitz continuous on X and regular (in the sense of Clarke, [2]).

Let X, and Xy, denote the optimal and stationary sets of problem (1.1) respectively,
that is

X = L2 € X | 1) = mip (1)}
Xoar = {2 € X |0€df(x)+ Nx(2)},

where df(x) is the set of all generalized gradients (in the sense of Clarke, [2]) of f(-) at z,
and Nx(x) C R is the normal cone to the set X at the point 2 € X :

Nx(z)={yeR"|Vze X (y,z —2) <0}

The following notions will play an important role in our analysis. Let ¢ : X — RT be any
nonnegative upper semicontinuous function. We introduce the e(+) -stationary set of the

problem (1.1) as follows :
Xstar(e(1)) ={z € X |0 € 0f(x) + Nx(x) + e(x)B},

where B is the closed unit ball in ", that is B = {x € ®" | ||z|] < 1}.

In this paper we establish convergence properties of the generalized gradient projection
method and its modifications (see Algorithms 3.1,3.2,4.1) in the presence of nonvanishing
noise. In particular, we show that the iterates of the algorithm are, in a certain sense,
attracted to an £(-)-stationary set of the problem (Theorem 3.1). We give a precise estimate
for £(+) in terms of asymptotic behavior of the perturbations. Our analysis is based on the
novel technique developed in [26]. This approach allows us to treat essentially perturbed
problems (i.e. problems with nonvanishing noise), as well as analyze the algorithms that are

inherently nonmonotone (see Algorithm 3.1).



For every x € X we define a nonnegative scalar function r : X — Rt by the following

relation :
(1.2) r(x) :={min||h|| | h € 0f(x) + Nx(x)}.

It is clear that r(-) is an optimality function for problem (1.1) in the sense that

> (0 otherwise

() { —0 ifze Xy

From the definitions of X4 (e(+)) and r(x), we immediately obtain the following useful

relation
(1.3) Notar(e(1)) ={x € X | r(x) <e(a)}.

For any nonnegative upper semicontinuous function ¢ : X — R+t we define the ¢(-)-optimal
set of (1.1) as follows :

Kopt(e(1)) = {z € X | fz) < min fy) + e(=)}.

Obviously, X,,+(0) = X,,+. In the convex case the sets Xyq:(e(+)) and X, (e(+)) are related in
a certain way (see Lemma 4.2). In that case many of our general results can be considerably
strengthened (see Section 4).

Let F(-,-) : N x X = M(R™) be a point-to-set mapping (or a multifunction), where
M(C') denotes the set of all subsets of a set C', and N denotes the nonnegative integers. We
define the upper topological limit of F(-,-) at @ € R™ by

there exist sequences {m;} — oo, {2z!} = v as i — o0, 2! € X,
and {y;},y; € F(myg,at),0=1,2,..., such that y = lim;, v

K3

PEQU/(EX)_W}-(Z',J}/) = {y € R”

1—00

In particular, for a bounded sequence {z;}, #; € X, It;,oo{2;} denotes the set of all limit
points of {z;}. We say that a sequence {z;} converges to a set O, if It; soo{z;} C C. Note

that under our assumptions,

(1.4) ltx’(eX)—mNX(l'/) = NX(J?) Va e X.



Of particular interest for us will be an extension of problem (1.1) to the case where the
objective function f(-) is given by a summation of a finite number of functions f;(-, o),
g =1,..., K. Note that we further allow the dependence of f; on a parameter. We thus

consider the problem

reX

(1.5) min f(x, ag) 1= Zj;fj(x,ao).

For every j = 1,..., K the function f; : R x A — R involves a parameter o € A C R that
may vary during the optimization process. We assume that A is bounded. Problems of the
form (1.5) arise, for example, in least-norm minimization, neural networks applications, and
approximation theory. Among some important practical applications that involve parameters
in the objective function, we note the adaptive smoothing techniques [12], and the neural
network training [18, 10, 9]. We assume that each function f;(-,«) is Lipschitz continuous
with modulus L > 0 and regular on an open neighborhood of X for every o € A. We also

assume that the map 9f;(+,-) is upper semicontinuous. That is, for all j

(1.6) Wor(ex)me0fi (2, a) C Ofj(x, a0) Va € X,
a(€d)—aq
where 0f;(x, ) denotes the set of all generalized gradients of f;(-, ) at « € X.

