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Abstract

Pictorial communication systems use synthesized pictures,
rather than text, to communicate with users. Because such
systems depend on images to convey meanings, it is critical
to understand how a human user perceives the image mean-
ing (sense). This paper offers an empirical and theoretical
study of how humans perceive image senses. We conduct a
user study with 113 users to elicit their perceived senses on
400 image sets, from which we discover widespread image
sense ambiguities. We examine how the number of images
shown relates to sense ambiguity and discover several sig-
nificant patterns. We then propose a Bayesian model to ex-
plain human image perception behaviors, based on a novel
random walk process on a WordNet-like sense hierarchy.
Our model makes qualitative and quantitative predictions that
largely agree with our observations of human perception. It
can explain the “basic level” phenomenon known in psychol-
ogy, and suggests a method for image sense disambiguation
in pictorial communication systems.

Introduction
Pictorial communication systems aim to convey the mean-
ing of a piece of natural language text (e.g., “The poo-
dle runs out the door”) using automatically generated pic-
tures (Coyne and Sproat 2001; Johansson et al. 2005;
Joshi, Wang, and Li 2006; Zhu et al. 2007). These systems
enable novel means of communication and human-computer
interaction, especially for communicative disorder patients,
young students learning to read, or foreign language speak-
ers. The success of pictorial communication systems de-
pends critically on the comprehensibility of the generated
pictures. Among various factors affecting comprehensibil-
ity, a fundamental issue issense ambiguityof individual im-
ages within a picture. For concreteness, we equate senses
to synsets in WordNet (Fellbaum 1998). For the example
above, the picture may contain an image of a poodle. From
the user perspective, however, the image may mean “poo-
dle,” or its hypernyms “dog” or “animal,” because any of
these senses can potentially be represented by the poodle
image. Sense ambiguity is universal to pictorial communica-
tion systems that use natural images (as opposed to artificial
symbols), and is unavoidable for most single images (i.e.,
no matter how faithful the poodle image is, such ambiguity
remains).

This paper studies a basic research question: when a user
is presented with one or more images and told that they rep-
resent a single sense, what sense does she perceive? The
question is significant as it quantifies how precisely a con-
cept can be conveyed via pictorial communication systems.
As we show later, answers to this question can be used to
disambiguate the sense of an image with additional images
from the target sense.1 For the poodle example, the sys-
tem may show several other poodle images to indicate that
the target sense is this particular type of dog, rather than a
generic dog or animal. To our knowledge, no prior work
has quantitatively addressed this question. We quantify the
extent of image sense ambiguity, and the effectiveness of
disambiguation, using a novel Bayesian model built upon re-
cent work in psychology on Bayesian word learning (Xu and
Tenenbaum 2007). We first describe a user study in which
we collect empirical data. With the data, we then develop
the Bayesian model to predict the perceived sense. Finally,
we explore the degree to which the model explains the data
and known aspects of human cognition.

Formally, we consider a treeG = {V,E} where the ver-
tices V = {y1, . . . , ym} are senses (synsets), and the di-
rected tree edgesE = {eij} encode the hypernym (a.k.a.
is-a or general-specific) relationship (Fellbaum 1998): an
edgeeij goes from parentyi (e.g., “dog”) to childyj (e.g.,
“poodle”) if yi is the hypernym ofyj . When referring to
vertices inV from here on, we use the terms “sense” and
“concept” interchangeably. In addition, a special〈other〉
sense captures all other senses not inV . We consider im-
agesX = {x} that can each be unambiguously assigned
to a unique leafyx ∈ G. That is, givenx ∈ X (e.g., a
poodle image) and restricted toG’s leaves (e.g., “poodle,”
“Dalmatian,” “golden retriever,” etc.), a user should be able
to assignx to the correct leaf. In other words, these are
clear, good quality images. Furthermore, we will focus on

