Straight Lake State Park is a 370-acre park in Wisconsin. The Ice Age National Scenic Trail used to be a popular place for recreation. Now it is used for educational purposes. The trail follows the path of the last ice age, when glaciers carved out the land. The park contains numerous features that can be seen along the trail, such as eskers and tunnel channels. The trail also provides an excellent opportunity to study glacial geology.

ABSTRACT

The Ice Age National Scenic Trail runs through the park, providing a great opportunity to study glacial geology. The trail is marked with geologic hiking guides, which are available for park visitors. The guides provide information about the geology of the area and the features that can be seen along the trail. The trail also includes several stops where geologists have conducted research, such as the area near McKinley and Big Round Lake. These stops provide a great opportunity to learn about the geology of the area and to see the features that are found along the trail.

RESULTS

Several locations along the trail were chosen to showcase a hiking guide for the park and surrounding areas. Five stops are along the trail within the state park boundaries, and the other stops are located on the trail segment between 2700th Ave. and State Highway 48 (Fig. 4).

Basalt Outcrops

Outcrops of basaltic breccia are exposed along the Ice Age Trail in the park area, especially north of 280th Ave. (Stop 2, Fig. 4). Outcrops are up to 20 m in diameter. Many of the outcrops display dendritic branching patterns resulting from tensional fractures. Visible in the basalt are elongate, up to 1 cm long, and the outcrops contain several rare crystals found in hot fluids.

Esker

In the Straight Lake area, a typical example of an esker is present in the bottom of the tunnel channel (northeast of Long Lake and directly north of State Highway 48, Stop 3, Figs. 3, 4). Here the trail traveres the crest of the 15-m-high esker. The esker is quite continuous for 7 km along the axis of the tunnel channel. Eskers are common features in glaciated areas, appearing along in or near streams.

Tunnel Channel and Till

Johnson (2000) recognized that Straight Lake is located in a tunnel channel. A spectacular view of the tunnel channel is seen at the south end of Straight Lake along the trail (Fig. 4). The tunnel channel extends 12 km from 280th Ave. southwest to Big Round Lake (Fig. 3). According to Johnson (2000), the tunnel channel terminates near the McKinley phase ice margin and starts ~2 km northwest of the Lock phase ice margin. The exact timing of tunnel channel formation is uncertain. A tunnel channel forms as meltwater is stored in a subglacial reservoir (O’Cofle, 1996). During glacial times, pressurized water bursts toward the margin during an outburst flood event and erodes a tunnel channel (Hooke and Jennings, 2006). In the park area, the flood eroded an tunnel channel at least 27 m deep and 0.25 km west of the tunnel channel. Sediments were transported to the tunnel channel, where the water deposited material in a tunnel channel south of Big Round Lake.

Pitted Outwash Plains

The trail crosses a pitted outwash plain located northeast of Long Lake (Stop 4, Fig. 4). Johnson (2000, 2001, 2002) described the pitted outwash plains in the area. The trail passes through areas of supraglacial sediment that have been slumped into the tunnel channel. The slumped sediment has created a low area in the tunnel channel.

Hummocky Topography

Hummocky topography is common in the park and the surrounding area. The topmost layer is seen on the trail between Straight Lake and Cool Spring. In the southwestern margin of the park, the topographic surface is characterized by a series of hummocks and ridges. The hummocks are particularly prominent near the southwest margin of the park. The hummocks are formed by the deposition of sediments during a glacial outburst flood event. The hummocks are typically 10 m in diameter and 2 m in height.

ACKNOWLEDGMENTS

We thank several people and organizations who have contributed to this project. Julie Fox and Kurt Dregner of the WDNR provided logistical support and technical guidance during the project. The Wisconsin DNR also provided logistical support through the Wisconsin DNR Geologic Mapping Program. The Ice Age Trail Alliance were of great help with the mapping process. This project was funded by a USDA Graduate Research Grant and a UWEC Summer Research Experiences for Undergraduates Grant.

BIBLIOGRAPHY

