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ABSTRACT

We will make strides toward proving the Jacobian Conjecture in two variables when the degrees of
the polynomials defining the endomorphism are relatively prime. We will use techniques that are less
elementary than are strictly necessary to prove this case in hope of generalizing the proof to the case
when these degrees are not relatively prime.
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1 Introduction

The Jacobian Conjecture is a major outstanding conjecture in algebra from 1939 when it was first stated by
mathematician Ott-Heinrich Keller. The Jacobian Conjecture says if you form a ring endomorphism σ on a
polynomial ring in n variables over a field with characteristic zero, then the ring endomorphism is bijective
if and only if the determinant of the jacobian of σ is a nonzero element of the given field. To date despite
multiple published attempted proofs the conjecture remains unproven.

2 Notation and Definitions

Commutative Ring with 1 [Ei]

A commutative ring with 1 is an additive abelian group R with an operation (a,b) 7→ ab referred to as
multiplication such that ∀a,b,c ∈ R:

(ab)c = a(bc)

ab = ba

a(b+ c) = ab+ac

1a = a1 = a

In our work we will use ring to mean a commutative ring with 1.

Polynomial Ring [La]

A polynomial ring k[x] is a set of all possible polynomials with coefficients from the integral domain k and
the place holder or variable x.

Given the polynomials f (x) = ∑n
i=0 aixi and g(x) = ∑m

j=0 b jx j

we define the sum to be

f (x)+g(x) =
max(m,n)

∑
k=0

(ak +bk)xk

we define the product to be

f (x)g(x) =
m+n

∑
k=0

(
∑

i+ j=k
aib j

)
xk

A polynomial ring in n variables we can write as k[x1, ...,xn] := (k[x1, ...,xn−1])[xn].

Ring Homomorphism [La]

Let A,B be rings, and let f : A→ B be a function. We say that f is a ring homomorphism if f (1A) = 1B and
∀a,b ∈ A,

f (a+b) = f (a)+ f (b)

and
f (ab) = f (a) f (b).
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Jacobian [Ab]

Let F,G be polynomials in variables x and y, then J(F,G), the jacobian of F,G relative to x, y, is defined by

J(F,G) = FxGy−GxFy

The Jacobian Conjecture in two variables

Let k be a field with characteristic zero. Let φ : k[x,y]→ k[x,y] be a ring endomorphism, fixing k pointwise,
and f = φ(x), g = φ(y). Then φ is bijective if and only if |J( f ,g)| ∈ k×.

Algebraic vs. Transcendental

Suppose R and S are rings and that S is a subring of R. Then we say that R extends S. Let
α ∈ R. Then:

Definition: α is called algebraic over S if ∃ f ∈ S[x]−{0} s.t. f (α) = 0.

Definition: α is called integral over S if ∃ f ∈ S[x]−{0} s.t. f(α) = 0 and f is monic.

Definition: α is said to be transcendental over S if α is not algebraic.

Further:

Definition: If ∀α ∈ R, α is algebraic over S, then R is called an algebraic extension of S.

Definition: If ∀α ∈ R, α is integral over S, then R is called an integral extension of S.

Transcendence Degree

Let k be a field. Let K be an extension field of k.

Definition: Let S be a subset of K. Let T = k[X1, ...,Xn] be a polynomial ring in variables X1, ...,Xn. We say
S is algebraically independent over k when for every finite sequence of distinct elements x1, . . . ,xn ∈ S, If
f ∈ T , and f (x1, . . . ,xn) = 0, then f is the zero polynomial.

Definition: Let S be a subset of K. If S is algebraically independent over k, and if the cardinality of S is
the greatest cardinality of all algebraically independent subsets of K over k, then the cardinality of S is the
transcendence degree of K over k.[La]

Laurent Series

Let k be a field with characteristic 0. A Laurent series is written as a power series which may include terms
of negative degree. A Laurent series with a placeholder x about a given point a ∈ k (its center) is defined as:

∞

∑
j

a j(x−a) j
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where j ∈ Z, a j ∈ k.

Notation: k((x)) denotes the ring of Laurent series about 0 in the variable x.

Notation: k[[x]] denotes the ring of power series about 0 in the variable x.