The rest of the paper is organized as follows. In section 2 we outline the Generalized
Lyapunov Direct Method for stability analysis. In Section 3 we establish convergence prop-
erties of the generalized gradient projection method and its modifications in the presence
of data perturbations. Section 4 contains the results that are strengthened for the case of
weakly sharp and convex problems. We relate our work to the neural networks applications
in Section 5. Section 6 contains some concluding remarks.

One more word about our notation. All the vectors are column-vectors. (-,-) denotes
the usual Euclidean inner product. Throughout the paper, || - || denotes the two-norm, that
is ||z]| = \/(x,x). By conv C' we shall denote the convex hull of a set C', and by int C its

interior. Px(-) will stand for the orthogonal projection map onto a closed convex set X.



2 Generalized Lyapunov Direct Method

In this Section we outline the novel convergence analysis technique that was first proposed in
[26]. This technique can be viewed as generalization of the Lyapunov Direct Method for con-
vergence analysis of nonlinear iterative processes. The Lyapunov Direct Method has proved
to be a powerful tool for stability analysis of both continuous and discrete time processes
[17, 23, 15, 16]. Roughly, this approach reduces the analysis of the stability properties of a
process to the analysis of the local improvement of this process with respect to some scalar
criterion V/(+) (usually called the Lyapunov function). According to the classical approach,
V(-) is assumed to be a descent function of the process [16]. The key difference of the pre-
sented technique is that we relax this monotonicity assumption. We thus refer to V/(-) as
the pseudo-Lyapunov function. This generalization makes our approach applicable to a
wider class of algorithms.

We now state the Generalized Lyapunov Direct Method. The convergence (attraction)
properties of the process are expressed in terms of pseudo-Lyapunov function V(-). For each
specific algorithm, the results allow further interpretation depending on the choice of V(-).

We consider the following iterative process

(2.1) et et — Gl =&, i=0,1,..., "€ X/,
(2.2) n — 00, > n;=o00, Y & is (component-wise) convergent,
=0 =0

where G(-,-) + X' — M(X'), and X’ is an open set in R". In applications, & usually

corresponds to random noise. We further assume that

sup limsup sup |ly|| < +oo .
zeX' 'z yeG(ia’)
1—00

Thus the upper topological limit of G/(-,-), denoted by Gy(-),

Go(x) == It G(i, 2"

1—00

is bounded and upper semicontinuous on a neighborhood of a compact set X C X'.



Let the iterates generated by (2.1)-(2.2) satisfy the condition
(2.3) It{z'} C X.

Suppose we have chosen a pseudo-Lyapunov function V/(-) that is Lipschitz continuous and
regular on a neighborhood of X. For the Lyapunov function V(-), the set X, and the map
Glo(+), we define the following set which is crucial for our analysis :

2.4 Ay :={x e X in (h,g) <0

(2.4) o:={r € X| max min (hg) <0}

H(xz) = conv{dV(x)U Nx(x)}.

Roughly speaking, the set Ay is comprised of all the points in X for which —G/y(x) does not
contain feasible directions that are of descent for the pseudo-Lyapunov function V(-).

The following result shows that the sequences of (2.1)-(2.2) that satisfy (2.3) are, in a
certain sense, attracted to the components of the set Ag,. We first have to introduce the
notion of V/(-)-connected components of Ag (recall that Ay is compact). We say that a set
C C R is V(-)-connected, if theset V(C)={v e R |Jx € X, v=V(x)} CRis connected.
Let {A™M}, 5 € T be the (unique) decomposition of Ay into V(-)-connected components
[24], that is

Ao = Uwerv‘l(”), A £ AW'), N A A AT ET.

The following theorem will play an important role in the subsequent analysis.