1 We call this strategy disambiguation-by-samples. An alterna-
tive, disambiguation-by-context, shows images commonlyassoci-
atedwith the target sense, such as pink bows for poodles, or fire-
houses for Dalmatians. In both strategies, the user interface can
indicate that these additional images are for disambiguation, and
not part of the picture, e.g., by showing them in a pop-up window
when the user mouses over the original poodle image. We will fo-
cus on disambiguation-by-samples, but note that the two strategies
can be synergistic.



post-visual cognitive processing, by assuming that the vision
task of mapping any imagex ∈ X to its unique leaf sense
yx has been accomplished (perhaps imperfectly). However,
there will be ambiguity when the user is not restricted toG’s
leaves. For example, the image for an internal sense (e.g.,
“dog”) can come from the many leaves under that sense
(e.g., poodle, Dalmatian, or golden retriever). Therefore, a
poodle image could have also come from the internal sense
“dog”.

With these definitions, we formulate our main question as
follows: givenn ≥ 1 imagesx1...n, what sensey ∈ Y ≡
V ∪ {〈other〉} will a user perceive? In particular, we are
interested in modelingP (y | x1...n), which gives a distri-
bution over possible senses given the images, providing a
measure of sense ambiguity.

User Study
[Materials] In our study, we use a set of 250 common
food items asV . The tree edgesE (hypernym relation-
ships) largely follow WordNet, with some modifications to
fit common-sense organization of these items. The resulting
treeG has201 leaves, with a maximum depth of6 and an
average leaf depth of4.1. For modeling purposes, we will
assume thatG is the tree by which the human mind orga-
nizes these items. We discuss ways to relax this assumption
later.

We selected 100 test senses inG (74 leaf sense, 26 inter-
nal senses). We then manually collected 400 high-quality
images, four for each test sense, with each image corre-
sponding to the test sense (if it is a leaf) or a leaf under
the test sense (if it is internal) inG. This produced 100
quadrupletsx(1), . . . ,x(100) of images; one such quadru-
plet, representing the leaf sense “Swiss cheese,” is shown
in Figure 1. For each leaf test sense, we construct four im-
age sets using the first one, two, three, and all images in its
quadruplet. For each internal test sense, we construct three
image sets, using the first two, three and all images in its
quadruplet. In the latter case, we make sure that the inter-
nal test sense is the least common ancestor of the first two
images. We usex(i)

1...j to denote the image set consisting
of j ≤ 4 images from quadrupleti. This design permits
us to probe how the human-perceived sense changes with
progressively more image evidence. In total, we have 374
image sets (i = 1 . . . 100, j = 1 . . . 4 if i ≤ 74, j = 2 . . . 4
otherwise).

Figure 1: Four images of the leaf sense “Swiss cheese.”

[Subjects and Procedure]Participants were113 univer-
sity students, participating for partial course credit. The ex-
periment was conducted using a Web-based interface. Sub-
jects were instructed that the goal of the study was to iden-
tify a single food conceptfound in a supermarket based on

eachimage set. Subjects were also told that the image sets,
as well as the corresponding concepts, were independent of
each other. They were given no information about how the
images were chosen, nor shown the treeG or the list of
sensesV . Each subject was shown 100 image sets, one set
at a time, in random order. Subjects were asked to type a
free-text response indicating the concept they believed was
being represented by the current image set. After submitting
the response, the subject was shown a new set of images on
the next screen. Each subject saw exactly one set of images
for every i = 1...100. We balanced the subjects so each
subsetx(i)

1...j was seen by about 30 people. Because the sub-
jects were not shownG or V , their free-text responses may
not exactly match any synsets inV . Without considering the
images shown to the subjects, a team of 3 annotators manu-
ally inspected all responses and assigned each to the closest
sense inV when possible, or〈other〉 otherwise.

