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Abstract

Large-scale classification is a very active research line in data mining. It can
be applied to problems like credit card fraud detection or content-based document
browsing. In recent years, several efficient algorithms for this area have been
proposed by Mangasarian and Musicant. These approaches, based on quadratic
problems, are: Successive OverRelazation (SOR), Active Support Vector Ma-
chines (ASVM) and Lagrangian Support Vector Machines (LSVM). These algo-
rithms have solved linear classification problems with millions of points. ASVM
is perhaps the fastest and more scalable among them. This paper presents a
projection-based SVM algorithm that outperforms ASVM on a 50,000 point data
set generated by means of NDC (Normally Distributed Clusters), which has be-
come a common tool in large-scale SVM research.

1 INTRODUCTION

A problem that appears frequently in many real applications is the Binary Clas-
sification Problem BCP. Given a sample of m points z; € R™,i = 1,...,m,
and a partition of this sample into disjoint sets S;,S2 . we need to construct a
decision boundary; that is, a surface p(.) : IR™ — IR that separates the point
sets S1,S52. Ideally we wish to solve the problem:

. . mn . LP(ZL“) > 9, T; € Sl
Find p(z) : R —)B,@EIR.< o(z) < 0. w1 € So. (1)
It was shown by Makhoul et al [15] that a 2-layer neural network can re-
produce a close approximation to any nonlinear decision boundary. However,
the number of neurons necessary to achieve a given accuracy cannot be stated
a priori. Moreover, the seemingly easy problem of deciding if two sets are sepa-
rable by a piecewise linear function is NP-complete [20]. Research has focussed
on approzrimate separating hyperplanes because of their relative simplicity. Es-

sentially a hyperplane w'z = 6 provides the surface p(z) = 6 in (1). It is



well known (Bennett and Mangasarian [1]) that a hyperplane w'z = 6 strictly
separates S, S92 if and only if

(2)

In the separable case, support vector training amounts to determining ap-
propriate {w € IR",0 € IR} € C. Research presently centers on methods to ef-
ficiently compute an approximate separating hyperplane for the non-separable
case, a contingency that frequently arises in data mining, machine learning,
pattern recognition, neural network training, and surely other fields. An ideal
hyperplane in this case should misclassify the fewest number of set elements,
which is an NP-complete problem (Property attributed to Heath [12] by Man-
gasarian [16]). For a sufficiently small v > 0, an optimal hyperplane w'z = 6 can
be found by solving the following mixed integer linear programming problem:

I._ .
Ci{weR”,QeR:<wx’ 02+1, @5 };Am.

wr;, —0< -1, ;€85

min > y;
w,0,y
such that w'z; — 0 + %y,- >1,z; € St (3)
! 1
wr; —0— -y < —1,2; €S2

Y; € {0, 1}.

However, problem (3) is intractable when the data to be classified consist of
a massive number of points. Modern approaches are relaxations of (3). Essen-
tially, the Boolean condition y; € {0,1} is dropped and the model requires some
desirable properties for w,# (with no pretense of being exhaustive we refer the
reader to [1, 4, 5, 6, 7, 22] and references therein).

Introducing v = (w,6),e = (1,...,1), a suitable matrix A and dropping the
Boolean constraints y € {0,1}, we replace (3) by:

min  1(v'v +y'y)
oY ) (4)
such that Av + myze
(Note that an equivalent problem is obtained if the constraints y > 0 are added.
In the projection algorithms to be discussed below, this constraint is used to
“correct” the iterates).

This model has been proposed by Mangasarian and Lee [13] (previously,
in [17], Mangasarian and Musicant used a linear term for y in the objective
function). A salient feature of (4) is that its dual is a quadratic optimization
problem subject to bounds on the variables, and several efficient algorithms have
been proposed for its solution [2][8][17][18][19]. For B = [A%] and Q = BB,
the dual problem is:

: 1.1 !
1512151 su'Qu — e'u, (5)

and its KKT conditions are:



Qu—e>0
u >0 (6)
uw'(Qu—¢e)=0

Alternatively, we replace (3) by:

min 1 (v'v +y'y + 2'2)
v,y
such that Av + %y —Lz=¢ (7)
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This model is quite different from the preceding models in the sense that
there is actually a penalty for points that are well classified. The z variables
are simply used so that the RHS value is matched. This allows us to work with
equalities, and for a small value of y it is expected that these types of corrections
will have little effect on the objective.

