

Computer
Sciences
Department

Privacy Skyline: Privacy with Multidimensional
Adversarial Knowledge

Bee-Chung Chen
Kristen LeFevre
Raghu Ramakrishnan

Technical Report #1596

July 2007

 1

Privacy Skyline: Privacy with Multidimensional
Adversarial Knowledge

Bee-Chung Chen* Kristen LeFevre† Raghu Ramakrishnan

 University of Wisconsin – Madison, USA Yahoo! Research
 {beechung, lefevre}@cs.wisc.edu ramakris@yahoo-inc.com

Technical Report 1596
July 10, 2007

ABSTRACT

Privacy is an important issue in data publishing. Many

organizations distribute non-aggregate personal data for research,

and they must take steps to ensure that an adversary cannot

predict sensitive information pertaining to individuals with high

confidence. This problem is further complicated by the fact that,

in addition to the published data, the adversary may also have

access to other resources (e.g., public records and social networks

relating individuals), which we call external knowledge. A robust

privacy criterion should take this external knowledge into

consideration.

In this paper, we first describe a general framework for reasoning

about privacy in the presence of external knowledge. Within this

framework, we propose a novel multidimensional approach to

quantifying an adversary’s external knowledge. This approach

allows the publishing organization to investigate privacy threats

and enforce privacy requirements in the presence of various types

and amounts of external knowledge. Our main technical

contributions include a multidimensional privacy criterion that is

more intuitive and flexible than previous approaches to modeling

background knowledge. In addition, we provide algorithms for

measuring disclosure and sanitizing data that improve

computational efficiency several orders of magnitude over the

best known techniques.

1. INTRODUCTION

A number of recent high-profile attacks have illustrated the

importance of protecting individuals’ privacy when publishing or

distributing sensitive personal data. For example, by combining a

public voter registration list and a released database of health

insurance information, Sweeney was able to identify the medical

record of the governor of Massachusetts [16].

In the context of data publishing, it is intuitive to think of privacy

as a game between a data owner, who wants to release data for

research, and an adversary, who wants to discover sensitive

information about the individuals in the database. Following most

of the previous literature, we take a constrained optimization

approach. That is, the data owner seeks to find the “snapshot”

(release candidate) of her original dataset that simultaneously

satisfies the given privacy criterion and maximizes some utility

measure. Note that the privacy criterion determines the safety of

the released data, and the utility measure is an orthogonal issue.

The focus of this paper is developing a practical privacy criterion

that captures the problem of attribute disclosure in the presence of

external knowledge. Specifically, we consider the case where the

data owner has a table of data (denoted by D), in which each row

is a record pertaining to some individual. The attributes of this

table consist of (1) a set of identifier (ID) attributes which will be

removed from the released dataset, (2) a set of quasi-identifier

(QI) attributes that together can potentially be used to re-identify

individuals, and (3) a sensitive attribute (denoted by S), which is

possibly set-valued. For example, consider the original data in

Figure 1. In this example, Name is the ID attribute. Age, Gender,

Zipcode are the QI attributes, and Disease is the sensitive

attribute.

After applying an “anonymization” procedure, the data owner

publishes the resulting release candidate D*. In this paper, we

consider two approaches to generating D*. The first approach

generalizes the QI attribute values to obtain a generalized table

(as in [6, 7, 16]). Figure 2 shows an example. The second

approach partitions the individuals into disjoint groups, producing

a bucketized dataset, and releases the multiset (or bag) of sensitive

values for each group (as in [13, 17]), e.g., Figure 3.

Now consider an adversary whose goal is to predict whether a
target individual t has a target sensitive value s. In making this
prediction, he has access to the released dataset D*, as well as his
own external knowledge K. This external knowledge may include
similar datasets released by other organizations, social networks
relating individuals, and other instance-level information. A
robust privacy criterion should place an upper bound on the
adversary’s confidence in predicting that any individual t has
sensitive value s. In other words, the criterion should guarantee
that Pr(t has s | K, D*) is sufficiently small.