[Observations] Given G, a set of images drawn from
the leaves uniquely determines onelowest common ances-
tor (LCA) within the hierarchy: the most specific sense that
is consistent with all examples. Under assumption that the
sense hierarchy is shared by all users (that the hierarchy rep-
resents the knowledge of an “average human”), a natural
LCA hypothesispredicts that the human response induced
by a set of images will be the LCA of those images’ asso-
ciated leaves. As a natural consequence, one image is suffi-
cient to induce any leaf-level test sense, and two images are
sufficient to induce any internal test sense.

Our experiment demonstrates the faults in the LCA hy-
pothesis, and the need for more advanced modeling. We
make three observations:

(1) We note that sense ambiguity is common among re-
sponses and widespread across senses. When subjects are
shown a single image, they name the corresponding leaf con-
cept only 40.1% of the time. Defining an image (or image
set) as ambiguous if, among all the subjects who saw it, no
more than 90% (80% resp.) had the same sense response,
55 (49 resp.) of these 74 sets were ambiguous. For exam-
ple, the same single “white wine” image led to 7 subjects
responding “white wine,” 18 subjects responding “wine,”
2 subjects responding “alcoholic drink,” and 1 subject re-
sponding “champagne.”

Given two images drawn from different leaves, only
54.9% of responses name their LCA; by the definition of
ambiguity given above, 21 (16 resp.) of these 26 sets were
ambiguous. Responses other than the LCA of the image set
can be categorized into two groups:generalizedandincon-
sistentresponses. Generalized responses are consistent with
the images shown, but are more general than (i.e., ances-
tors to) the LCA of those images. Inconsistent responses
name senses that are not shared by the images. As an ex-
ample, consider the image set in Figure 2. When shown
this set, 67.9% of subjects named the LCA sense “avocado,”
while 10.7% generalized to “fruit.” Responses inconsistent
with the images, such as “apricots,” “melons,” “papaya,” and
“squash” made up the remaining 21.5%.

(2) By the LCA hypothesis, including additional images
in the set displayed will not change human responses un-



Figure 2: Four images of the leaf sense “avocado.”

less the LCA of those images is also changed. However, the
data shows that including one image beyond those needed to
define a given LCA (a second image for a leaf-level LCA,
a third for an internal LCA) increases the proportion of re-
sponses naming the LCA. This reveals that apparently re-
dundant information is helpful in reducing sense ambiguity.

(3) The usefulness of redundant examples appears lim-
ited, however. Including even more redundant images does
not significantly change user responses. These results are
shown in Table 1.

Table 1: The percentage of LCA, generalized, and inconsis-
tent responses, for image sets of different sizes.

Images representing a leaf sense
Images shown LCA Generalized Inconsistent
x1 40.1 36.7 23.2
x1...2 44.7 35.7 19.6
x1...3 44.4 35.4 20.2
x1...4 44.5 35.7 19.8

Images representing an internal sense
Images shown LCA Generalized Inconsistent
x1...2 54.9 14.7 30.4
x1...3 63.6 12.0 24.4
x1...4 65.4 13.5 21.2

Bayesian Modeling
We now propose a novel Bayesian model to explain image
sense ambiguity. Recent research has shown that Bayesian
inference is preferable in modeling human word learn-
ing (Xu and Tenenbaum 2007). In this paper, we show that
Bayesian inference is also a good model for image sense
perception in humans. We propose to computeP (y | x1...n)
via the Bayes rule:

P (y | x1...n) =
P (y)P (x1...n | y)∑

y′∈V P (y′)P (x1...n | y′)
. (1)

One major contribution of this paper is our formulation of
the priorP (y) and the likelihood termP (x1...n | y).

We estimate the priorP (y) from frequency in the largest
corpus available, namely the Web. For each synsety we
use the singular and plural forms of its most common name,
together with the word “food,” to form two search queries.
We search on both singular and plural forms because some
food items (e.g., “beans”) are rarely considered in individual
units. Letctext(y) be the maximum of the number of search
results found for these two queries. Our estimate is then
P (y) ∝ ctext(y).