Theorem 2.1 [26] For every sequence {z'} generated by the process (2.1)-(2.2), and satis-
fying (2.3), there exists a v € I such that the following properties hold :

Zti—mov(xi) =V (th—mo{xl} N A(W)) )
and every subsequence {x'™} of {x'} satisfying

lim V(z') = liminf V(z') or 7711_{%0 V(z'm) = limsup V(")

MO0 =00 1—>00

converges to A,

Corollary 2.1 [26] Let the set V(Ao) be nowhere dense in R. Then every sequence {z'}
generated by the process (2.1)-(2.2), and satisfying (2.3), converges to a connected component
Of Ao.



3 Convergence Properties of Parallel Generalized Gra-
dient Projection Algorithm in the Presence of Data

Perturbations

In this Section we consider the problem (1.5) with an additive parametric objective func-
tion. We first describe our notation for stating and establishing convergence of the parallel
perturbed generalized gradient projection method (GGPM) for solving (1.5) and its modifi-
cations. The type of parallelization considered here is primarily motivated by neural network
training (see [11, 14, 4]). Another related work is [21]. We first consider the most general
case. Our results can be then specialized by removing parallelism and/or considering the
standard (nonadditive) objective function.

t =1,2,... : Index number of major iterations of GGPM, each of which consists of
going through the entire set of functions fi(x,;),..., fx(x,a;). This is achieved serially
or in parallel by k£ processors with processor [ handling at the i-th iteration the functions
filx,a;), 7 € Ji. Recall that «; € A is the (smoothing) parameter, and lim;_,.. a; = ag. For

simplicity, we assume that the sets J;, [ =1,... , k are ordered as follows

Ji = {1, .. ,[(1},
J2 - {[(1 —|— 1, . e ,](1 —|— [(2},

Jo={Ki+--+Kp1+1,... K},

ie.
J; :{R7l—|-1,... ,R7l—|-[(l}, [ = 1, ,k,
where
K=Y K,l=2,...k K =0
t=1
7 =1,...,K;: Index of minor iterations performed by parallel processor [, [ =1,... k.

Each minor iteration j consists of a step in the direction of a negative generalized gradient



—gij of the function fz, (-, a;) at Z;] that is calculated with some error 5;’j :

L(N]zl,j = gzl,j + 5;7]'74

9i; € O gps(27 i),

67 = g,z aq ).
Note that §;(z, a, 1) is a perturbation of the generalized gradient of f(-, o) at the point z € X
at the i-th major iteration of the algorithm. With respect to those perturbations we make
the following fairly mild assumption :

K

> supsupsup [|0;(z, ., 8)|| < +oo.
]‘:1 Z ZGX OZGA

a2t : Iterate in R” of major iteration i = 1,2, ....

zli’j : Iterate in R of minor iteration 7 = 1,... , K, within major iteration ¢ = 1,2,...,
computed by processor [ =1,... k.

By n; we shall denote the stepsize, i.e the coefficient multiplying the generalized gradients
at the i-th major iteration. For simplicity we shall assume that 7; remains fixed within each
major iteration. We consider the process with stepsizes decreasing subject to the following
condition
(3.1) m>0,i=0,1,..., 5 —0, > n=oco.

i=0

Note that under our assumptions, there exists M > 0 such that
(3.2) |yl <M Vyedfjle,a;) +6;(x,a;,0), j=1,... K, 1 =0,1,..., Ve e X.
We are now ready to state and prove convergence of the parallel GGPM.

Algorithm 3.1 (Parallel GGPM) Start with any 2° € X. Having z*, compute 'T' as
follows :
(i) Parallelization: for each processorl € {1,... ,k} do

(33) G = Px(5 —migly), G=1.... K

(ii) Synchronization

k
(3‘4) xi+1 — PX (l’l T Z(Z;Jx’ﬁl . :1;2))

=1



Note that for K’ = k =1 Algorithm 3.1 becomes the standard perturbed generalized gradient
projection method. There are two sources of nonmonotonicity that are present in Algorithm
3.1. First of all, each direction is associated with a generalized gradient of a partial objective
function f;. Thus even if this direction is that of descent for f;, there is no guarantee that
it is also of descent for the full objective function f given by (1.5). The other source of
nonmonotonicity is induced by the perturbations of the generalized gradients.

