
Projection Support Vector MachinesFrancisco J. Gonz�alez-Casta~noUniversidad de Vigo,Departamento de Tecnolog��as de las Comunicaciones,ETSI Telecomunicaci�on,36200 Vigo, Spain.javier@ait.uvigo.esRobert R. MeyerUniversity of Wisconsin-Madison,Computer Sciences Department1210 West Dayton StreetMadison, WI 53706, USA.rrm@cs.wisc.eduAbstractLarge-scale classi�cation is a very active research line in data mining. It canbe applied to problems like credit card fraud detection or content-based documentbrowsing. In recent years, several e�cient algorithms for this area have beenproposed by Mangasarian and Musicant. These approaches, based on quadraticproblems, are: Successive OverRelaxation (SOR), Active Support Vector Ma-chines (ASVM) and Lagrangian Support Vector Machines (LSVM). These algo-rithms have solved linear classi�cation problems with millions of points. ASVMis perhaps the fastest and more scalable among them. This paper presents aprojection-based SVM algorithm that outperforms ASVM on a 50,000 point dataset generated by means of NDC (Normally Distributed Clusters), which has be-come a common tool in large-scale SVM research.1 INTRODUCTIONA problem that appears frequently in many real applications is the Binary Clas-si�cation Problem BCP. Given a sample of m points xi 2 IRn; i = 1; : : : ;m,and a partition of this sample into disjoint sets S1; S2 . we need to construct adecision boundary; that is, a surface '(:) : IRn ! IR that separates the pointsets S1; S2. Ideally we wish to solve the problem:Find '(x) : IRn ! IR; � 2 IR : � '(x) > �; xi 2 S1'(x) < �; xi 2 S2: (1)It was shown by Makhoul et al [15] that a 2-layer neural network can re-produce a close approximation to any nonlinear decision boundary. However,the number of neurons necessary to achieve a given accuracy cannot be stateda priori. Moreover, the seemingly easy problem of deciding if two sets are sepa-rable by a piecewise linear function is NP-complete [20]. Research has focussedon approximate separating hyperplanes because of their relative simplicity. Es-sentially a hyperplane w0x = � provides the surface '(x) = � in (1). It is1



well known (Bennett and Mangasarian [1]) that a hyperplane w0x = � strictlyseparates S1; S2 if and only ifC := fw 2 IRn; � 2 IR : � w0xi � � � +1; xi 2 S1w0xi � � � �1; xi 2 S2 � 6= ;: (2)In the separable case, support vector training amounts to determining ap-propriate fw 2 IRn; � 2 IRg 2 C. Research presently centers on methods to ef-�ciently compute an approximate separating hyperplane for the non-separablecase, a contingency that frequently arises in data mining, machine learning,pattern recognition, neural network training, and surely other �elds. An idealhyperplane in this case should misclassify the fewest number of set elements,which is an NP-complete problem (Property attributed to Heath [12] by Man-gasarian [16]). For a su�ciently small � > 0, an optimal hyperplane w0x = � canbe found by solving the following mixed integer linear programming problem:minw;�;y P yisuch that w0xi � � + 1� yi � 1; xi 2 S1w0xi � � � 1� yi � �1; xi 2 S2yi 2 f0; 1g: (3)However, problem (3) is intractable when the data to be classi�ed consist ofa massive number of points. Modern approaches are relaxations of (3). Essen-tially, the Boolean condition yi 2 f0; 1g is dropped and the model requires somedesirable properties for w; � (with no pretense of being exhaustive we refer thereader to [1, 4, 5, 6, 7, 22] and references therein).Introducing v = (w; �); e = (1; : : : ; 1), a suitable matrix A and dropping theBoolean constraints y 2 f0; 1g, we replace (3) by:minv;y 12 (v0v + y0y)such that Av + 1p� y � e (4)(Note that an equivalent problem is obtained if the constraints y � 0 are added.In the projection algorithms to be discussed below, this constraint is used to\correct" the iterates).This model has been proposed by Mangasarian and Lee [13] (previously,in [17], Mangasarian and Musicant used a linear term for y in the objectivefunction). A salient feature of (4) is that its dual is a quadratic optimizationproblem subject to bounds on the variables, and several e�cient algorithms havebeen proposed for its solution [2][8][17][18][19]. For B = [A Ip� ] and Q = BB0,the dual problem is: minu�0 12u0Qu� e0u; (5)and its KKT conditions are: 2