3 Results

Proposition 6 [Ro] Let k be a field of characteristic 0. Let F,G ∈ k[[y]][x] be monic in x with degx(F) =
n > 0 and degx(G) = m > 0. Let ρ ∈ k[[y]]((x−1/n)) satisfy F(ρ,y) = x, where ρ has leading term x1/n.
Write G(ρ,y) = ∑∞

j=−m c j(y)x− j/n with c j(y) ∈ k[[y]]. Then J(F,G) = 1 if and only if c j(y) ∈ k for all
j :−m≤ j ≤ n−2 and cn−1(y) = y/n+ c for some c ∈ k.

Example 1 Let k be a field of characteristic 0. Let A0,B2,B1,B0 be algebraically independent over k. Let
R = k[A0,B2,B1,B0]. We start our example using the setup from prop 6 of [Ro] by constructing F,G ∈ R[x]
to be monic in x. We let F = x2 +A0 and let G = x3 +B2x2 +B1x+B0 so that degx(F) = 2 and degx(G) = 3.
We now want to construct ρ so that it satisfies F(ρ) = x, thus ρ = (x−A0)1/2 = x1/2(1−A0x−1)1/2. Next
we wish to expand this expression for ρ as a Laurent series about 0 in x−1/2 using the Binomial Theorem.

x1/2(1− x−1A0)1/2 = x1/2 ·
(

∞

∑
j=0

(
1/2

j

)
(−A0x−1) j

)

In order to find G(ρ) we will use big-O notation with the series (1−x−1A0)1/2 by truncating it after the third
term in the series and adding O(x−3).

x1/2

(
∞

∑
j=0

(
1/2

j

)
(−A0x−1) j

)
= x1/2

(
1+

(−A0)
2

x−1− (−A0)2

8
x−2 +O(x−3)

)

If we now construct G(ρ) we get:

G(ρ) = ((x−A0)1/2)3 +B2((x−A0)1/2)2 +B1(x−A0)1/2 +B0

= (x−A0)(x−A0)1/2 +B2(x−A0)+B1(x−A0)1/2 +B0

= (x−A0 +B1)(x−A0)1/2 +B2x−A0B2 +B0

= (x−A0 +B1)x1/2(1−A0x−1)1/2 +B2x−A0B2 +B0

=
(

x3/2−A0x1/2 +B1x1/2
)(

1+
(−A0)

2
x−1− (−A2

0)
8

(x−1)2 +O(x−3)
)

+B2x+(B0−A0B2)

= x3/2 +B2x2/2+
(−3A0

2
+B1

)
x1/2+(B0−B2A0)x0/2+

(
3A2

0−4B1A0

8

)
x−1/2+

(
A3

0−B1A2
0

8

)
x−3/2+O(x−3/2)

and we can now see the desired coefficients of G(ρ) are:

C1 = B2, C2 =
(−3A0

2
+B1

)
, C3 = (B0−B2A0), C4 =

(
3A2

0−4B1A0

8

)

If we construct the ring S = k[C1,C2,C3,C4] we now wish to show that A0 is integral over S.
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Lemma 1. Let k be a field with characteristic 0, and let R = k[a0,b0,b1,b2] and let S = k[c1,c2,c3,c4].
If c1 = b2, c2 =

(
−3a0

2 +b1

)
, c3 = (b0−b2a0),and c4 =

(
3a2

0−4b1a0
8

)
, then a0 is integral over S.

PROOF. Assume: c1 = b2, c2 =
(
−3a0

2 +b1

)
, c3 = (b0−b2a0), and c4 =

(
3a2

0−4b1a0
8

)
.

We know c2 =
(
−3a0

2 +b1

)
so solving for b1 we get b1 = 3

2 a0 + c2.

Using this in c4 =
(

3a2
0−4b1a0

8

)
we get by substitution c4 =

3a2
0−4( 3

2 a0+c2)a0

8 . Simplifying and rewriting
this equation in terms of a0 we have

a2
0 +

4
3

c2a0 +
8
3

c4 = 0.

Since 1, 4
3 c2,

8
3 c4 ∈ S,∃h(x) = x2 + 4

3 c2x+ 8
3 c4 ∈ S[x]−{0} which is monic and satisfies h(a0) = 0.

Lemma 2. Let k be a field of characteristic 0. Let a0,b0,b1,b2 ∈ k[y]. Let f = x2 + a0 and let g = x3 +
b2x2 +b1x+b0. If J( f ,g) = 1, then a0 is constant in k[y].

