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1 IntroductionWe consider the following general optimization problemminx2X f(x);(1.1)where X is a convex compact set in <n, and the objective function f : X ! < is at leastLipschitz continuous on X and regular (in the sense of Clarke, [2]).Let Xopt and Xstat denote the optimal and stationary sets of problem (1.1) respectively,that is Xopt = fx 2 X j f(x) = miny2X f(y)g;Xstat = fx 2 X j 0 2 @f(x) +NX(x)g;where @f(x) is the set of all generalized gradients (in the sense of Clarke, [2]) of f(�) at x,and NX(x) � <n is the normal cone to the set X at the point x 2 X :NX(x) = fy 2 <n j 8z 2 X hy; z � xi � 0g:The following notions will play an important role in our analysis. Let " : X ! <+ be anynonnegative upper semicontinuous function. We introduce the "(�) -stationary set of theproblem (1.1) as follows :Xstat("(�)) = fx 2 X j 0 2 @f(x) +NX(x) + "(x)Bg;where B is the closed unit ball in <n, that is B = fx 2 <n j kxk � 1g.In this paper we establish convergence properties of the generalized gradient projectionmethod and its modi�cations (see Algorithms 3.1,3.2,4.1) in the presence of nonvanishingnoise. In particular, we show that the iterates of the algorithm are, in a certain sense,attracted to an "(�)-stationary set of the problem (Theorem 3.1). We give a precise estimatefor "(�) in terms of asymptotic behavior of the perturbations. Our analysis is based on thenovel technique developed in [26]. This approach allows us to treat essentially perturbedproblems (i.e. problems with nonvanishing noise), as well as analyze the algorithms that areinherently nonmonotone (see Algorithm 3.1).1



For every x 2 X we de�ne a nonnegative scalar function r : X ! <+ by the followingrelation : r(x) := fminkhk j h 2 @f(x) +NX(x)g:(1.2)It is clear that r(�) is an optimality function for problem (1.1) in the sense thatr(x) 8<: = 0 if x 2 Xstat> 0 otherwiseFrom the de�nitions of Xstat("(�)) and r(x), we immediately obtain the following usefulrelation Xstat("(�)) = fx 2 X j r(x) � "(x)g:(1.3)For any nonnegative upper semicontinuous function � : X ! <+, we de�ne the �(�)-optimalset of (1.1) as follows :Xopt(�(�)) = fx 2 X j f(x) � miny2X f(y) + �(x)g:Obviously,Xopt(0) = Xopt. In the convex case the setsXstat("(�)) and Xopt(�(�)) are related ina certain way (see Lemma 4.2). In that case many of our general results can be considerablystrengthened (see Section 4).Let F(�; �) : N � X ! M(<m) be a point-to-set mapping (or a multifunction), whereM(C) denotes the set of all subsets of a set C, and N denotes the nonnegative integers. Wede�ne the upper topological limit of F(�; �) at x 2 <n by�ltx0(2X)!xi!1 F(i; x0) := 8<:y 2 <m ������ there exist sequences fmig !1; fx0ig ! x as i!1; x0i 2 X;and fyig; yi 2 F(mi; x0i); i = 1; 2; : : : ; such that y = limi!1 yi 9=;In particular, for a bounded sequence fxig, xi 2 X, �lti!1fxig denotes the set of all limitpoints of fxig. We say that a sequence fxig converges to a set C, if �lti!1fxig � C. Notethat under our assumptions,�ltx0(2X)!xNX(x0) = NX(x) 8x 2 X:(1.4) 2