Qu� e � 0u � 0u0(Qu� e) = 0 (6)Alternatively, we replace (3) by:minv;y 12 (v0v + y0y + z0z)such that Av + 1p� y � 1p�z = ey; z � 0 (7)This model is quite di�erent from the preceding models in the sense thatthere is actually a penalty for points that are well classi�ed. The z variablesare simply used so that the RHS value is matched. This allows us to work withequalities, and for a small value of � it is expected that these types of correctionswill have little e�ect on the objective.The next section describes projection algorithms based on models (4) and(7). Section 3 reports remarkable numerical results on data generated via theNDC Matlab code [21]. Conclusions and directions for further research, partic-ularly with respect to parallel implementations, are given in the last section ofthis paper.We brie
y comment on notation: Capital Latin letters are sets or matricesdepending upon the context. Lowercase Latin letters denote vectors in IRn,except for the range i; : : : ; q that denotes integers. Lower case Greek letters arereal scalars. Subindices are di�erent components, i.e., xi is the i-th component ofthe n-component vector x and a0b is the inner productPni=1 aibi. For any vector,a K subindex denotes a subvector whose components have indices belonging tothe set K. B = [A Ip� � Ip� ] and Bi is the i-th row of matrix B. BK is thematrix composed of all Bi such that i 2 K. AK is de�ned accordingly. Finally,we de�ne QK = BKB0K , and ri = Aiv + 1p� yi � 1p�zi � 1.2 Projection SVMThe projection SVM (PSVM) algorithm can be formulated in terms of thedetermination of the least 2-norm correction of the constraints of (7) that areviolated by the current iterate:Initialization: v = 0, y = 0, z = 0, s = 0, t = 0.PSVM iteration:Step 1: De�ne the subindex set K = fi 2 1::m j ri 6= 0g .Step 2: dK = �Q�1K rK . 3



Step 3: v  v +A0KdK , yK  yK + dKp� , zK  zK � dKp� .Step 4: 8i 2 K, if si + yi < 0 then si  si + yi, yi  0. Else, yi  si + yi,si  0.Step 5: 8i 2 K, if ti + zi < 0 then ti  ti + zi, zi  0. Else, zi  ti + zi,ti  0.Convergence of the PSVM algorithm: The PSVM algorithm is a special caseof the Boyle-Dijkstra algorithm [3] applied to problem (7). The Boyle-Dijkstraalgorithm is a 'corrected' sequential projection algorithm.� Step 2 is the projection of the previous iterate onto AKvK + 1p� yK = eK .That is, the violated subset of the equation part in (7) (there is no needof correction in this case, since these constraints are linear equalities).� Steps 4 and 5 introduce corrections for constraints z > 0 and y > 0, byconsidering increments s and t.The algorithm converges to the projection of v; y; z = 0 onto the feasibleregion of problem (7) , which by de�nition minimizes the 2-norm to the feasibleregion.Remark 1: In a fully primal implementation, any iterative projection al-gorithm could be used to solve step 2 [10, Lemma 1] (for example, a parallelprojection algorithm like [11]).Remark 2: In cases such that m >> n, the matrix inverse in step 2 canbe e�ciently computed by using the Sherman-Morrison-Woodbury identity, asproposed in [18].Although the solution of (7) converges to the solution of (4) as � goes to 0,it is better to avoid this scaling issue by handling the inequalities in (4) directly,even though there is the disadvantage that convergence to an optimal solutionof (4) cannot be guaranteed.For this reason, we present a simpli�ed form of PSVM (SPSVM), whichaddresses the limiting case of � = 0, corresponding to the inequality constraintsof (4) with the added constraints y � 0. In this case, we rede�ne B as B =[A Ip� ] and ri as ri = Aiv + 1p� yi � 1.Initialization: v = 0, y = 0.SPSVM iteration:Step 1: De�ne the subindex set K = fi 2 1::m j ri < 0g .Step 2: dK = �Q�1K rK :Step 3: v  v +A0KdK , yK  yK + dKp� .4