PROOF. Assume J( f ,g) = 1 and assume for a contradiction a0 is not constant in k[y]. We know from
Lemma 1 that a2

0 + 4
3 c2a0 + 8

3 c4 = 0. Since a0 is not constant in k[y] we can say degy(a
2
0)≥ 2, and Proposition

6[Ro] tells us degy(
8
3 c4)= 1, and the strong triangle inequality states degy(a

2
0+ 8

3 c4)= max{degy(a
2
0),degy(

8
3 c4)}=

degy(a
2
0). Also by Proposition 6[Ro] we know c2 is constant in k[y]. Since c2 is constant in k[y] we

know degy(
4
3 c2a0) ≤ degy(a

2
0). Since 2(degy(a0)) = degy(a

2
0), we know degy(

4
3 c2a0) < deg(a2

0). Using
the strong triangle inequality we know degy((a

2
0 + 8

3 c4) + 4
3 c2a0) = max{degy(a

2
0 + 8

3 c4), degy(
4
3 c2a0)}

since degy(a
2
0 + 8

3 c4) > degy(
4
3 c2a0), thus degy(a

2
0 + 4

3 c2a0 + 8
3 c4) ≥ 2. However, a2

0 + 4
3 c2a0 + 8

3 c4 = 0
and degy(0) =−∞. Thus degy(a

2
0 + 4

3 c2a0 + 8
3 c4) =−∞, contradiction.

Proposition 1. Let k be a field with characteristic 0. Let f = xn + ∑n−2
j=0 a j x j and g = xm +∑m−1

j=0 b j x j with
a j,b j ∈ k[y] and m,n ≥ 2. Let µ ∈ k[y]((x−1/n)) satisfy f (µ,y) = x, where µ has leading term x1/n. Write
g(µ,y) = ∑∞

j=−m c j(y)x− j/n with c j(y) ∈ k[y]. Let An−2, . . . ,A0,Bm−1, . . . ,B0 be algebraically independent
variables over k. Let R = k[An−2, . . . ,A0,Bm−1, . . . ,B0]. Let F = xn + ∑n−2

j=0 A j x j and G = xm + ∑m−1
j=0 B j x j.

Let ρ ∈ R((x−1/n)) satisfy F(ρ) = x, where ρ has leading term x1/n. Write G(ρ) = ∑∞
j=−mC j x− j/n with

C j ∈ R. Let S = k[C−m, . . . ,Cn−1]. Suppose R is integral over S. If J( f , g) = 1, then a0 is constant in k[y].

PROOF. Assume J( f , g) = 1. Also assume for a contradiction a0 is not constant in k[y]. We start by
grading R by assigning deg(Ai) = n− i, deg(B j) = m− j. Let the degree with respect to this grading on R
be denoted as degR. Let σ : R→ k[y] be the ring homomorphism induced by σ(Ai) 7→ ai, σ(B j) 7→ b j, and
fixing k pointwise. This results in σ(C j) = c j. We know ∃h ∈ S[X ]−{0} s.t. h(A0) = 0 and such that h is
monic. We can write h(A0) = Ap

0 + ∑p−1
j=0 D jA

j
0 where D j ∈ k[C−m, . . . ,Cn−2][Cn−1],p ∈ N, and σ(h(A0)) =

ap
0 +∑p−1

j=0 d ja
j
0 where d j = σ(D j). Without loss of generality D j is homogeneous in R of degree (p− j)n, and

degR(A j
0) = jp, then degR(D jA

j
0) = np or degR(D jA

j
0) =−∞. Define Ri as the homogeneous component of

R in degree i. So D jA
j
0 ∈Rnp, and D j ∈ Rn(p− j). Let q = degCn−1

(D j). We know degR(Cn−1) = n+m−1, and

n(p− j) = degR(D j)≥ (n+m−1)q, so n(p− j)
(n+m−1) ≥ q. Since n

n+m−1 < 1, q < p− j. Proposition 6[Ro] tells

us degy(d j)≤ q, then degy(d j) < p− j. We know degy(d ja
j
0) = degy(d j)+degy(a

j
0) < (p− j)+degy(a

j
0)≤

degy(a
p− j
0 ) + degy(a

j
0) = degy(a

p
o). Thus degy(d ja

j
0) < degy(a

p
0). So then the strong triangle inequality

tells us degy(a
p
0 + ∑p−1

j=0 d ja
j
0) = degy(a

p
0) = p. However, ap

0 + ∑p−1
j=0 d ja

j
0 = σ(h(A0)) = σ(0) = 0. Thus

degy(a
p
0 +∑p−1

j=0 d ja
j
0) =−∞. Contradiction.
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Example 2 If R := k[x,y] and S := [x2− y2,xy], then we will show that R is integral over S.