Of particular interest for us will be an extension of problem (1.1) to the case where theobjective function f(�) is given by a summation of a �nite number of functions fj(�; �0),j = 1; : : : ;K. Note that we further allow the dependence of fj on a parameter. We thusconsider the problem minx2X f(x; �0) := KXj=1 fj(x; �0):(1.5)For every j = 1; : : : ;K the function fj : <n �A! < involves a parameter � 2 A � < thatmay vary during the optimization process. We assume that A is bounded. Problems of theform (1.5) arise, for example, in least-norm minimization, neural networks applications, andapproximation theory. Among some important practical applications that involve parametersin the objective function, we note the adaptive smoothing techniques [12], and the neuralnetwork training [18, 10, 9]. We assume that each function fj(�; �) is Lipschitz continuouswith modulus L > 0 and regular on an open neighborhood of X for every � 2 A. We alsoassume that the map @fj(�; �) is upper semicontinuous. That is, for all j�ltx0(2X)!x�(2A)!�0@fj(x0; �) � @fj(x; �0) 8x 2 X;(1.6)where @fj(x; �) denotes the set of all generalized gradients of fj(�; �) at x 2 X.The rest of the paper is organized as follows. In section 2 we outline the GeneralizedLyapunov Direct Method for stability analysis. In Section 3 we establish convergence prop-erties of the generalized gradient projection method and its modi�cations in the presenceof data perturbations. Section 4 contains the results that are strengthened for the case ofweakly sharp and convex problems. We relate our work to the neural networks applicationsin Section 5. Section 6 contains some concluding remarks.One more word about our notation. All the vectors are column-vectors. h�; �i denotesthe usual Euclidean inner product. Throughout the paper, k � k denotes the two-norm, thatis kxk = qhx; xi. By conv C we shall denote the convex hull of a set C, and by int C itsinterior. PX(�) will stand for the orthogonal projection map onto a closed convex set X.3



2 Generalized Lyapunov Direct MethodIn this Section we outline the novel convergence analysis technique that was �rst proposed in[26]. This technique can be viewed as generalization of the Lyapunov Direct Method for con-vergence analysis of nonlinear iterative processes. The Lyapunov Direct Method has provedto be a powerful tool for stability analysis of both continuous and discrete time processes[17, 23, 15, 16]. Roughly, this approach reduces the analysis of the stability properties of aprocess to the analysis of the local improvement of this process with respect to some scalarcriterion V (�) (usually called the Lyapunov function). According to the classical approach,V (�) is assumed to be a descent function of the process [16]. The key di�erence of the pre-sented technique is that we relax this monotonicity assumption. We thus refer to V (�) asthe pseudo-Lyapunov function. This generalization makes our approach applicable to awider class of algorithms.We now state the Generalized Lyapunov Direct Method. The convergence (attraction)properties of the process are expressed in terms of pseudo-Lyapunov function V (�). For eachspeci�c algorithm, the results allow further interpretation depending on the choice of V (�).We consider the following iterative processxi+1 2 xi � �iG(i; xi)� �i; i = 0; 1; : : : ; x0 2 X 0;(2.1) �i !1; 1Xi=0 �i =1; 1Xi=0 �i is (component-wise) convergent;(2.2)where G(�; �) : X 0 ! M(X 0), and X 0 is an open set in <n. In applications, �i usuallycorresponds to random noise. We further assume thatsupx2X 0 lim supx0!xi!1 supy2G(i;x0) kyk < +1 :Thus the upper topological limit of G(�; �), denoted by G0(�),G0(x) := �ltx0!xi!1G(i; x0)is bounded and upper semicontinuous on a neighborhood of a compact set X � X 0.4



Let the iterates generated by (2.1)-(2.2) satisfy the condition�ltfxig � X:(2.3)Suppose we have chosen a pseudo-Lyapunov function V (�) that is Lipschitz continuous andregular on a neighborhood of X. For the Lyapunov function V (�), the set X, and the mapG0(�), we de�ne the following set which is crucial for our analysis :A0 := fx 2 X j maxh2H(x) ming2G0(x)hh; gi � 0g(2.4) H(x) = convf@V (x) [ NX(x)g:Roughly speaking, the set A0 is comprised of all the points in X for which �G0(x) does notcontain feasible directions that are of descent for the pseudo-Lyapunov function V (�).The following result shows that the sequences of (2.1)-(2.2) that satisfy (2.3) are, in acertain sense, attracted to the components of the set A0. We �rst have to introduce thenotion of V (�)-connected components of A0 (recall that A0 is compact). We say that a setC � <n is V (�)-connected, if the set V (C) = fv 2 < j 9x 2 X; v = V (x)g � < is connected.Let fA(
)g; 
 2 � be the (unique) decomposition of A0 into V (�)-connected components[24], that is A0 = [
2�A(
); A(
0) 6= A(
00); 
 0 6= 
00; 
0; 
00 2 �:The following theorem will play an important role in the subsequent analysis.Theorem 2.1 [26] For every sequence fxig generated by the process (2.1)-(2.2), and satis-fying (2.3), there exists a 
 2 � such that the following properties hold :�lti!1V (xi) = V ��lti!1fxig \ A(
)� ;and every subsequence fximg of fxig satisfyinglimm!1 V (xim) = lim infi!1 V (xi) or limm!1 V (xim) = lim supi!1 V (xi)converges to A(
).Corollary 2.1 [26] Let the set V (A0) be nowhere dense in <. Then every sequence fxiggenerated by the process (2.1)-(2.2), and satisfying (2.3), converges to a connected componentof A0. 5