To analyze the influence of computational errors 5;’j on the convergence properties of the
algorithm, we need to estimate the level of perturbations in the limit. We say that e(x) is

the exact asymptotic level of perturbations at a point v € X, if

K
(3.5) (o) = timsup |32 8 (25 a01).
z; (EX)—}x =1
1—00

It is easy to see that the function £(-) : X — R* is upper semicontinuous.

The following simple lemma proves to be very useful.

Lemma 3.1 For every x € X, g € R, and n > 0 the following property holds

(3.6) y = Px(x —ng) = 3h € Nx(y), [|h] < |lgll, y=2—n(g+h).

The proof requires only elementary arguments, and is thus omitted.
Taking into account (3.6), we introduce the following map G(-,-) : N' x X — R" that is

associated with major iterates of Algorithm 3.1 :

(3.7)

dz e X, Zl] € X, glj € afR>l_1+j(Z{,ai), and h € Nx () such that
Rl < 2MK, B € Nx(=), [Iil] < M,

=1, K1, =1,k

y =0 Sienlgl + bl +8) +hy " =2l —milgl + ki +6),
0] =042 0ii), =1, Ky, 2l =a, l=1,... k,
T=a+ (o —a)+h

G(i,z) =y eR"

Obviously, by (3.2),
lyl| <AKM Yy e G(i,z), i=0,1,..., Ve e X.

8



Hence the map G(-,-) is bounded, and so is its upper topological limit. Comparing (3.7)
with (3.3) and (3.4), and taking into account (3.6), it is easily seen that every sequence {z'}
generated by Algorithm 3.1 is a trajectory of the iterative process

et e at —nGiet), i=0,1,..., ¥ € X.

We are now ready to apply the Generalized Lyapunov Direct Method of Section 2 to establish
the properties of Algorithm 3.1.
Applying (1.4), (1.6), and the definition (3.5) of £(-), we obtain

(3.8) Go(x) == Ity ,G(i,2") C df(x) + Nx(z) + &()B.

1—00
Consider the decomposition of of the set Xq:(¢(+)) into the union of f(-)-connected compo-

nents

XStat(g(')) = UWEFXstat(g('))(W)

(see Section 2). Our main result is the following

Theorem 3.1 For cvery sequence {x'} generated by Algorithm 3.1, there exists v € I' such
that the following properties hold :

lisoo f(2') = [ (icoo{} N Xatar((-))
and every subsequence {x'™} of {x'} satisfying

(3.9) lim f(z') =liminf f(z') or lim f(z') = limsup f(z")

m—00 11— 00 m—00 =00

converges to Xsm(as(-))”).
In particular, if ¢(-) = 0 and the set f(Xgat) is nowhere dense in R, then every sequence

{2} generated by Algorithm 3.1 converges to a connected component of X ;.

Proof. We choose



where f(x) is given by (1.5), as the pseudo-Lyapunov function of the iterative process.

Following the approach outlined in Section 2, we introduce the set

= <
Ag:={x e X | hrenf?gc)ger%é?)% g) <0},

where H(x) := conv{df(x)U Nx(x)}. Our proof is by virtue of showing that
AO C Xstat(£('))7

and then applying Theorem 2.1 and Corollary 2.1.
For every € X we define

holw) = argmin{[[h]] | h € 0f(x) + Nx(x)}.

Note that ||ho(x)|| = r(x) (see (1.2)). Since ho(x) is the orthogonal projection of the origin
onto the set {df(x) + Nx(x)}, it follows that

(3.10) {ho(x),h) > [[ho(@)||* Yh € df(x) + Nx(x).
Since ho(xz) € df(x) + Nx(a), it follows that

1
(3.11) §h0(:1;) € H(x).
Fix an arbitrary @ € Xga:(e(+)). By (1.3), we have
(3.12) |ho(2)]| = r(x) > e(x).
We further obtain

1

> -
G528 9 = 3 2y (el

Y

min (ho(x), )

g€df(z)+Nx(z)+e(z)B

Y

{ho(), b + )

1

2

.