The next section describes projection algorithms based on models (4) and
(7). Section 3 reports remarkable numerical results on data generated via the
NDC Matlab code [21]. Conclusions and directions for further research, partic-
ularly with respect to parallel implementations, are given in the last section of
this paper.

We briefly comment on notation: Capital Latin letters are sets or matrices
depending upon the context. Lowercase Latin letters denote vectors in IR™,
except for the range i, ..., q that denotes integers. Lower case Greek letters are
real scalars. Subindices are different components, i.e., x; is the i-th component of
the n-component vector z and a’b is the inner product Y, a;b;. For any vector,
a K subindex denotes a subvector whose components have indices belonging to
the set K. B =[A ﬁ - ﬁ] and B; is the i-th row of matrix B. By is the
matrix composed of all B; such that i € K. Ak is defined accordingly. Finally,
we define Qx = Bx B, and r; = A;v + %yi — ﬁzi — 1.

2 Projection SVM

The projection SVM (PSVM) algorithm can be formulated in terms of the
determination of the least 2-norm correction of the constraints of (7) that are
violated by the current iterate:

Initialization: v=0,y=0,2=0,s=0,¢t=0.
PSVM iteration:

Step 1: Define the subindex set K = {i € 1..m | r; # 0} .
Step 2: dig = —Ql_(HK.



Step 3: 'U<_'U+A,KdK;yK<—yK+?/—K;,ZK(—zK—d—\/%.

Step 4: Vi€ K, if s; +y; <0 then s; « s; + y;, y; < 0. Else, y; < s; +yi,
s; + 0.

Step 5: Vi € K, if t; + z; < 0 then t; «+ t; + z;, z; < 0. Else, z; + t; + z;,

t; < 0.

Convergence of the PSVM algorithm: The PSVM algorithm is a special case
of the Boyle-Dijkstra algorithm [3] applied to problem (7). The Boyle-Dijkstra
algorithm is a ’corrected’ sequential projection algorithm.

e Step 2 is the projection of the previous iterate onto Axvi + %yK —ek.
That is, the violated subset of the equation part in (7) (there is no need
of correction in this case, since these constraints are linear equalities).

e Steps 4 and 5 introduce corrections for constraints z > 0 and y > 0, by
considering increments s and ¢.

The algorithm converges to the projection of v,y,z = 0 onto the feasible
region of problem (7) , which by definition minimizes the 2-norm to the feasible
region.

Remark 1: In a fully primal implementation, any iterative projection al-
gorithm could be used to solve step 2 [10, Lemma 1] (for example, a parallel
projection algorithm like [11]).

Remark 2: In cases such that m >> n, the matrix inverse in step 2 can
be efficiently computed by using the Sherman-Morrison-Woodbury identity, as
proposed in [18].

Although the solution of (7) converges to the solution of (4) as u goes to 0,
it is better to avoid this scaling issue by handling the inequalities in (4) directly,
even though there is the disadvantage that convergence to an optimal solution
of (4) cannot be guaranteed.

For this reason, we present a simplified form of PSVM (SPSVM), which
addresses the limiting case of u = 0, corresponding to the inequality constraints
of (4) with the added constraints y > 0. In this case, we redefine B as B =
[A %] and r; as r; = Av + %yi —1.

Initialization: v =0, y = 0.
SPSVM iteration:

Step 1: Define the subindex set K = {i € 1.m | r; < 0} .
Step 2: dix = —Ql_(HK.
Step 3: v« v+ Al dk, yx < yx + d—’f,.



Step 4: yx < (YK )+

Convergence of the SPSVM algorithm: SPSVM is a sequential block-
projection algorithm [9], which alternates projections onto blocks Axvk +
%yK = ek (step 2) and yx > 0 (step 4). These blocks contain the inter-
section Z of Av + \/L;y —e >0and y > 0. Since the primal and dual variables
satisfy (v,y) = B'u at optimality, Z matches the feasible set defined by (6),
with the possible exception of the complementarity constraints. The algorithm
generates a Fejér sequence that converges to a point in Z. Note that the par-
ticular choice of sets used in this projection algorithm makes it quite similar to
PSVM. Although the final point does not necessarily correspond to the optimal
solution of problem (4), our numerical tests indicate that the result is a very
good approximation to the solution of (4). Therefore, SPSVM is a heuristic, but
one that is capable of producing excellent results for large-scale problems, par-
ticularly when the block-dynamic implementation discussed below is employed.
From the point of view of implementation, remarks 1 and 2 above can be applied
to step 2 in SPSVM.