3 Convergence Properties of Parallel Generalized Gra-dient Projection Algorithm in the Presence of DataPerturbationsIn this Section we consider the problem (1.5) with an additive parametric objective func-tion. We �rst describe our notation for stating and establishing convergence of the parallelperturbed generalized gradient projection method (GGPM) for solving (1.5) and its modi�-cations. The type of parallelization considered here is primarily motivated by neural networktraining (see [11, 14, 4]). Another related work is [21]. We �rst consider the most generalcase. Our results can be then specialized by removing parallelism and/or considering thestandard (nonadditive) objective function.i = 1; 2; : : : : Index number of major iterations of GGPM, each of which consists ofgoing through the entire set of functions f1(x; �i); : : : ; fK(x; �i). This is achieved seriallyor in parallel by k processors with processor l handling at the i-th iteration the functionsfj(x; �i), j 2 Jl. Recall that �i 2 A is the (smoothing) parameter, and limi!1 �i = �0. Forsimplicity, we assume that the sets Jl, l = 1; : : : ; k are ordered as followsJ1 = f1; : : : ;K1g;J2 = fK1 + 1; : : : ;K1 +K2g;� � � � � � � � � � � � � � � � � �Jk = fK1 + � � �+Kk�1 + 1; : : : ;Kg;i.e. Jl = f �Kl + 1; : : : ; �Kl +Klg; l = 1; : : : ; k;where �Kl = l�1Xt=1Kt; l = 2; : : : ; k; �K1 = 0:j = 1; : : : ; Kl : Index of minor iterations performed by parallel processor l; l = 1; : : : ; k.Each minor iteration j consists of a step in the direction of a negative generalized gradient6



�~gli;j of the function f �Kl+j(�; �i) at zi;jl that is calculated with some error �i;jl :~gli;j = gli;j + �i;jl ;gli;j 2 @f �Kl+j(zi;jl ; �i);�i;jl = � �Kl+j(zi;jl ; �i; i):Note that �j(z; �; i) is a perturbation of the generalized gradient of f(�; �) at the point z 2 Xat the i-th major iteration of the algorithm. With respect to those perturbations we makethe following fairly mild assumption :KXj=1 supi supz2X sup�2A k�j(z; �; i)k < +1:xi : Iterate in <n of major iteration i = 1; 2; : : : .zi;jl : Iterate in <n of minor iteration j = 1; : : : ;Kl, within major iteration i = 1; 2; : : : ,computed by processor l = 1; : : : ; k.By �i we shall denote the stepsize, i.e the coe�cient multiplying the generalized gradientsat the i-th major iteration. For simplicity we shall assume that �i remains �xed within eachmajor iteration. We consider the process with stepsizes decreasing subject to the followingcondition �i > 0; i = 0; 1; : : : ; �i ! 0; 1Xi=0 �i =1:(3.1)Note that under our assumptions, there exists M > 0 such thatkyk �M 8y 2 @fj(x; �i) + �j(x; �i; i); j = 1; : : : ;K; i = 0; 1; : : : ; 8x 2 X:(3.2)We are now ready to state and prove convergence of the parallel GGPM.Algorithm 3.1 (Parallel GGPM) Start with any x0 2 X. Having xi, compute xi+1 asfollows :(i) Parallelization: for each processor l 2 f1; : : : ; kg dozi;j+1l = PX(zi;jl � �i~gli;j); j = 1; : : : ;Kl(3.3)(ii) Synchronization xi+1 = PX  xi + kXl=1(zi;Kl+1l � xi)!(3.4) 7