We estimate the likelihood with a random walk process.
This walk can be informally understood in terms of selecting

a concrete image consistent with a sensey ∈ V : any image
of y is by definition generated from exactly one hyponym of
y. This selection iterates until one reaches a leaf; an image
of that leaf is then generated.

Formally, we first assume that the images are generated
i.i.d.: P (x1...n | y) =

∏n
i=1 P (xi | y). Then,P (x | y)

is modeled as a teleporting random walk onG, beginning
at y. For simplicity, consider first the case without teleport-
ing. We prepareG for the walk by adding absorbing nodes
a ∈ A as children to the leaf senses, one per leaf. The ran-
dom walk terminates only when it reaches one of these ab-
sorbing nodes, which are included purely for computational
convenience, and do not correspond to senses.

Let δ(y) be the immediate children ofy in G (i.e., y’s
immediate hyponyms). Let∆(y) be the subtree with root
y. The random walk transitions fromy to a childy′ with
probability proportional to the “mass” of the subtree aty′:

P (y′ | y) ∝
∑

y′′∈∆(y′)

P (y′′), for y′ ∈ δ(y). (2)

The mass of the subtree∆(y′) has the intuitive interpretation
as the total probability of mentioning something that “is a”
y′. The random walk then repeats downward fromy′. For
example, ify starts at “food,” it may go down to “dairy,”
then to “cheese,” and finally to the leaf “Swiss cheese.” As
“Swiss cheese” is a leaf-level sense inG, the next downward
step is to an absorbing node and the walk terminates.

The probabilityP (yx | y), that starting fromy the walk
is absorbed below leafyx, can be easily computed in closed
form (Doyle and Snell 2000) once the transition probabili-
ties in (2) are known. Order rows and columns in a transition
matrix such that the non-absorbing senses follow the absorb-
ing nodes:

T =
(

I 0
R Q

)
. (3)

Ri,j is thus the transition probability from senseyi ∈ V to
absorbing nodeaj (nonzero only whenyi the leaf to which
aj is attached), andQi,k the transition probability fromyi to
yk, both∈ V . The absorption probabilitiesB, with Bi,j the
probability of a walk beginning at senseyi being absorbed
by nodeaj , are obtained byB = (I −Q)−1R.

With absorbing nodeaj attached to leafyx, we then take
P (yx | yi) = Bi,j .

Once the walk terminates, the imagex is generated uni-
formly from the available images at the leaf. Callcimg(y)
the number of images available at leafy. As we have as-
sumed that, from any imagex, the generating leaf can be
unambiguously determined,P (x | y) is the probability that
a random walk beginning aty will terminate at leafyx, and
that imagex will be generated by that leaf:

P (x | y) = P (yx | y)
1

cimg(yx)
. (4)

It is easy to show that anycimg is canceled out in (1), re-



sulting in the final formulation of the random walk model:

PRW(y|x1...n) =
P (y)

∏n
i=1 P (yxi | y)∑

y′∈V P (y′)
∏n

i=1 P (yxi | y′)
. (5)

Because the random walk process as described above only
allows downward movement (generating only images con-
sistent with the sense), it cannot model mistakes or confu-
sion between senses. To correct this, we include a fixed
probabilitypt of teleporting at each step of the random walk.
If teleporting occurs, a sensey ∈ V is selected as the des-
tination with probability proportional toP (y)τ . If teleport-
ing does not occur, a sense is selected using the probabili-
ties defined in (2). Lastly, to account for out-of-vocabulary
concepts, any walk beginning at〈other〉 will teleport as
its first step with probability 1. Priors over in-vocabulary
senses are normalized to accommodateP (〈other〉); pt, τ
and P (〈other〉) thus constitute our random walk model’s
tunable parameters. The solution forP (yx | y) given above
holds so long as the transition matrix (3) includes the tele-
portation probabilities.

A Baseline Model for Comparison
For comparison we investigate an alternative model, based
on the LCA hypothesis described earlier. Under the lowest
common ancestor model, once a human user has assigned
all imagesx1...n to leaf-level senses, the sense LCA(x1...n)
is the perceived sense.