3 Numerical results

We performed numerical tests on a Linux Pentium III machine, running at 600
MHz, with 128 MB of main memory, 256 KB L2 cache and 12 GB of secondary
memory. We used the NDC Matlab code [21] to generate 50,000 points, with 32
features each (rm = 50000, n = 32). The NDC expansion factor was set to 10.
ASVM (Active Support Vector Machine) and SPSVM algorithms were ap-
plied to model (4). ASVM is a high performance SVM generator for large scale
problems, that yields the solution of (4) [18]. Algorithm settings were:

e v =0.1, as in [19].

e Since ASVM stagnates if the dual variables are 0 at the beginning, we
took the primal point associated to uy = e as a starting point.

e Since m >> n, the Sherman-Morrison-Woodbury identity was used in
ASVM and SPSVM (step 2). All auxiliary matrix inverses were calculated
by means of Choleski factorizations.

We compared ASVM with a block-dynamic implementation of SPSVM. A
random subset of K of size b is allowed at each iteration. The resulting relaxed
SPSVM is also a block-projection algorithm, which projects each iterate onto
a convex superset of Z. Therefore, the algorithm converges. However, it will
stop at a point that only satisfies those constraints in (6) taken into account
by the method. Numerical tests indicate that, even for small b sizes, a quite
representative subset of (6) has been considered at algorithm termination.



Table 1: Performance of parametrized algorithms on the data set

type  block parameter (b) time (s) Best testing accuracy (a;)

SPSVM 5000 16.84 86.63%
2500 10.21 86.65%

1000 6.67 86.71%

500 4.41 86.64%

100 1.6 86.44%

ASVM 45000 48.99 86.47%
20000 22.19 86.42%

10000 11.26 86.19%

7500 8.25 86.14%

5000 4.9 85.86%

2500 1.67 85.86%

1000 0.41 84.81%

500 0.19 83.08%

100 0.02 69.31%

Also, a block-static implementation of ASVM was tested. For a given train-
ing set, a random block of b points was selected at the beginning, and all re-
maining training points were discarded. It has been shown [14] that this simple
strategy produces a good testing accuracy in large sets. At each iteration,
ASVM works with all constraints whose dual variables are nonzero. A “brute
force” block-dynamic ASVM implementation would simply pick a random sam-
ple of b constraints among them. Unfortunately, our tests suggest that such an
implementation does not converge, and its development lies beyond the purpose
of this paper.

For each algorithm and block size, ten runs of 100 iterations were made.
Execution was stopped if there was no improvement in testing accuracy for 6
iterations. In all runs, the problem set was randomly divided in two parts,
containing 90% and 10% of the points, corresponding to training and testing
subsets, respectively. Table 1 shows the average of the best testing accuracies
a; reached, and the highest elapsed time among them.

Note that SPSVM reaches a; > 86% in 1.6 seconds with a small block size,
which is much faster than ASVM. Also, note that, for our particular problem,
ay increases with b for ASVM, while SPSVM achieves optimal performance with
b = 1000.

Figures 1 and 2 show the average evolution of testing set accuracy across
ten runs for the best instances of ASVM and SPSVM.

4 Final remarks

In this paper, we have proposed two new algorithms for SVM generation, PSVM
and SPSVM. A block-dynamic implementation of SPSVM out-performs ASVM
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Figure 1: ASVM, block size 45000

60

70



testing accuracy (%)

86.5

86

85.5-

85

84.5

3 4 5
time (sec)

Figure 2: SPSVM, block size 1000




[18], on a medium-scale instance of the NDC problem.
As a future research line, we plan to introduce parallelism in the projection
SVM algorithms. Specifically, two approaches can be followed:

e Parallelization of step 2, by means of parallel projection methods [11].

e A parallel block-dynamic approach: each processor solves step 2 on a
different constraint block, and the best point is selected. The objective
function (5) can be used as a merit function.

Another future research line concerns scalability issues. In harder problems
(for example, NDC problems with a larger expansion factor), it is expected that
static-block ASVM implementations will have a worse performance, since they
will work with a much less representative sample, as b decreases. However, a
block-dynamic SPSVM implementation may still sweep a broad portion of the
problem, for enough execution time.

The authors are indebted to Prof. Ubaldo Garcia-Palomares (Universidad
Simén Bolivar, Venezuela), for interesting observations that greatly influenced
this work.
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