— mm
26 ()B hed f(z)+Nx(x)
1

25

) n (ho(x),h +9)

Y

%m (Iho(@)]1* = 11681/ o(2)]))

Y

Y

§Hho(w)H(Hho(x)H — () >0

10



where the first inequality follows from (3.11), the second inequality follows from (3.8), the
fifth inequality follows from (3.10), and the last inequality follows from (3.12). Hence 2 ¢ Ay,
and it follows that Ay C Xsa:(e(+)). Now applying Theorem 2.1 and Corollary 2.1, we

immediately obtain the desired results. [

Adding the “heavy ball” term [16] in Algorithm 3.1, we arrive at the following modifi-
cation of the parallel GGPM. In neural network literature, methods of this type are usually

referred to as backpropagation with momentum term [7, 10].

Algorithm 3.2 (Parallel GGPM with Momentum term). Start with any 2° € X.
Having «*, compute 't as follows :
i) Parallelization: for each processorl € {1,... k} do

G+l i ~1 . -
i = Px(z _772'92',]‘)7 J=1,... K,

il '
where z;” = x".

(it) Synchronization with momentum term:

k T . . .
xi-l—l — PX (l’l 4 Z(Z;,Bl—l—l . xz) 4 ﬁz(xl . xmax{z—s,O})) 7

=1

where s € N is some positive integer.

With respect to coefficients multiplying the momentum term, we assume that
(3.13) G;>0,1=0,1,..., 3 —0.

We also make the following assumption on the stepsizes (in addition to (3.1))

(3.14) lim sup it < +o00.

We have the following

Theorem 3.2 For every sequence {x'} generated by Algorithm 3.2, all the conclusions of
Theorem 3.1 hold.

11



Proof. We first define the following quantity

i—1
pe=26M S I i—12 ) pp=0.

t=max{i—s,0} g

Note that by (3.13),(3.14),

i >0, 0=0,1,..., limuy; =0.
T—> 00
Similarly to the case of Algorithm 3.1, it follows that every sequence {z'} generated by
Algorithm 3.2 is a trajectory of the following process

e et — (G(i,xi) —I-/,LZ'B) , i=0,1,..., 2° € X,
where the mapping G/(-,-) is defined by (3.7). Now taking into account that u; — 0, we
obtain
Glo(x) := 17t¢/_>$(G(i, ')+ pu;B) C 9f(x) + Nx(x) + e(x)B.
T—> 00
The rest of the proof is analogous to that of Theorem 3.1, and is thus omitted. [

Remark 3.1. Theorems 3.1,3.2 generalize the results on convergence properties of the

generalized gradient projection method obtained in [13, 3, 25].

4 Important Special Cases

In this section we consider the standard optimization problem (1.1), and establish stronger
convergence properties of GGPM in a number of important special cases. These include
convex and strongly convex problems, and problems with weak sharp minima [16, 1].

We start with the following lemma.

Lemma 4.1 Let
e(x) < max{g,fOr(x)} Vo e X,

where € >0, 1 >80 >0. Then
XNatat(e(+)) C Xitar(8).

12



In particular, if ¢ =0, then
Xstat(g(')) — Xstat-

Proof. Suppose @ € Xu(e(x)). Then, by (1.3) and the assumption of the lemma,
r(x) <e(x) <max{s,0r(z)}.
If Or(x) > &, then r(x) < fr(x) and 1 > 0 > 0 imply that r(z) = 0. Since Xyqt(0) C Xgrat(€),

we have that @ € X, (8). If Or(2) < &, then r(x) < e(x) < &, and hence x € X04(). n

Let d(-,C) be the distance function to the set C' C R", that is
d(z,C) = inf ||lz —y].

Define ¢ = sup,cx e(x), and D = sup, v |[|[x — y||. The following lemma relates the e-

stationary sets to the e-optimal sets for the case when f(-) is convex.
Lemma 4.2 Let f(-) be convex on X. Then
Xotat(e(w)) C Xope (e()d(, Xopt)) -
In particular,
Xotar(2()) C Xop(ED).