The probabilistic interpretation of LCA can be written as
PLCA(y | x1...n) = 1 if y = LCA(x1...n); 0 otherwise.
Because it assigns a probability of zero to most concepts
in G, it cannot account for sense ambiguities. To com-
pensate, we perform smoothing by interpolating the LCA
model with three simple models. The “prior model” uses
the prior defined above:Pprior(y | x1...n) = P (y), and the
“uniform model” is a uniform distribution overV : Punif(y |
x1...n) = 1/|V |. All these models assign zero probability
to y = 〈other〉. Finally, the “other model” captures out-of-
vocabulary senses:Pother(y | x1...n) = 1, if y = 〈other〉; 0
otherwise. The final smoothed LCA (SLCA) model is

PSLCA(y | x1...n) =
∑

j

λjPj(y | x1...n) (6)

wherej ∈ {LCA, prior, unif, other}, and the interpolation
weightsλ’s are non-negative and sum to 1.λLCA , λprior and
λunif thus constitute the tunable parameters of the SLCA
model;λother is fully determined by these three parameters.

Model Behavior
We examine our models by considering their aggregated pre-
dictions over the experimental image sets, in a format anal-
ogous to Table 1. Given a set of examplesx1...n, both
the random walk and SLCA models produce a distribu-
tion over senses. We use a Gibbs classifier that produces
a random output sense according to this distribution (as op-
posed to the Bayes classifier that always outputs the sense
with maximum probability). This corresponds to the well-
known Luce choice rule, a model of human choice probabil-
ities (Luce 1963). We then aggregate the output senses. We

Table 2: Parameter values
Random walk Smoothed LCA

pt 0.37 λLCA 0.56
τ 2.0 λprior 0.44
P (〈other〉) 0 λunif 0

fit both models’ parameters by minimizing the sum-squared-
difference between model prediction and the first cell of both
sections of Table 1. The parameters found are given in Ta-
ble 2.

Using these parameters, the results for the random walk
model are given in Table 3; results for SLCA are given in Ta-
ble 4. It is clear from these results that both RW and SLCA
can fit observation (1): sense ambiguity is common when no
redundant images are presented.

Table 3: Percentages of LCA, generalized, and inconsistent
responses as predicted by the RW model.

Images representing a leaf sense
Images shown LCA Generalized Inconsistent
x1 40.6 35.1 24.3
x1...2 75.4 21.6 3.0
x1...3 92.0 7.5 0.5
x1...4 96.8 3.1 0.1

Images representing an internal sense
Images shown LCA Generalized Inconsistent
x1...2 58.5 10.3 31.3
x1...3 75.9 7.6 16.6
x1...4 85.9 5.0 9.2

Table 4: Percentages of LCA, generalized, and inconsistent
responses as predicted by the SLCA model.

Images representing a leaf sense
Images shown LCA Generalized Inconsistent
x1 55.9 5.1 39.0
x1...2 55.9 5.1 39.0
x1...3 55.9 5.1 39.0
x1...4 55.9 5.1 39.0

Images representing an internal sense
Images shown LCA Generalized Inconsistent
x1...2 56.4 4.3 39.3
x1...3 56.4 4.3 39.3
x1...4 56.4 4.3 39.3

Only the RW model predictions, however, conform to ob-
servation (2): adding a redundant image increases the pos-
terior likelihood (and thus the response proportion) of the
LCA. The reasons for this are explored in the Discussion
section below. The SLCA model, by contrast, ignores re-
dundant images (as did the original LCA hypothesis) and so
cannot explain the observed effect.

Lastly, observation (3) is not explained by either model.
For the responses collected in our experiment, redundant im-
ages after the first had greatly diminishing returns. The RW
model predicts that LCA responses move asymptotically to-
wards 100% as more redundant images are included; the



SLCA model does not predict any effect for redundant im-
ages.