Returning to the example in Figure 3, assume that each individual

has only one disease in the original dataset. In the absence of

external knowledge, intuitively the adversary can predict Tom to

have AIDS with confidence Pr(Tom has AIDS | D*) = 1/4 because

there are four individuals in group 2, only one of whom has AIDS.

However, the adversary can improve his confidence based on

external knowledge:

• The adversary knows Tom personally, and is sure he does not

have Cancer. After removing the record with Cancer, the

probability of Tom having AIDS becomes 1/3.

• From another dataset, the adversary determines that Gary has

Flu. By further removing Gary’s Flu record, the probability of

Tom having AIDS becomes 1/2.

• From public records, the adversary knows that Ann is Tom’s

wife. Thus, it is likely that if Ann has AIDS, then Tom does

This work is supported in part by NSF grants ITR IIS-0326328 and IIS-0524671
*Bee-Chung Chen is supported by a Microsoft Research fellowship.
†
Kristen LeFevre is supported by an IBM Ph.D. fellowship.

•

 2

as well. We will return to this example later in the paper.

In designing a privacy criterion incorporating adversarial
knowledge, we must address two key problems. First, we must
provide the data owner with the means to specify adversarial
knowledge K. Second, we must compute Pr(t has s | K, D*).
Unfortunately, the first problem is further complicated by the fact
that, in general, the data owner does not know precisely what
knowledge an adversary has. In fact, when data is published on
the worldwide web, there may be many different adversaries, each
with different external knowledge.

Martin et al. provide the first formal treatment of adversarial
external knowledge in attribute disclosure [13]. Their framework
provides a language for expressing such knowledge. Because it is
nearly impossible for the data owner to anticipate specific
adversarial knowledge, they instead propose quantifying the
external knowledge, and releasing data that is resilient to a certain
amount of knowledge (in the worst case, regardless of the specific
content of this knowledge). Unfortunately, the way that they
quantify external knowledge (the maximum number k of
implications that an adversary may know) is not intuitive. In
practice, this makes it difficult for the data owner to set an
appropriate k value. One of our main goals is to provide intuitive,
and hence more usable, quantification of external knowledge.

1.1 Contributions & Organization

In Section 2, we describe a theoretical framework for computing
the breach probability Pr(t has s | K, D*). This is related to several
Bayesian interpretations of privacy in data publishing [11, 13, 18].
In addition, we extend the study of attribute disclosure under
adversarial knowledge to set-valued sensitive attributes, which has
not previously been studied.

In Section 3, we describe our desiderata for the design of a
practical privacy criterion. Following these desiderata, in Section
4, we develop a novel multidimensional approach to quantifying
adversarial knowledge, creating a multidimensional knowledge
space for data privacy, which has not been studied before.

Using this multidimensional approach, we make several important
technical contributions: (1) In Section 4.2, we define a novel
skyline privacy criterion, which provides the data owner a flexible
way to enforce her privacy policy. (2) In Section 4.3, we propose
a novel skyline exploratory tool, which allows the data owner to
investigate the multidimensional knowledge space and understand
whether a particular release candidate is safe in the presence of
various types and amounts of adversarial knowledge. Using this
tool, we show (in Section 7.3) that an ℓ -diverse [11] release
candidate can be unsafe under certain types of external
knowledge. (3) In Sections 5 and 6, we develop efficient and
scalable algorithms for measuring disclosure and sanitizing data
(using an advanced multidimensional generalization technique
[7]) in the presence of external knowledge. Each of these
algorithms is based on an important “congregation” property, and
as shown in Section 7, the algorithms improve computational

efficiency several orders of magnitude over the best known
technique ([13]).

2. THEORETICAL FRAMEWORK

In this section, we give an overview of the theoretical framework
for computing the probability of a target statement E about an
original dataset D (e.g., individual t has sensitive value s in D)
given a release candidate D* derived from D and external
knowledge K about D, where D is not observed. The framework is
depicted diagrammatically in Figure 4.