Let γ = θ4− (x2− y2)θ2− (xy)2, then γ ∈ S[θ]−{0}.

γ(x) = x4− (x2− y2)x2− (xy)2 = x4− x4 + y2x2− y2x2 = 0

From this we can see ∃γ ∈ S[θ]−{0} s.t γ(x) = 0 and γ is monic. Thus x is integral over S.

Let ψ = θ4 +(x2− y2)θ2− (xy)2, then ψ ∈ S[θ]−{0}.

ψ(y) = y4 +(x2− y2)y2− (xy)2 = y4 + x2y2− y4− x2y2 = 0

From this we can see ∃ψ ∈ S[θ]−{0} s.t ψ(y) = 0 and ψ is monic. Thus y is integral over S.

Because x, y are both integral over S, then R is integral over S.

Example 3 Let k be a field of characteristic 0. Let A0,B3,B2,B1,B0 be algebraically independent over k. Let
F = x2 +A0 and let G = x4 +B3x3 +B2x2 +B1x+B0 so that degx(F) = 2 and degx(G) = 4. As in Example
1, but expanding to O(x−4), we have

ρ = x1/2

(
∞

∑
j=0

(
1/2

j

)
(−A0x−1) j

)
= x1/2

(
1+

(−A0)
2

x−1− (−A0)2

8
x−2 +

(−A0)3

16
x−3 +O(x−4)

)

If we now construct G(ρ) we get:

G(ρ) = ((x−A0)1/2)4 +B3((x−A0)1/2)3 +B2((x−A0)1/2)2 +B1(x−A0)1/2 +B0

= (x−A0)2 +B3(x−A0)(x−A0)1/2 +B2(x−A0)+B1(x−A0)1/2 +B0

= (x−A0)2 +(B3x−A0B3 +B1)(x−A0)1/2 +B2x−A0B2 +B0

= (B3x−A0B3 +B1)
(

x1/2 +
(−A0)

2
x−1/2− (−A0)2

8
x−3/2 +

(−A0)3

16
x−5/2 +O(x−7/2)

)

+x2− (2A2−B2)x+A2
0 +B0−A0B2

= x4/2 +B3x3/2 +(B2−2A0)x2/2 +
(

B1− 3A0B3

2

)
x1/2 +(A2

0 +B0−A0B2)x0/2 +
(

3A2
0B3

8
− A0B1

2

)
x−1/2

+
(

A3
0B3−2B1A2

0
16

)
x−3/2 +

(
B3A4

0−B1A3
0

16

)
x−5/2 +O(x−5/2)

and we can now see the desired coefficients of G(ρ) are:

C1 = B3,C2 = (B2−2A0),C3 =
(

B1− 3B3A0

2

)
,C4 = (A2

0 +B0−B2A0),C5 =
(

3B3A2
0

8
− B1A0

2

)

If we construct two rings R = k[A0,B0,B1,B2,B3] and S = k[C1,C2,C3,C4,C5] we now wish to show that R
is not integral over S.

We know C1 = B3 and C3 =
(

B1− 3B3A0
2

)
solving for B3 and B1 we get B3 = C1 and B1 = C3 + 3

2C1A0. We

can then see by substitution that C5 = −3C1A2
0+4C3A0

8 . Next we attempt to construct a monic polynomial in
A0.

C5 =−3C1A2
0 +4C3A0

8
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−8C5 = 3C1A2
0 +4C3A0

−3C1A2
0−4C3A0−8C5 =−3C1A2

0−4C3A0 +3C1A2
0 +4C3A0

3C1A2
0 +4C3A0 +8C5 = 0

So we can see that A0 is algebraic over S. However, since 3C1 is not constant, we can not divide this poly-
nomial by 3C1. This is not proof that A0 is not integral over S. There are an infinite number of polynomials
that would need to be checked. So we need to try a new method.