Step 4: yK  (yK)+:Convergence of the SPSVM algorithm: SPSVM is a sequential block-projection algorithm [9], which alternates projections onto blocks AKvK +1p� yK = eK (step 2) and yK � 0 (step 4). These blocks contain the inter-section Z of Av + 1p� y � e � 0 and y � 0. Since the primal and dual variablessatisfy (v; y) = B0u at optimality, Z matches the feasible set de�ned by (6),with the possible exception of the complementarity constraints. The algorithmgenerates a Fej�er sequence that converges to a point in Z. Note that the par-ticular choice of sets used in this projection algorithm makes it quite similar toPSVM. Although the �nal point does not necessarily correspond to the optimalsolution of problem (4), our numerical tests indicate that the result is a verygood approximation to the solution of (4). Therefore, SPSVM is a heuristic, butone that is capable of producing excellent results for large-scale problems, par-ticularly when the block-dynamic implementation discussed below is employed.From the point of view of implementation, remarks 1 and 2 above can be appliedto step 2 in SPSVM.3 Numerical resultsWe performed numerical tests on a Linux Pentium III machine, running at 600MHz, with 128 MB of main memory, 256 KB L2 cache and 12 GB of secondarymemory. We used the NDC Matlab code [21] to generate 50,000 points, with 32features each (m = 50000, n = 32). The NDC expansion factor was set to 10.ASVM (Active Support Vector Machine) and SPSVM algorithms were ap-plied to model (4). ASVM is a high performance SVM generator for large scaleproblems, that yields the solution of (4) [18]. Algorithm settings were:� � = 0:1, as in [19].� Since ASVM stagnates if the dual variables are 0 at the beginning, wetook the primal point associated to u0 = e as a starting point.� Since m >> n, the Sherman-Morrison-Woodbury identity was used inASVM and SPSVM (step 2). All auxiliary matrix inverses were calculatedby means of Choleski factorizations.We compared ASVM with a block-dynamic implementation of SPSVM. Arandom subset of K of size b is allowed at each iteration. The resulting relaxedSPSVM is also a block-projection algorithm, which projects each iterate ontoa convex superset of Z. Therefore, the algorithm converges. However, it willstop at a point that only satis�es those constraints in (6) taken into accountby the method. Numerical tests indicate that, even for small b sizes, a quiterepresentative subset of (6) has been considered at algorithm termination.5



Table 1: Performance of parametrized algorithms on the data settype block parameter (b) time (s) Best testing accuracy (at)SPSVM 5000 16.84 86.63%2500 10.21 86.65%1000 6.67 86.71%500 4.41 86.64%100 1.6 86.44%ASVM 45000 48.99 86.47%20000 22.19 86.42%10000 11.26 86.19%7500 8.25 86.14%5000 4.9 85.86%2500 1.67 85.86%1000 0.41 84.81%500 0.19 83.08%100 0.02 69.31%Also, a block-static implementation of ASVM was tested. For a given train-ing set, a random block of b points was selected at the beginning, and all re-maining training points were discarded. It has been shown [14] that this simplestrategy produces a good testing accuracy in large sets. At each iteration,ASVM works with all constraints whose dual variables are nonzero. A \bruteforce" block-dynamic ASVM implementation would simply pick a random sam-ple of b constraints among them. Unfortunately, our tests suggest that such animplementation does not converge, and its development lies beyond the purposeof this paper.For each algorithm and block size, ten runs of 100 iterations were made.Execution was stopped if there was no improvement in testing accuracy for 6iterations. In all runs, the problem set was randomly divided in two parts,containing 90% and 10% of the points, corresponding to training and testingsubsets, respectively. Table 1 shows the average of the best testing accuraciesat reached, and the highest elapsed time among them.Note that SPSVM reaches at > 86% in 1.6 seconds with a small block size,which is much faster than ASVM. Also, note that, for our particular problem,at increases with b for ASVM, while SPSVM achieves optimal performance withb = 1000.Figures 1 and 2 show the average evolution of testing set accuracy acrossten runs for the best instances of ASVM and SPSVM.4 Final remarksIn this paper, we have proposed two new algorithms for SVM generation, PSVMand SPSVM. A block-dynamic implementation of SPSVM out-performs ASVM6
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[18], on a medium-scale instance of the NDC problem.As a future research line, we plan to introduce parallelism in the projectionSVM algorithms. Speci�cally, two approaches can be followed:� Parallelization of step 2, by means of parallel projection methods [11].� A parallel block-dynamic approach: each processor solves step 2 on adi�erent constraint block, and the best point is selected. The objectivefunction (5) can be used as a merit function.Another future research line concerns scalability issues. In harder problems(for example, NDC problems with a larger expansion factor), it is expected thatstatic-block ASVM implementations will have a worse performance, since theywill work with a much less representative sample, as b decreases. However, ablock-dynamic SPSVM implementation may still sweep a broad portion of theproblem, for enough execution time.The authors are indebted to Prof. Ubaldo Garc��a-Palomares (UniversidadSim�on Bol��var, Venezuela), for interesting observations that greatly in
uencedthis work.