2.1 Formalism

Like [11, 13], we conservatively assume that whenever the
adversary has knowledge about an individual, he always knows
the individual’s QI values, or full identification information (e.g.,
from public records). Under this assumption, we model the
original dataset as a set of individuals, each with a set or multiset
of associated sensitive values.

Original dataset: An original dataset is of the following form:

D = {(u1, S1), …, (un, Sn)},

where u1, …, un are n distinct individuals, and S1, …, Sn are sets or
multisets of sensitive values. We say t has s (denoted by s ∈ t[S])
in D iff (t, t[S]) ∈ D and s ∈ t[S].

Integrity Constraints: Integrity constraints may be defined on
the original dataset. In this paper, we consider the following cases:

• SVPI (single value per individual): Each individual has exactly
one sensitive value in D. That is, |Si| = 1, for all i. Note that the
case where some individuals do not have any sensitive values
can be handled by including a special sensitive value meaning
“no sensitive value.” Many studies of data privacy only
consider the SVPI case.

• MVPI (multiple values per individual): Each individual can
have multiple sensitive values in D. We further distinguish two
sub-cases. In the MVPI-Set case, each Si is a (possibly empty)
set. In the MVPI-Multiset case, each Si is a (possibly empty)
duplicate-preserving multiset.

In the rest of the paper, we will treat these three cases (SVPI,
MVPI-Set, and MVPI-Multiset) separately, whenever necessary.

Release candidate: An anonymization procedure takes the
original dataset as input, and produces a release candidate. We
model a release candidate as a set of disjoint groups, each of
which contains a set of individuals and their respective sensitive
values. Formally, a release candidate for original dataset D is of
the form:

D* = {(G1, X1), …, (GB, XB)},

such that ∪i Gi = {u1, …, un}, Gi ∩ Gj = ∅ for i ≠ j, and Xi is the
multiset containing all occurrences of all sensitive values for all
the individuals in Gi. We call each (Gi, Xi) a QI-group. Notice
that generalized tables (Figure 2) and bucketized datasets (Figure

Name Age Gender Zipcode Disease

Ann 20 F 12345 AIDS

Bob 24 M 12342 Flu

Cary 23 F 12344 Flu

Dick 27 M 12343 AIDS

Ed 35 M 12412 Flu

Frank 34 M 12433 Cancer

Gary 31 M 12453 Flu

Tom 38 M 12455 AIDS

Figure 1. Original dataset

 Age Gender Zipcode Disease

(Ann)

(Bob)

(Cary)

(Dick)

2* * 1234*

AIDS

Flu

Flu

AIDS

(Ed)

(Frank)

(Gary)

(Tom)

3* M 124**

Flu

Cancer

Flu

AIDS

 Figure 2. Generalized table

 Age Gender Zipcode Group

(Ann) 20 F 12345

(Bob) 24 M 12342

(Cary) 23 F 12344

(Dick) 27 M 12343

1

(Ed) 35 M 12412

(Frank) 34 M 12433

(Gary) 31 M 12453

(Tom) 38 M 12455

2

Figure 3. Bucketized dataset

Group Disease

1

AIDS

Flu

Flu

AIDS

2

Flu

Cancer

Flu

AIDS

 3

3) can be modeled in this way. For example, the bucketized data
in Figure 3 is represented as follows: D* =

{(G1={Ann, Bob, Cary, Dick}, X1={AIDS, AIDS, Flu, Flu}),

(G2={Ed, Frank, Gary, Tom}, X2={AIDS, Cancer, Flu, Flu})}.

Reconstruction: After observing D*, the adversary tries to

reconstruct the original dataset. A reconstruction R is an

assignment that matches each occurrence of each sensitive value

in Xi with some individual in Gi, such that the result satisfies the

integrity constraints defined on the original dataset. We use R(D*)

to denote the result, which is a possible original dataset. For

example, consider the bucketization in Figure 3; the following is

one of many reconstructions in the MVPI-Multiset case:

R(D*) = {(Ann, {Flu, Flu}), (Bob, {AIDS}), (Cary, {AIDS}),

(Ed, {Cancer, Flu}), (Frank, {AIDS, Flu})}.