Note that for K = k = 1 Algorithm 3.1 becomes the standard perturbed generalized gradientprojection method. There are two sources of nonmonotonicity that are present in Algorithm3.1. First of all, each direction is associated with a generalized gradient of a partial objectivefunction fj. Thus even if this direction is that of descent for fj, there is no guarantee thatit is also of descent for the full objective function f given by (1.5). The other source ofnonmonotonicity is induced by the perturbations of the generalized gradients.To analyze the in
uence of computational errors �i;jl on the convergence properties of thealgorithm, we need to estimate the level of perturbations in the limit. We say that "(x) isthe exact asymptotic level of perturbations at a point x 2 X, if"(x) = lim supzj(2X)!xi!1 k KXj=1 �j(zj; �i; i)k:(3.5)It is easy to see that the function "(�) : X ! <+ is upper semicontinuous.The following simple lemma proves to be very useful.Lemma 3.1 For every x 2 X, g 2 <n, and � > 0 the following property holdsy = PX(x� �g) =) 9h 2 NX(y); khk � kgk; y = x� �(g + h):(3.6)The proof requires only elementary arguments, and is thus omitted.Taking into account (3.6), we introduce the following map G(�; �) : N �X ! <n that isassociated with major iterates of Algorithm 3.1 :G(i; x) = 8>>>>>>>>>><>>>>>>>>>>:y 2 <n ���������������� 9�x 2 X; zjl 2 X; gjl 2 @f �Kl�1+j(zjl ; �i); and �h 2 NX(�x) such thatk�hk � 2MK; hjl 2 NX(zj+1l ); khjlk �M;j = 1; : : : ;Kl + 1; l = 1; : : : ; k;y =Pkl=1Pj2Jl(gjl + hjl + �jl ) + �h; zj+1l = zjl � �i(gjl + hjl + �jl );�jl = � �Kl+j(zjl ; �i; i); j = 1; : : : ;Kl; z1l = x; l = 1; : : : ; k;�x = x+Pkl=1(zKl+1l � x) + �h 9>>>>>>>>>>=>>>>>>>>>>;(3.7)
Obviously, by (3.2), kyk � 4KM 8y 2 G(i; x); i = 0; 1; : : : ; 8x 2 X:8



Hence the map G(�; �) is bounded, and so is its upper topological limit. Comparing (3.7)with (3.3) and (3.4), and taking into account (3.6), it is easily seen that every sequence fxiggenerated by Algorithm 3.1 is a trajectory of the iterative processxi+1 2 xi � �iG(i; xi); i = 0; 1; : : : ; x0 2 X:We are now ready to apply the Generalized Lyapunov Direct Method of Section 2 to establishthe properties of Algorithm 3.1.Applying (1.4), (1.6), and the de�nition (3.5) of "(�), we obtainG0(x) := �ltx0!xi!1G(i; x0) � @f(x) +NX(x) + "(x)B:(3.8)Consider the decomposition of of the set Xstat("(�)) into the union of f(�)-connected compo-nents Xstat("(�)) = [
2�Xstat("(�))(
)(see Section 2). Our main result is the followingTheorem 3.1 For every sequence fxig generated by Algorithm 3.1, there exists 
 2 � suchthat the following properties hold :�lti!1f(xi) = f ��lti!1fxig \Xstat("(�))(
)� ;and every subsequence fximg of fxig satisfyinglimm!1 f(xim) = lim infi!1 f(xi) or limm!1 f(xim) = lim supi!1 f(xi)(3.9)converges to Xstat("(�))(
).In particular, if "(�) � 0 and the set f(Xstat) is nowhere dense in <, then every sequencefxig generated by Algorithm 3.1 converges to a connected component of Xstat.Proof. We choose V (x) := f(x);9



where f(x) is given by (1.5), as the pseudo-Lyapunov function of the iterative process.Following the approach outlined in Section 2, we introduce the setA0 := fx 2 X j maxh2H(x) ming2G0(x)hh; gi � 0g;where H(x) := convf@f(x) [ NX(x)g. Our proof is by virtue of showing thatA0 � Xstat("(�));and then applying Theorem 2.1 and Corollary 2.1.For every x 2 X we de�neh0(x) = argminfkhk j h 2 @f(x) +NX(x)g:Note that kh0(x)k = r(x) (see (1.2)). Since h0(x) is the orthogonal projection of the originonto the set f@f(x) +NX(x)g, it follows thathh0(x); hi � kh0(x)k2 8h 2 @f(x) +NX(x):(3.10)Since h0(x) 2 @f(x) +NX(x), it follows that12h0(x) 2 H(x):(3.11)Fix an arbitrary x 62 Xstat("(�)). By (1.3), we havekh0(x)k = r(x) > "(x):(3.12)We further obtainmaxh2H(x) ming2G0(x)hh; gi � 12 ming2G0(x)hh0(x); gi� 12 ming2@f(x)+NX(x)+"(x)Bhh0(x); gi� 12 min�2"(x)B minh2@f(x)+NX(x)hh0(x); h+ �i� 12 min�2"(x)Bhh0(x); h+ �i� 12 min�2"(x)B(kh0(x)k2 � k�kkh0(x)k)� 12kh0(x)k(kh0(x)k � "(x)) > 010