If, in addition, f(-) is differentiable and strongly convex on X with modulusl, and X:(8) C
intX, then
Xstat(é) C Xopt(é"fQ/Ql).

Proof. Let @ € Xyu(e(2)). By definition of Xg.:(e(+)), there exist g € df(x), hy € Nx(z),
and hy € e(x)B such that 0 = g + hy + hy. Let 2* = Py_ (), i.e. 2* is the closest point to
x in X,y By convexity of f(-), it follows that

F@) = f&%) € (—goa* =) = (hy + by — )
< (hg, 2t — @) < lhellfle” — 2]
< g(x)d(vaOpt)v

13



where the second inequality follows from definition of the normal cone. This establishes the
first two assertions of the lemma.
For the last assertion, just note that (Lemma 1.4.3, [16]) for any = € X

20(f(x) = min f(y) < [0f (@)II"

Definition 4.1 [1] We say that problem (1.1) is weakly sharp with parameter p > 0 if

flz) —min f(y) > pd(z, Xop) Vo € X.

yeX

We have the following important corollary.

Corollary 4.1 Let f(-) be convex on X. Assume that problem (1.1) is weakly sharp with
parameter p > 0. Then if

e(z) <max{r,fr(x)} Ve e X, 0<0 < 1,v <p,

it follows that
Xstat(g(')) — Xopt-

Proof. Obviously, X,,t C Xgai(e(+)). Take any © € Xyue(e(+)). By Lemmas 4.1,4.2, and

our assumption, we have
T € Xstat(g(')) C Xstat(y) C Xopt(l/d(w,Xopt)).

Hence

vd(z, Xop) = f(x) — gél)?f(y) > pd(x, Xopt),

where the last inequality follows from Definition 4.1. Now v < p implies that d(x, X,,:) =0,
T € Xopt- ]

When in Algorithms 3.1,3.2 the parameter A = 1, those algorithms reduce to the follow-
ing standard GGPM with the “heavy ball” term :

14



Algorithm 4.1 (GGPM with heavy ball term). Start with any 2° € X. Having ',

compule ' as follows :
o= Py (o = ilg + (a7, 0i0)) + Bial — amlize0h)
g €0f(x',a;), 1=0,1,...,
where parameters {n;}, {a;}, {5;}, and s € N are the same as in Algorithms 3.1,3.2.
From Theorems 3.1,3.2, and Lemmas 4.1,4.2, we immediately get the following results :

Theorem 4.1 Every sequence {z'} generated by Algorithm 4.1 possesses the following prop-
erties :

1. there exists an f(-)-connected component Xsm(s(-))(” of Xstar(e(+)) such that
e (&)} = £ (I} 0 X))
2. every subsequence {x'm} of {x'} satisfying (3.9) converges to Xai(e(+)));
3. if f(-) is convex, then {z'} converges to the set
Xopt (e(@)d(w, Xopt)) C Xopi(€D);
4. if, in addition, problem (1.1) is weakly sharp with parameter p > 0, and
elz) < p Ve e X,
then {x'} converges to X ;.

Furthermore, Lemma 4.1 together with the last assertion of Theorem 2.1 yield the following
result :

Theorem 4.2 Let the exact asymptotic level of perturbations satisfy the following condition
e(z) <Or(z) Vee X, 0<0<1,
(i.e. perturbations are relatively small). Suppose that
the set f(Xsiat) is nowhere dense in R .

Then every sequence {x'} generated by Algorithm 4.1 converges to X a.

15



Apllying Lemma 4.2 we can significantly sharpen the assertion 3 of Theorem 4.1 for the

unconstrained strongly convex case.

Theorem 4.3 Let f(-) be strongly convex with modulus [ > 0, and Xgs,:(2) C intX. Then
every sequence {x'} generated by Algorithm §.1 converges to X,,:(2%/21).