Notice that the above R(D*) is not a reconstruction in the SVPI or
MVPI-Set case because it does not satisfy the corresponding
integrity constraints. In addition to integrity constraints, the
adversary may be able to eliminate certain reconstructions based
on his external knowledge.

External Knowledge: The adversary may also have access to
some external knowledge. In a very general sense, we can model
this external knowledge using a logical expression, possibly
containing variables. We say that an expression is ground if it
contains no variables. A ground expression can be evaluated on a
possible original dataset, and it returns true or false. We say that
reconstruction R satisfies expression E iff E is true on R(D*).

The precise syntax of expressions is application dependent and
need not be logic sentences. In this paper, we call an expression
of the form s∈t[S] or s∉t[S] a literal. An example of a ground
logic expression is (Flu∈Ann[S] ∧ Flu∈Bob[S]). The above
example reconstruction does not satisfy this expression. Suppose
t1 and t2 are variables ranging over individuals. In this case,
(Flu∈t1[S] → Flu∈t2[S]) is an expression with variables. The
substitution of variables with actual individuals or sensitive values
is called grounding. One grounding of the above example
substitutes t1 and t2 with Ann and Bob, respectively. We use
ground(E, K) to denote the set of all pairs of ground expressions
that can be derived from a pair (E, K) of expressions.

Worst-Case Disclosure: Given a release candidate D*, a known
set of integrity constraints, and an external knowledge expression
K, our goal is to compute (and ultimately bound) the probability
of a target expression E. Because we want to provide worst-case
safety, when K or E has variables, we compute

max {Pr(E′ | K′, D*) : (E′, K′) ∈ ground(E, K)}.

For ease of exposition, we use the following notation.

{Pr(E | K, D*)} ≡ {Pr(E′ | K′, D*) : (E′, K′) ∈ ground(E, K)}.

For example, the data owner may believe that an adversary has the
ability to obtain a sensitive value for each of k individuals. Thus,
let K = (∧i∈[1,k] si∈ti[S]), where ti and si are variables. The data
owner wants to guarantee that, regardless of which k individuals

and sensitive values the adversary knows, the probability that the
adversary can determine that another individual t (a variable) has
sensitive value s (a variable) is lower than threshold c. Formally,
this is stated as follows:

max {Pr(s∈t[S] | (∧i∈[1,k] si∈ti[S]), D*)} < c.

The max function gives the variables the “for all” semantics; for
all groundings of the variables, the criterion must hold.

Probability Computation: When computing probabilities, we
make the standard random worlds assumption, following [2, 13,
18]. Let E and K be two ground expressions. Let {R1, …, RN}
denote the set of all reconstructions of D*. In the absence of any
information in addition to D*, we assume each reconstruction is
equally likely. Under this assumption,

Pr(E | D*) = |{Ri : Ri satisfies E}| / N.

By the definition of conditional probability,

 Pr(E | K, D*) =

|{Ri : Ri satisfies both E and K}| / |{Ri : Ri satisfies K}|.

Note that the above formula defines the answer to Pr(E | K, D*),
but to find the answer, it is not always necessary to enumerate the
reconstructions of D*. Finally, let ε be a special expression,
meaning empty. For pedantic reasons, we define Pr(ε | K, D*) = 1.

2.2 Conjunctions of Literals

One important class of expressions, considered throughout this
paper, consists of expressions that are conjunctions of literals. In
this section, we briefly describe two propositions that will be used
later in the paper. The basic idea is that, for conjunctions of
literals, the probability computation for each QI-group is
independent.

Let Eg and Kg denote two ground conjunctions of literals that only
involve individuals in QI-group g (i.e., individuals in Gg), for g =
1, …, B. For example, E1 = (Flu∈Ann[S] ∧ AIDS∉Bob[S]),
where Ann and Bob are in QI-group 1.

Proposition 1.

Pr(∧g∈[1,B] Eg | ∧g∈[1,B] Kg, D
*) = ∏g∈[1,B] Pr(Eg | Kg, D

*).