where the �rst inequality follows from (3.11), the second inequality follows from (3.8), the�fth inequality follows from (3.10), and the last inequality follows from (3.12). Hence x 62 A0,and it follows that A0 � Xstat("(�)). Now applying Theorem 2.1 and Corollary 2.1, weimmediately obtain the desired results.Adding the \heavy ball" term [16] in Algorithm 3.1, we arrive at the following modi�-cation of the parallel GGPM. In neural network literature, methods of this type are usuallyreferred to as backpropagation with momentum term [7, 10].Algorithm 3.2 (Parallel GGPM with Momentum term). Start with any x0 2 X.Having xi, compute xi+1 as follows :i) Parallelization: for each processor l 2 f1; : : : ; kg dozi;j+1l = PX(zi;jl � �i~gli;j); j = 1; : : : ;Kl;where zi;1l = xi.(ii) Synchronization with momentum term:xi+1 = PX  xi + kXl=1(zi;Kl+1l � xi) + �i(xi � xmaxfi�s;0g)! ;where s 2 N is some positive integer.With respect to coe�cients multiplying the momentum term, we assume that�i � 0; i = 0; 1; : : : ; �i ! 0:(3.13)We also make the following assumption on the stepsizes (in addition to (3.1))lim supi!1 �i�1�i < +1:(3.14)We have the followingTheorem 3.2 For every sequence fxig generated by Algorithm 3.2, all the conclusions ofTheorem 3.1 hold. 11



Proof. We �rst de�ne the following quantity�i = 2�iM i�1Xt=maxfi�s;0g �t�1�t ; i = 1; 2; : : : ; �0 = 0:Note that by (3.13),(3.14), �i � 0; i = 0; 1; : : : ; limi!1 �i = 0:Similarly to the case of Algorithm 3.1, it follows that every sequence fxig generated byAlgorithm 3.2 is a trajectory of the following processxi+1 2 xi � �i �G(i; xi) + �iB� ; i = 0; 1; : : : ; x0 2 X;where the mapping G(�; �) is de�ned by (3.7). Now taking into account that �i ! 0, weobtain G0(x) := �ltx0!xi!1(G(i; x0) + �iB) � @f(x) +NX(x) + "(x)B:The rest of the proof is analogous to that of Theorem 3.1, and is thus omitted.Remark 3.1. Theorems 3.1,3.2 generalize the results on convergence properties of thegeneralized gradient projection method obtained in [13, 3, 25].4 Important Special CasesIn this section we consider the standard optimization problem (1.1), and establish strongerconvergence properties of GGPM in a number of important special cases. These includeconvex and strongly convex problems, and problems with weak sharp minima [16, 1].We start with the following lemma.Lemma 4.1 Let "(x) � maxf�"; �r(x)g 8x 2 X;where �" � 0; 1 > � � 0. Then Xstat("(�)) � Xstat(�"):12



In particular, if �" = 0, then Xstat("(�)) = Xstat:Proof. Suppose x 2 Xstat("(x)). Then, by (1.3) and the assumption of the lemma,r(x) � "(x) � maxf�"; �r(x)g:If �r(x) � �", then r(x) � �r(x) and 1 > � � 0 imply that r(x) = 0. Since Xstat(0) � Xstat(�"),we have that x 2 Xstat(�"). If �r(x) � �", then r(x) � "(x) � �", and hence x 2 Xstat(�").Let d(�; C) be the distance function to the set C � <n, that isd(x;C) = infy2C kx� yk:De�ne �" = supx2X "(x), and D = supx;y2X kx � yk. The following lemma relates the "-stationary sets to the �-optimal sets for the case when f(�) is convex.Lemma 4.2 Let f(�) be convex on X. ThenXstat("(x)) � Xopt ("(x)d(x;Xopt)) :In particular, Xstat("(�)) � Xopt(�"D):If, in addition, f(�) is di�erentiable and strongly convex on X with modulus l, and Xstat(�") �intX, then Xstat(�") � Xopt(�"2=2l):Proof. Let x 2 Xstat("(x)). By de�nition of Xstat("(�)), there exist g 2 @f(x); h1 2 NX(x),and h2 2 "(x)B such that 0 = g + h1 + h2. Let x� = PXopt(x), i.e. x� is the closest point tox in Xopt. By convexity of f(�), it follows thatf(x)� f(x�) � h�g; x� � xi = hh1 + h2; x� � xi� hh2; x� � xi � kh2kkx� � xk� "(x)d(x;Xopt);13