5 Backpropagation With Noise

In this Section we apply the results of Section 3 to reveal some important properties of
the backpropagation (BP) algorithm for training artificial neural networks [18, 7]. Due to
numerous successful applications, a lot of empirical knowledge has been accumulated in the
neural networks field. It is therefore important to provide rigorous mathematical foundation
to neural networks theory and algorithms. Stochastic analysis of BP is given in [22]. The
first deterministic convergence results (without data perturbations) were recently obtained
n [11, 8]. An interesting new training method is proposed in [5].

In this Section we give a precise characterization to empirically observed stability of neural
networks [19, 6]. We also discuss BP modifications with varying smoothing parameter.

We regard training artificial neural network as minimization of the following error function
(see [9]) :
min_ f(z,a) = Zf] (w,0,v,7, )

zeX CR?

b 2
(5.1) fi(w,0,v,7,a) = (3 (Z s(Ew' — 0! ) —tj) \
=1
where
h = fixed integer number of hidden units
K = fixed integer number of given training samples & in R™
t/ =0 or 1 target value for &, j=1,... , K

7 = real number threshold of output unit

16



v' = real number weights of outgoing arcs from hidden units, 1 =1, ...

0" = real number thresholds of hidden units, s =1,... ,h

Y

w' = m-vector weights of incoming arcs to hidden units, 1 =1, ...

K

¢ = given m-dimensional vector samples, j =1,...,

s(()=1if(>0else0

s(C) =2 o((a) = l_l_lﬁ for some o > 0.
Here « is the smoothing parameter of the sigmoid approximation o((, &) of the discontinuous
step function s(¢). Note that f(x,«) is precisely of the form (1.5). X is typically either R"
or a set of simple box-constraints.

Each iteration of the serial online BP consists of a step in the direction of negative
gradient —V f; of a partial error function f; associated with the j-th training example.
Thus BP is a special case of Algorithm 3.1. Many other computationally important BP
modifications, such as parallel BP [11, 14, 4], BP with momentum term [7], and BP with
varying smoothing parameter [20] all fall within the framework of Section 3.

We now discuss stability issues in neural network training. It is quite common that for a
sample ¢ in the training set some of its attributes (i.e. the components of the m-dimensional
vector) are computed (or supplied) with an error that we shall denote A;. Obviously, this
induces certain perturbation in values of the corresponding error function f; and its gradient.

We can then write

b 2
fi(w,0,v,7, ) ::( (ZO‘ (& + Ajw' — 0 ) —7') —tj) \
and

V(e 0) = Vi a) 4 ().

Note that it is fairly straightforward to estimate the dependence of §; on A;. We can then
introduce the exact asymptotic level of perturbations (3.6) by

e(x) = limsup || Y §;(2;, ai,9)]],
ZJ(EX)—>w jeqQ

11—
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where () is the set of training examples with noise. If some upper bound on A;, 57 € @) is
known then the corresponding perturbations §;, j € @ and their asymptotic level (-) can
be estimated. This in turn yields the guaranteed (-)-stationarity of all the accumulation
points of the BP iterates.

As another source of perturbations in the neural network training, we note the technique
presented in [6]. To simplify the network topology and improve the network generalization
properties, it is proposed in [6] to eliminate at the late stages of training the arcs with
sufficiently small weights. The latter is equivalent to setting the corresponding weights to
zero, and can also be treated as induced perturbations.

Another possible application of our analysis is devising new algorithms with varying
smoothing parameter «. There exists empirical evidence that changing o during training
can significantly speed up the learning process [20]. Unfortunately, most applications that
take advantage of this idea usually employ some kind of heuristic to control the parameter. It
will be interesting to develop a more rigorous algorithmic approach. This however is beyond

the scope of this paper.

6 Concluding Remarks

We have analyzed convergence of the generalized gradient projection method in the pres-
ence of data perturbations. The parametric and “heavy ball” modifications, as well as the
extension to the parallel method with additive objective function were also considered. It
is shown that every trajectory of the algorithms is attracted to an e(-)-stationary set of
the problem, where ¢(-) depends on the magnitude of perturbations. In the convex case,
the iterates are attracted to a certain e-optimal set. Furthermore, if the problem has weak
sharp minima, then convergence to the optimal set is established. Stability issues of the

fundamental backpropagation algorithm for neural network training are discussed.
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