Let Eg,x and Kg,x denote two ground conjunctions of literals that
only involve individuals in Gg and sensitive value x ∈ Xg, for g =
1, …, B. For example, E1,Flu = (Flu∈Ann[S] ∧ Flu∉Bob[S]).

Proposition 2. In the MVPI (either Set or Multiset) case,

 Pr(∧g∈[1,B], x∈Xg
 Eg,x | ∧g∈[1,B], x∈Xg

 Kg,x, D
*) =

∏g∈[1,B] ∏x∈Xg
 Pr(Eg,x | Kg,x, D

*).

The proofs are in Appendix A1. Note that Eg, Kg, Eg,x and Kg,x can
be ε (the empty expression), and “x∈Xg” in the subscript means
“for each distinct x ∈ Xg.” Also note that Proposition 1 applies to
both the SVPI and MVPI cases. If E and K are two conjunctions
of literals, then, to compute Pr(E | K, D*), we first rewrite E and K
as ∧g∈[1,B] Eg and ∧g∈[1,B] Kg and then compute Pr(Eg | Kg, D*)

Figure 4. Theoretical framework

 4

independently. Similarly, Proposition 2 says, in the MVPI case,
each distinct sensitive value in each QI-group is reconstructed
independently.

2.3 Research Direction

In general, computing Pr(E | K, D*) is NP-hard, even if E and K

are ground. Martin et al. [13] showed that, if K is ground and of

the form (∧i∈[1,k] (xi∈ti[S] ↔ yi∈ui[S])), it is NP-complete to

decide whether Pr(K | D*) > 0 and #P-complete to compute

Pr(s∈t[S] | K, D*). We can also prove that even if D* consists of

only one QI-group (i.e., D* = {(G1, X1)}), it is still NP-complete to

decide whether Pr(K | D*) > 0 (see Theorem 6 in Appendix A5).

Because of the hardness results, developing a general technique to
compute Pr(s∈t[S] | K, D*) is not a practical goal. Broadly
speaking, the interesting research questions involve finding
classes of expressions that are of practical interest and efficiently
solvable. The work in [13] shows a special case that is
polynomial-time solvable, but does not correspond well to natural
real-world scenarios. In this paper, we identify three types of
expressions representing external knowledge that arise naturally
in practice. We show in Sections 5 and 6 that expressions that
combine these types of knowledge can be handled very
efficiently. Assume the adversary wants to discover Tom’s
sensitive value. We consider:

• Knowledge about the target individual: An interesting class
of instance-level knowledge involves information that the
adversary may know about the target individual. For example,
Tom does not have cancer.

• Knowledge about others: Similarly, the adversary may have
information about individuals other than the target. For
example, Gary has flu.

• Knowledge about same-value families: We think the most
intuitive kind of knowledge relating different individuals is the
knowledge that a group (or family) of individuals have the
same sensitive value. For example, {Ann, Cary, Tom} could be
a same-value family, meaning if any one of them has a
sensitive value (e.g., Flu), all the others tend also to have the
same sensitive value.

While the technical contributions of this paper focus on these

classes of expressions, these are by no means the only interesting

knowledge expressions. In Section 8, we describe several other

natural expression types that should be considered in future work.

3. DESIDERATA & RELATED WORK

In this section, we outline a number of characteristics we consider
crucial to the design of a practical privacy criterion. At the same
time, we review the literature, indicating how previous work does
not match our desired characteristics.

From our perspective, a practical privacy criterion should display
the following characteristics:

1. Intuitive: The data owner (usually not a computer scientist)
should be able to understand the privacy criterion in order to
set the appropriate parameters.

2. Efficiently checkable: Whether a release candidate satisfies
the privacy criterion should be efficiently checkable.

3. Flexible: In data publishing, the data owner often considers a
tradeoff between disclosure risk and data utility. A practical
privacy criterion should provide this flexibility.

4. External knowledge: The privacy criterion should guarantee
safety in the presence of common types of external knowledge.

5. Value-centric: Often, different sensitive values have different
degrees of sensitivity (e.g., AIDS is more sensitive than flu).