Lemma 3. Assume that S,R are the rings in Example 3. Let ` = n+m−1. Let α ∈ R. Suppose ∃P ∈ k` s.t.
|δ−1(P)| 6< ∞, where ξ : k` → k`+1, ξ(x1, . . . ,x`) = (C1(A0 = x1, . . . ,Bm−1 = x`), . . . ,C`(A0 = x1, . . . ,Bm−1 =
x`),α(A0 = x1, . . . ,Bm−1 = x`)), and δ : ξ(k`) → k` where (v1, . . . ,v`,v`+1) 7→ (v1, . . . ,v`). Then α is not
integral over S.

PROOF. Assume for a contradiction α is integral over S. Then ∃h ∈ S[x]−0 s.t. h is monic and h(α) = 0.
Write h = xz + Dz−1xz−1 + . . .+ D0x0, where D j ∈ S. We can write P = (p1, . . . , p`). Now let ψ = h(C1 =
p1, . . . ,C` = p`). We then have that ψ ∈ k[x], and degx(ψ) = z. This tells us ψ has at most z roots in k.
Let M ∈ g−1(P), write M = (p1, . . . , p`,u).There exists Q ∈ k` such that ξ(Q) = M. This tells us ξ(Q) =
ξ(Ci(A0 = q1, . . . ,Bm−1 = q`),α(A0 = q1, . . . ,Bm−1 = q`)) = (p1, . . . , p`,u)whereQ = (q1, . . . ,q`). So then
u = α(A0 = q1, . . . ,Bm−1 = q`). Because of this, h(x)(A0 = q1, . . . ,Bm−1 = q`) = h(x)(C1 = p1, . . . ,C` =
p`) = ψ(x). We can now see that 0 = h(α) = h(x)(A0 = q1, . . . ,Bm−1 = q`,x = α(A0 = q1, . . . ,Bm−1 =
q`)) = h(x)(C1 = p1, . . . ,C` = p`,x = u) = ψ(u). Since ψ(u) = 0 we know u is a root of ψ in k. Thus
∀N ∈ δ−1(P), if we write N = (p1, . . . , p`,v), then v is a root of ψ in k. Since |δ−1(P)| 6< ∞, then degx(ψ) 6< ∞.
Contradiction.

Lemma 4. Let k be a field of characteristic 0. Let A0,B3,B2,B1,B0 be algebraically independent variables
over k. Define ξ : k5 → k6, ξ(x1, . . . ,x5) = (C1(A0 = x1, . . . ,B3 = x5), . . . ,(C5(A0 = x1, . . . ,B3 = x5),A0(A0 =
x1, . . . ,B3 = x5)), and δ : ξ(k5)→ k5 where (v1, . . . ,v5,v6) 7→ (v1, . . . ,v5). Let R = k[An−2, . . . ,A0,Bm−1, . . . ,B0].
Let F = x2 + A0 and G = x4 + B3x3 + B2x2 + B1x + B0. Let ρ ∈ R((x−1/n)) satisfy F(ρ) = x, where ρ has
leading term x1/n. Write G(ρ) = ∑∞

j=−mC j x− j/n with C j ∈ R. Let S = k[C1,C2,C3,C4,C5]. Then A0 is not
integral over S.

PROOF. Let P = (0, 0, 0, 0, 0). Let α = A0. Let u ∈ k. Write M = (0,0,0,0,0,u). We claim that ∃ Q ∈ k5

s.t. ξ(Q) = M. Let H = F , let F1 = x, and let G1 = x2. Then let G̃ = G1 ◦H = (x2 +A0)2 = x4 +2A0x2 +A2
0,

and let F̃ = F1 ◦H = x2 +A0. Then G̃◦ F̃−1 = (G1 ◦H)◦ (F1 ◦H)−1 = (G1 ◦H)◦ (H−1 ◦F−1
1 ) = G1 ◦F−1

1 =
(x)2 = x2. Let Q = (u,u2,0,2u,0). Since G̃ ◦ F̃−1 = x2 and ξ(Q) = (the first five coefficients after x2 of
G̃ ◦ F̃−1(A0 = u), A0(A0 = u,B0 = u2,B1 = 0,B2 = 2u,B3 = 0)) = (the first five coefficients after x2 of
x2,u) = (0,0,0,0,0,u) = M. So since u is an arbitrary element of k, and since k is a field with characteristic
0, then u can take an infinite number of values. Thus |δ−1(P)| 6< ∞. So by Lemma 3 we know A0 is not
integral over S.
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