9



References[1] K.P. Bennett and O.L. Mangasarian, Robust linear programming dis-crimination of two linearly inseparable sets, Optimization Methodsand Software 1 (1992) 23{34.[2] R.H. Bielschowsky, A. Friedlander, F.A.M. Gomes, J.M. Mart��nez andM. Rayd�an, An adaptive algorithm for bound constrained quadraticminimization, Investigaci�on Operativa 7 (1997) 67{102.[3] J.P. Boyle and R.L. Dijkstra, A method for �nding projections ontothe intersections of convex sets in Hilbert spaces, Lecture Notes inStatistics 37 (1986) 28{47.[4] P.S. Bradley and O.L. Mangasarian, Massive data discrimination vialinear support vector machines, Optimization Methods and Software13 (2000) 1{10.[5] C.J.C. Burges, A tutorial on support vector machines for patternrecognition, Data Mining and Knowledge Discovery 2-2 (1998) 121{167.[6] V. Cherkassky and F. Mullier, Learning from Data - Concepts, Theoryand Methods John Wiley & Sons, New York (1998).[7] N. Cristianini and J. Shawe-Taylor, An introduction to support vectormachines, Cambridge University Press (2000)[8] M.A. Diniz-Ehrhardt, Z. Dostal, M.A. Gomes-Ruggiero, J.M.Mart��nez and S. A. Santos, Nonmonotone strategy for minimizationof quadratics with simple constraints, to appear in Applications ofMathematics .[9] U.M. Garc��a-Palomares, Aplicaci�on de los m�etodos de proyecci�on en elproblema de factibilidad convexa: un repaso, Investigaci�on Operativa4-3 (1994) 229{245.[10] U.M. Garc��a-Palomares, Preconditioning projection methods for solv-ing algebraic linear systems, Numerical Algorithms 21 (1999) 157{164.[11] U.M. Garc��a-Palomares and F.J. Gonz�alez Casta~no, Incomplete pro-jections algorithms for solving the convex feasibility problem, Numer-ical Algorithms 18 (1998) 177{193.[12] D. Heath, A geometric framework for machine learning, PhD Thesis,Department of Computer Science, Johns Hopkins University, USA(1992).[13] Y.-J. Lee and O.L. Mangasarian, SSVM: A smooth support vectormachine, Computational Optimization and Applications , to appear.10



[14] Y.-J. Lee and O.L. Mangasarian, RSVM: Reduced Support VectorMachines, Technical report 00-07, Data Mining Institute, ComputerSciences Department, University of Wisconsin, Madison, Wisconsin,USA (July 2000).[15] J. Makhoul, El-Jaroudi and R. Schwartz, Formation of disconnecteddecision regions with a single hidden layer, in Proceedings of the In-ternational Joint Conference on Neural Networks 1 (1989) 455{460.[16] O.L. Mangasarian, Optimization in machine learning, Mathematicalprogramming technical report 95-01, Computer Sciences Department,University of Wisconsin, Madison, Wisconsin, USA (January 1995).[17] O.L. Mangasarian and D.R. Musicant, Successive overrelaxation forsupport vector machines, IEEE Transactions on Neural Networks 10(1999) 1032{1037.[18] O.L. Mangasarian and D.R. Musicant, Active support vector machineclassi�cation, Technical report 00-04, Data Mining Institute, Com-puter Sciences Department, University of Wisconsin, Madison, Wis-consin, USA (April 2000).[19] O.L. Mangasarian and D.R. Musicant, Lagrangian support vectormachines, Technical report 00-06, Data Mining Institute, ComputerSciences Department, University of Wisconsin, Madison, Wisconsin,USA (June 2000).[20] N. Megiddo, On the complexity of polyhedral separability, Discreteand Computational Geometry 3 (1988) 325{337.[21] D.R. Musicant, NDC: normally distributed clustered datasets,www.cs.wisc.edu/ musicant/data/ndc/ (2000).[22] V.N. Vapnik, The nature of statistical learning theory Springer, NewYork (1995).

11