Thus, a practical privacy criterion should have the flexibility to
provide different levels of protection for different sensitive
values, not just uniform protection for all the values in the
sensitive attribute. We call the latter attribute-centric. An
attribute-centric criterion tends to over-protect the data. For
example, to protect individuals having AIDS, the data owner
must set the strongest level of protection, which is not
necessary for individuals having flu. Instead, we take the more
flexible value-centric approach.

6. Set-valued sensitive attributes: In many real-world scenarios,
an individual may have several sensitive values, e.g., diseases.

No existing privacy criterion fully satisfies our desiderata. The
most closely-related work is that of Martin et al. [13], which
considers adversarial knowledge ℒbasic(k) to be a conjunction of k
basic implications. Each basic implication is of the form ((∧i∈[1,m]
xi∈ui[S]) → (∨j∈[1,n] yj∈vj[S])), where m > 0, n > 0, and xi, ui, yj
and vj are all variables. A release candidate D* is (c,k)-safe if max
{Pr(s∈t[S] | K, D*)} < c, where s and t are also variables. The
authors showed that the probability is maximized when K is of a
simpler form ℒ simple(k) = ∧i∈[1,k] (zi∈wi[S] → s∈t[S]), and
developed a polynomial time algorithm to solve

max {Pr(s∈t[S] | ∧i∈[1,k] (zi∈wi[S] → s∈t[S]), D*)},

where all t, s, wi, zi are variables.

While groundbreaking in the treatment of external knowledge, the
approach has several important shortcomings:

• The knowledge quantification is not intuitive. It is hard to
understand the practical meaning of k implications.

• Martin et al. showed that their language can express any
logic-based expression of external knowledge, when the
number k of basic implications is unbounded. However, their
language cannot practically express some important types of
knowledge, e.g., simply Flu∈Bob[S] (a very common kind of
knowledge that the adversary may obtain from a similar
dataset). Expressing such knowledge in their language
requires (|S|−1) basic implications, where |S| is the number of
sensitive values. However, with this number of basic
implications, no release candidate can possibly be safe. Thus,
Flu∈Bob[S] will never be used in their criterion. A formal
study of practical expressibility is in Appendix A8.

• The privacy criterion is attribute-centric, and there is no
straightforward extension of the proposed algorithm to the
more flexible value-centric case. The reason is that the
algorithm can only compute max {Pr(s∈t[S] | K, D*)} for the
sensitive value s that is most frequent in at least one QI-
group. However, the sensitive values that need the most
protection (e.g., AIDS) are usually infrequent ones.

• Each individual is assumed to have only one sensitive value.

Our work builds upon [13] and addresses the above issues. Note
that our language can express some knowledge (e.g., Flu∈Bob[S])
that cannot be practically expressed in their language, and vice
versa. For details, see Section 4.4.

In other related work, k-Anonymity and ℓ-diversity are privacy
criteria that attempt to capture adversarial knowledge in a less
formal way. k-Anonymity requires that no individual be
identifiable from a group of k individuals[16]. ℓ-Diversity requires
that each QI-group contain at least ℓ “well-represented” sensitive
values [11]. In Section 4.4, we show these two criteria are special
cases of our basic privacy criterion.

Query-view privacy was studied in [3, 4, 12, 14]. Given a set of
public views of a database, the goal is to check whether they
reveal any information about a private view of the same database,
where views are defined by conjunctive queries. Views can be

 5

used to express adversarial knowledge. However, each of [4, 12,
14] uses an extremely strong definition of privacy, requiring the
sensitive information to be completely independent of the released
data. This approach does not provide flexibility to tradeoff
privacy for utility. Dalvi et al. relax the strong requirement [3],
but describe a privacy criterion based on asymptotic probabilities
when the domain size goes to infinity, which is not intuitive.
Checking query-view safety in the general setting is NP-hard [4,
14]. Polynomial time algorithms for some special cases were
given in [3, 12]. Other studies of data privacy in multiple (project-
only or select-project) views of a single original table are [5, 19].