where the second inequality follows from de�nition of the normal cone. This establishes the�rst two assertions of the lemma.For the last assertion, just note that (Lemma 1.4.3, [16]) for any x 2 X2l(f(x)�miny2X f(y)) � k@f(x)k2:De�nition 4.1 [1] We say that problem (1.1) is weakly sharp with parameter � > 0 iff(x)�miny2X f(y) � �d(x;Xopt) 8x 2 X:We have the following important corollary.Corollary 4.1 Let f(�) be convex on X. Assume that problem (1.1) is weakly sharp withparameter � > 0. Then if"(x) � maxf�; �r(x)g 8x 2 X; 0 � � < 1; � < �;it follows that Xstat("(�)) = Xopt:Proof. Obviously, Xopt � Xstat("(�)). Take any x 2 Xstat("(�)). By Lemmas 4.1,4.2, andour assumption, we havex 2 Xstat("(�)) � Xstat(�) � Xopt(�d(x;Xopt)):Hence �d(x;Xopt) � f(x)�miny2X f(y) � �d(x;Xopt);where the last inequality follows from De�nition 4.1. Now � < � implies that d(x;Xopt) = 0,x 2 Xopt.When in Algorithms 3.1,3.2 the parameter K = 1, those algorithms reduce to the follow-ing standard GGPM with the \heavy ball" term :14



Algorithm 4.1 (GGPM with heavy ball term). Start with any x0 2 X. Having xi,compute xi+1 as follows :xi+1 = PX �xi � �i(gi + �(xi; �i; i)) + �i(xi � xmaxfi�s;0g)�gi 2 @f(xi; �i); i = 0; 1; : : : ;where parameters f�ig; f�ig; f�ig, and s 2 N are the same as in Algorithms 3.1,3.2.From Theorems 3.1,3.2, and Lemmas 4.1,4.2, we immediately get the following results :Theorem 4.1 Every sequence fxig generated by Algorithm 4.1 possesses the following prop-erties :1. there exists an f(�)-connected component Xstat("(�))(
) of Xstat("(�)) such that�lti!1ff(xi)g = f ��ltfxig \Xstat("(�))(
)� ;2. every subsequence fximg of fxig satisfying (3.9) converges to Xstat("(�))(
);3. if f(�) is convex, then fxig converges to the setXopt ("(x)d(x;Xopt)) � Xopt(~�D);4. if, in addition, problem (1.1) is weakly sharp with parameter � > 0, and"(x) < � 8x 2 X;then fxig converges to Xopt.Furthermore, Lemma 4.1 together with the last assertion of Theorem 2.1 yield the followingresult :Theorem 4.2 Let the exact asymptotic level of perturbations satisfy the following condition"(x) � �r(x) 8x 2 X; 0 � � < 1;(i.e. perturbations are relatively small). Suppose thatthe set f(Xstat) is nowhere dense in < :Then every sequence fxig generated by Algorithm 4.1 converges to Xstat.15



