1. What is an A_{∞} Algebra?

A multilinear map $\alpha \in C^n(V) = \text{Hom}(V^n, V)$ extends to a coderivation of $T(V)$ by

$$\alpha(v_1 \cdots v_n) = \sum_{i=0}^{n} (-1)^{i}v_1 \cdots \hat{v}_i \cdots v_n\alpha(v_1, \ldots, \hat{v}_i, \ldots, v_n).$$

Using the formula above we are able to identify the Lie algebra $\text{Coder}(T(V))$ of coderivations with

$$C(V) = \text{Hom}(T(V), V) = \bigoplus_{n \geq 0} C^n(V).$$

As a consequence, any coderivation d has a decomposition as a power series $d = \sum_{n \geq 0} d^n$. An odd coderivation $d = d_1 + d_2 + \cdots$ such that $[d, d] = 0$ is called an A_{∞} algebra structure on V.

An A_{∞} structure d determines a cohomology operator D on $\text{Coder}(T(V))$ by $D(\phi) = d_1 \phi$ for $\phi \in C(V)$. Then $D^2 = 0$, so we can define the cohomology $H(d)$ by

$$H(D) = \ker(D)/\text{im}(D).$$

When d consists of a single term d_n we can redefine this cohomology to define $H^n(d)$ for all natural numbers n.

2. Extensions of a Vector Space

What is an Extension?

An extension of an algebra W by an algebra M is represented by a short exact sequence

$$0 \to M \to V \to W \to 0,$$

where V is the vector space $V = M \oplus W$, equipped with some algebra structure.

In the language of algebra, we have M as an ideal in V, and $W = V/M$ is the quotient algebra. Why we are interested in this construction is that we want to determine the moduli space of all algebras on V by looking at the moduli spaces of algebras on smaller dimensional spaces.

If V has a proper nontrivial ideal M, then we can use the idea of extensions to express V as an extension of the algebra $W = V/M$ by M. Then, we also have to understand the case when V has no proper nontrivial ideals. In this case we say V is simple.

When V is \mathbb{Z}_2-graded we require that ideals be graded, meaning it is a graded subspace of a vector space V.

3. The moduli space of A_{∞} algebras

An invertible even linear map $\lambda : V \to V$ extends in a natural way to a coalgebra automorphism of $T(V)$. Moreover, if $a, b \in C^n(V)$ is even for $k > 1$, then $\exp(a) = \lambda^n\exp(b)$ is always defined. An arbitrary coalgebra morphism y can be written in the form $y = \exp(a_{n+2}x_{n+1}y_{n+2})\cdots$, where $\lambda \in \text{GL}(V)$ and $a_2 \in C^2(V)$. Then

$$y^n = (\prod_{k=1}^{n} \exp(-ad_{n-k})(\lambda^k)).$$

The important fact about the above formula is that it is computable.

We say that d and d' are equivalent A_{∞} algebra structures if there is a coalgebra automorphism λ of the tensor coalgebra such that $\psi^*(\lambda) = d'$ and write $d \sim d'$.

Theorem 1 Suppose that

$$d = d_0 + d_1 + \cdots; \quad d' = d_0 + d_1 + \cdots.$$

Then $k = l$ and there is a linear automorphism λ of $T(V)$ such that $\psi^*(\lambda) = d'$. Because of this theorem, we know the first step in classifying the A_{∞} algebras is to classify all nonisomorphic A_{∞} algebras consisting of a single term $d_0 \in C^0$.

4. Three Types of deformation Problems

We give three types of deformation problems which have the same formal structure:

1. Formal deformations of an algebra. Let $d = d(\varphi)$, where $\varphi \in \text{Hom}(T(V), V)$.

2. Extension of a degree n coalgebra to a unital A_{∞} algebra. Let $d = d(\varphi)$, where $\varphi \in \text{Hom}(T(V), V)$ for $n \geq 2$.

3. Extending a degree n codifferential d on $T(V)$ to a degree n codifferential ρ on $T(M)$, n codifferential on $V = \mathbb{Z} \otimes M$.

5. A Descending Sequence of Cohomology

The set of equations $\xi_0 = 0$ gives a sequence of cohomology operators D_k, each defined on the previous cohomology space H_{k-1}. Define

$$D_k(\varphi) = \{\varphi + \kappa\}, \quad H_k = \ker(D_k)/\text{im}(D_k).$$

Since $D_2^2 = 0$, H_2 is well defined, and since

$$D_k(\varphi, \chi) = [D_k(\varphi), \chi] + (-1)^{K} (\varphi, D_k \chi),$$

H_0 is a graded Lie algebra. We prove the following theorem:

Theorem 2 An element φ gives rise to a cohomology class $[\varphi] \in H_0$ precisely when there are elements $\varphi_1, \ldots, \varphi_n$ such that the sequence of equations

$$[\varphi_1, \varphi] = 0, \quad [\varphi_i, \varphi_{i+1}, \varphi] = 0, \quad \cdots$$

where $\xi_0 = [\varphi_1, \varphi] = [\varphi_1, \varphi_2, \varphi] = \cdots = [\varphi_n, \varphi] = 0$.

Then the map $D_{n+1} : H_n \to H_{n+1}$ given by $D_{n+1}([\varphi_1, \varphi_2, \varphi_3]) = [\varphi_{n+2}, \varphi_{n+1}, \varphi]$, $\varphi \in \text{ker}(D_{n+1})$ is well defined, satisfies $D_{n+1}^2 = 0$, and the cohomology H_{n+1} is the $D_{n+1}/\text{im}(D_{n+1})$ has the structure of a graded Lie algebra. Moreover $[\varphi]$, is well defined for all n.

The theorem above plays a role in the calculation of extensions of A_{∞} algebras. In the next slide, we give an example of this construction.

6. A_{∞} Algebras of degree 3 on a 1|1 dimensional space

<table>
<thead>
<tr>
<th>Codifferential</th>
<th>H^0</th>
<th>H^1</th>
<th>H^2</th>
<th>H^3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$d_0 = \varphi_1^2$</td>
<td>$d_1 = \varphi_1^2 + \varphi_1^2$</td>
<td>$d_2 = \varphi_1^3 + \varphi_1^2$</td>
<td>$d_3 = \varphi_1^4 + \varphi_1^3$</td>
<td></td>
</tr>
</tbody>
</table>

The codifferential d_0 of $d_1 = d_2 = \cdots$ arise as extensions. We have jump deformations $d_2 \to d_3 \to \cdots$, $d_2 \oplus d_1 \to d_3$.

References

Acknowledgments

- Office of Research and Sponsored Programs, UW-Eau Claire
- Department of Mathematics, UW-Eau Claire
- This document was typeset using MTHX