Several other recent works have considered probabilistic
disclosure, but have not incorporated adversarial knowledge,
including [10, 18] and others. Ignoring external knowledge can be
dangerous. Consider the following QI-group:

({Ann, Bob, Cary, Dick, Ed}, {Flu, Flu, Flu, Flu, AIDS}).

In the SVPI case, the probability that any one has AIDS is 0.2,
which may be sufficiently low. However, by an investigation of
only 4 individuals (i.e., knowing 4 individuals not having AIDS),
one can conclude that the other one has AIDS. In this sense, this
QI-group does not preserve privacy as well as a QI-group
containing 100 individuals, 20 of whom have AIDS, despite the
fact that the disclosure probability is the same in both cases (0.2).

Finally, though not specifically concerned with data privacy, the
framework described in Section 2 is closely related to the
framework for reasoning about uncertainty (the “random worlds
approach”) in the presence of specific logical and probabilistic
knowledge that was introduced by Bacchus et al. [2].

4. MULTIDIMENSIONAL PRIVACY

We now define our privacy criterion. To incorporate external
knowledge, the data owner needs to specify the knowledge that an
adversary may have. Because it is nearly impossible for the data
owner to anticipate the specific knowledge available to an
adversary, we take the approach of [13], and propose a new
mechanism for “quantifying” external knowledge. In this
approach, the privacy criterion must guarantee safety when the
adversary has up to a certain “amount” of knowledge, regardless
of the specific things that are known.

As discussed in Section 2.3, in general, it is NP-hard to check
safety of a release candidate. Thus, our goal is to find special
cases that are both useful in practice and efficiently solvable.

In the rest of this section, we propose an intuitive and usable
approach to quantifying adversarial knowledge. The key idea is
to break down quantification into several meaningful components,
rather than a single number as in [13]. We then define a skyline
privacy criterion and a skyline exploratory tool.

4.1 Three-Dimensional Knowledge

Consider an adversary who wants to determine whether target
individual t (a variable) has target sensitive value σ (a specific
value, e.g., AIDS). Note that t is a variable because the target can
be anyone, while σ is not because we want to provide a possibly
different safety guarantee for each unique sensitive value σ.
Intuitively, we consider the following three types of knowledge:
(note the subscripts, where σ denotes the target sensitive value)

• Kσ|t: Knowledge about the target individual t.
• Kσ|u: Knowledge about individuals (u1, …, uk) other than t.
• Kσ|v,t: Knowledge about the relationship between t and other

individuals (v1, …, vm).

We note that knowledge about relationships is the most interesting
type of knowledge. In this paper, we focus on same-value
families, which we consider to be the most natural form of
relationship in attribute disclosure. In general, relationships may
be expressed using graphs, which is future work.

We use the following convention throughout the paper.

• σ is the target sensitive value (a specific value, not a variable).
• t is the target individual (a variable).
• ui, vi are variables ranging over individuals.
• xi, yi are variables ranging over sensitive values.

• f, g are (the indices of) QI-groups.

Because the SVPI case and MVPI case have very different

characteristics, we discuss these two cases separately.

4.1.1 Case of Single Value per Individual

We use (ℓ , k, m) to quantify the three types of knowledge,
respectively. Specifically, this indicates that the adversary knows:
(1) ℓ sensitive values that target individual t does not have, (2) the
sensitive values of k other individuals, and (3) m members in t’s
same-value family (a group of people who tend to have the same
sensitive values). Note that the precise meaning of the third
dimension is “m individuals such that if any one of them has σ,
then t also has σ.” Consider t = Tom, σ = AIDS, and (ℓ, k, m) = (2,
3, 1). An example of adversary’s knowledge is the conjunction of
the following three expressions:

• Flu∉Tom[S] ∧ Cancer∉Tom[S] (obtained from Tom’s
friends).

• Flu∈Bob[S] ∧ Flu∈Cary[S] ∧ Cancer∈Frank[S] (obtained
from another hospital’s medical records)

• AIDS∈Ann[S] → AIDS∈Tom[S] (because Ann is Tom’s
wife).