Apllying Lemma 4.2 we can signi�cantly sharpen the assertion 3 of Theorem 4.1 for theunconstrained strongly convex case.Theorem 4.3 Let f(�) be strongly convex with modulus l > 0, and Xstat(�") � intX. Thenevery sequence fxig generated by Algorithm 4.1 converges to Xopt(�"2=2l).5 Backpropagation With NoiseIn this Section we apply the results of Section 3 to reveal some important properties ofthe backpropagation (BP) algorithm for training arti�cial neural networks [18, 7]. Due tonumerous successful applications, a lot of empirical knowledge has been accumulated in theneural networks �eld. It is therefore important to provide rigorous mathematical foundationto neural networks theory and algorithms. Stochastic analysis of BP is given in [22]. The�rst deterministic convergence results (without data perturbations) were recently obtainedin [11, 8]. An interesting new training method is proposed in [5].In this Section we give a precise characterization to empirically observed stability of neuralnetworks [19, 6]. We also discuss BP modi�cations with varying smoothing parameter.We regard training arti�cial neural network as minimization of the following error function(see [9]) : minx2X�<n f(x; �) = KXj=1 fj(w; �; v; �; �)fj(w; �; v; �; �) :=  s hXi=1 s(�jwi � �i)vi � �!� tj!2 ;(5.1)whereh = �xed integer number of hidden unitsK = �xed integer number of given training samples �j in <mtj = 0 or 1 target value for �j ; j = 1; : : : ;K� = real number threshold of output unit16



vi = real number weights of outgoing arcs from hidden units, i = 1; : : : ; h�i = real number thresholds of hidden units, i = 1; : : : ; hwi = m-vector weights of incoming arcs to hidden units, i = 1; : : : ; h�j = given m-dimensional vector samples, j = 1; : : : ;Ks(�) = 1 if � > 0 else 0s(�) �= �(�; �) = 11 + e��� for some � > 0.Here � is the smoothing parameter of the sigmoid approximation �(�; �) of the discontinuousstep function s(�). Note that f(x; �) is precisely of the form (1.5). X is typically either <nor a set of simple box-constraints.Each iteration of the serial online BP consists of a step in the direction of negativegradient �rfj of a partial error function fj associated with the j-th training example.Thus BP is a special case of Algorithm 3.1. Many other computationally important BPmodi�cations, such as parallel BP [11, 14, 4], BP withmomentum term [7], and BP withvarying smoothing parameter [20] all fall within the framework of Section 3.We now discuss stability issues in neural network training. It is quite common that for asample �j in the training set some of its attributes (i.e. the components of the m-dimensionalvector) are computed (or supplied) with an error that we shall denote �j. Obviously, thisinduces certain perturbation in values of the corresponding error function fj and its gradient.We can then write~fj(w; �; v; �; �) :=  �  hXi=1 �((�j +�j)wi � �i)vi � �!� tj!2 ;and r ~fj(x; �) = rfj(x; �) + �j(x; �):Note that it is fairly straightforward to estimate the dependence of �j on �j. We can thenintroduce the exact asymptotic level of perturbations (3.6) by"(x) = lim supzj(2X)!xi!1 kXj2Q �j(zj; �i; i)k;17



where Q is the set of training examples with noise. If some upper bound on �j; j 2 Q isknown then the corresponding perturbations �j; j 2 Q and their asymptotic level "(�) canbe estimated. This in turn yields the guaranteed "(�)-stationarity of all the accumulationpoints of the BP iterates.As another source of perturbations in the neural network training, we note the techniquepresented in [6]. To simplify the network topology and improve the network generalizationproperties, it is proposed in [6] to eliminate at the late stages of training the arcs withsu�ciently small weights. The latter is equivalent to setting the corresponding weights tozero, and can also be treated as induced perturbations.Another possible application of our analysis is devising new algorithms with varyingsmoothing parameter �. There exists empirical evidence that changing � during trainingcan signi�cantly speed up the learning process [20]. Unfortunately, most applications thattake advantage of this idea usually employ some kind of heuristic to control the parameter. Itwill be interesting to develop a more rigorous algorithmic approach. This however is beyondthe scope of this paper.6 Concluding RemarksWe have analyzed convergence of the generalized gradient projection method in the pres-ence of data perturbations. The parametric and \heavy ball" modi�cations, as well as theextension to the parallel method with additive objective function were also considered. Itis shown that every trajectory of the algorithms is attracted to an "(�)-stationary set ofthe problem, where "(�) depends on the magnitude of perturbations. In the convex case,the iterates are attracted to a certain �-optimal set. Furthermore, if the problem has weaksharp minima, then convergence to the optimal set is established. Stability issues of thefundamental backpropagation algorithm for neural network training are discussed.References[1] J.V. Burke and M.C. Ferris. Weak sharp minima in mathematical programming. SIAMJournal on Control and Optimization, 31(5):1340{1359, 1993.18
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