Discussion
We have shown that the random walk model of sense ambi-
guity explains two of three observations of human behavior.
It also provides an explanation for the psychological phe-
nomenon ofbasic-level senses. Basic-level senses are a set
of senses that are common, located in the middle of a sense
hierarchy, and learned relatively earlier in life (Rosch et al.
1976). For example, “beans” is a basic-level sense, while
its hyponyms “black beans,” “kidney beans,” “pinto beans,”
etc., are not. Similarly, “lettuce” is a basic-level sense, while
its hyponyms “iceberg lettuce,” “romaine lettuce,” etc., are
not. The generalized responses collected in our experiment
show the effect of basic-level bias: we notice that when pre-
sented with an image from a non-basic-level leaf sense (e.g.,
“romaine lettuce”), people tend to generalize to its basic-
level hypernym (e.g., “lettuce”). This is consistent with the
psychology literature.

The random walk model predicts a bias towards gener-
alized responses with high prior probability. By the nature
of the random walk, the closer a sensey is to an imagex’s
associated leafyx, the higher the likelihoodP (x|y), maxi-
mized aty = yx. However, theposterior probabilityof a
hypernymy givenx will still be greater ifP (y) � P (yx).
As sense priors are determined by sense frequency, this is
exactly the nature of basic-level senses—common, interior
senses preferred as explanations over their hyponyms.

On the other hand, as moreredundantimages are intro-
duced, the likelihood of the images becomes the dominant
factor in the posterior. This manifests in a tendency for the
posterior probability assigned to the LCA by the random
walk model to approach 1 as more images are included. The
assumption that sense ambiguity is minimized by display-
ing many highly varied example images is used by (Li et al.
2008) in the design of a system for word-representation as
image sets; our random walk model provides a formal ex-
planation.

For an example of this tendency, see Table 5, regard-
ing user responses and model predictions for the image set
shown in Figure 1. The RW model successfully predicts that
initially, the basic-level response “cheese” dominates when
there is only one swiss cheese image. The RW model also
qualitatively predicts the trend away from basic-level and to-
ward more specific responses as more swiss cheese images
are given.

On this example, the RW model is quantitatively over-
specializing. When all four images are displayed, the RW
model assigns “Swiss cheese” a probability of0.94; how-
ever, only 28.5% of experimental subjects responded with
that sense. This discrepancy can perhaps in part be attributed
to poor prior estimates, which influences the speed of spe-
cializing. If the true prior for “Swiss cheese” were very low,
the slow response specialization in the human experimental
results would have be predicted.

Perhaps more importantly, we assume the sense hierar-
chyG is universal. Our experimental participants were uni-
versity students and almost certainly possessed differing de-

Table 5: RW model probabilities and subject response
counts for the Swiss cheese images shown in Figure 1.

images food dairy cheese Swiss
x1 P (y|x) 0.08 0.05 0.54 0.03

#humans 0 0 27 2
x1...2 P (y|x) 0.02 0.01 0.72 0.27

#humans 0 0 23 4
x1...3 P (y|x) 0.00 0.00 0.28 0.72

#humans 0 0 25 3
x1...4 P (y|x) 0.00 0.00 0.06 0.94

#humans 0 0 20 8

grees of culinary knowledge. It is entirely possible that some
portion of the subjects simply could not recognize certain
leaf senses inG as distinct from their immediate hypernym:
no participants gave a response of “iceberg lettuce,” for ex-
ample, even when presented with four images of it, while
82.1% gave the more general response “lettuce.” The pa-
rameters of the random walk model cannot be adjusted to
account for this; no matter howG and the transition prob-
abilities are altered, the posterior of some unique sense in
V will always approach 1 as more redundant examples are
shown.

Informal examination of the experimental responses
showed two common types of inconsistencies. Some re-
sponses were inconsistent with a small number of example
images, but consistent with the rest. This usually occurred
when an image was somewhat vague, or the prior of the as-
sociated leaf sense was low. As an example, consider the top
row of images shown in Figure 3. Although the three images
showing poultry are easily recognizable as such, the image
of beef shows several cuts of meat that cannot be trivially
identified as belonging to a particular type of animal. Only
39.3% of responses named the LCA “meat”; the rest named
senses within the subtree rooted at “poultry.” For 60.7% of
subjects, either the image of beef was not comprehensible,
or it was regarded as irrelevant.

Figure 3: Two image sets for which a majority of responses
were inconsistent. Above: “meat.” Below: “zucchini.”

A second type of inconsistency involved visual confusion
between concepts. The bottom row of images in Figure 3
shows four images of zucchini. 32.1% responses named



this leaf sense, while 57.1% misidentified the sense as “cu-
cumber.” The mistake is understandable, as zucchinis and
cucumbers are visually similar. Context, including visual
similarity, is ignored when teleporting in the random walk
model, and so neither type of inconsistency is specifically
predicted.

Opportunities for Future Work

The random walk model construction and the data collected
in our experiment help provide insight into human behavior
and perceived sense ambiguity. The model’s deficiencies in
fully explaining observed behavior are largely attributable
to the assumptions and estimations used. Relaxing these as-
sumptions, and improving estimation, will form the basis of
future work.

We assume unambiguous assignment of images to leaves.
Images containing a clear and unambiguous example of ex-
actly one object type are rare, forcing careful selection be-
fore images are displayed. Image-to-leaf uncertainty can be
handled by allowing multiple leaves to contribute nonzero
probability to (4) (this would require estimatingcimg(y), a
step the current formulation makes unnecessary).

Sense frequenciesctext provide the basis for the sense prior
and transition probabilities (2), and in turn result in basic-
level behavior matching that known to occur in humans.
Because these frequencies are so essential for the model,
they should be estimated as accurately as possible; exploring
other techniques for this estimation is an obvious direction
for future work. Existing research regarding basic-level con-
cepts could allow priors to be based more directly on human
cognition.

We use a predetermined, fixed sense hierarchyG for all
subjects. In the spirit of Bayesian modeling, the graphG
itself can be made a random variable with an appropriate
prior, so that different subjects may have different instances
of the sense hierarchy to match their preconceptions. A less
obvious advantage of treatingG as a random variable is to
bound the posterior of a sense by the likelihood that the ran-
dom variableG contains that sense, intuitively correspond-
ing to the notion that no number of examples will prompt a
sense response unknown to the user.

Visual confusion between senses is unexplained by our
model, but there are two obvious approaches to its inclu-
sion. Firstly, visual similarity between leaf senses could be
considered as image-to-leaf uncertainty, as described above.
Secondly, the random walk process could be modified to
make teleporting between visually similar concepts more
likely. Either approach requires a measure of visual simi-
larity. Similarity can be empirically estimated using image
sets corresponding to the senses inV ; alternatively, unsuper-
vised techniques such as that in (Sivic et al. 2008) allow the
discovery of visual object hierarchies without predetermined
interior senses. The resulting hierarchy can be included as a
possible value for random variableG, allowing visual infor-
mation to influence the sense posterior without changing the
particulars of the random walk itself.

Concluding Remarks
We have proposed a Bayesian model for human sense per-
ception, which predicts qualitative features of collected hu-
man data and human cognition, including the well-known
basic-level effect. Bayesian inference over a sense hierar-
chy has been applied in recent psychology research (Xu and
Tenenbaum 2007); our model presents novel formulations
for the sense priorP (y) and likelihoodP (x1...n | y).

Our experimental data demonstrates the difficulty of dis-
ambiguation by example. Effective pictorial communication
systems require unambiguous picture generation: a model of
sense ambiguity as perceived by the user is vital to the suc-
cess of such systems. This work demonstrates a model that
captures many aspects of sense ambiguity and provides sev-
eral opportunities for further development.
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