Definition: ℒℒℒℒt,σσσσ
SVPI(ℓℓℓℓ, k, m). Formally, an adversary’s knowledge

is a parameterized expression ℒt,σ
SVPI(ℓ, k, m) = Kσ|t(ℓ) ∧ Kσ|u(k) ∧

Kσ|v,t(m), where

• Kσ|t(ℓ) = (∧i∈[1,ℓ] xi∉t[S]) indicates that the adversary knows ℓ
sensitive values (the xi’s) that the target t does not have.

• Kσ|u(k) = (∧i∈[1,k] yi∈ui[S]) where ui ≠ t, indicates that the
adversary knows the sensitive values (the yi’s) of k individuals
(the ui’s) other than the target t.

• Kσ|v,t(m) = (∧i∈[1,m] (σ ∈vi[S] → σ ∈t[S])) where vi ≠ uj and vi
≠ t, indicates that the adversary knows m individuals such that

if any one of them has σ, then t also has σ.

Note that ui≠t, vi≠t and vi≠uj specify the constraints on variable
grounding, meaning when we substitute the variables with actual
individuals, we cannot assign the same individual to ui and t, and
so on. The reason is that if ui = t, the adversary knows t’s sensitive
value without the released dataset. Similarly, if vi = uj, the
adversary also knows t’s sensitive value without the released
dataset because (σ ∈vi[S]) ∧ (σ ∈vi[S] → σ ∈t[S]) implies σ∈t[S].

Also note that the subscript of ℒt,σ
SVPI(ℓ, k, m) indicates that the

target individual is variable t and the target sensitive value is σ.

4.1.2 Case of Multiple Values per Individual

The types of knowledge considered in the MVPI case are different
from those in the SVPI case. Consider two different sensitive
values σ1 and σ2. We first note that a special case of proposition 2
is Pr(σ1∈t[S] | σ2∈u[S], D*) =

Pr(σ1∈t[S] | ε, D*)⋅Pr(ε | σ2∈u[S], D*) = Pr(σ1∈t[S] | D*),

 6

where ε is the empty expression. This means σ1∈t[S] is
independent of σ2∈u[S] (also σ2∉u[S]) as long as σ1 ≠ σ2,
regardless of whether t= u. Thus, the first two forms of knowledge
in the SVPI case are useless to the adversary in determining
whether t has σ.

Instead, in the MVPI case, we use (ℓ, k, m) to indicate that the
adversary knows: (1) ℓ sensitive values that co-occur with target
value σ for target individual t, (2) k other individuals who do not
have σ, and (3) m members in t’s same-value family. Consider
t=Tom, σ =AIDS, and (ℓ, k, m) = (1, 3, 1), examples of the three
types of knowledge in the MVPI case are:

• Cancer∈Tom[S] → AIDS∈Tom[S] (obtained from a
hypothetical medical study).

• AIDS∉Bob[S] ∧ AIDS∉Cary[S] ∧ AIDS∉Frank[S] (obtained
from another hospital’s medical records)

• AIDS∈Ann[S] → AIDS∈Tom[S] (because Ann is Tom’s
wife).

Definition: ℒℒℒℒt,σσσσ
MVPI(ℓℓℓℓ, k, m). Formally, an adversary’s knowledge

is expression ℒt,σ
MVPI(ℓ, k, m) = Kσ|t(ℓ) ∧ Kσ|u(k) ∧ Kσ|v,t(m), where

• Kσ|t(ℓ) = (∧i∈[1, ℓ] (xi∈t[S] → σ ∈t[S])) indicates that the
adversary knows ℓ sensitive values (the xi’s) that co-occur

with target value σ for target individual t. Thus, if t has any xi,
t should also have σ.

• Kσ|u(k) = (∧i∈[1,k] σ ∉ui[S]) where ui ≠ t, indicates that the

adversary knows k individuals (the ui’s) who do not have
sensitive value σ.

• Kσ|v,t(m) = (∧i∈[1,m] (σ ∈vi[S] → σ ∈t[S])) where vi ≠ uj and vi
≠ t. This is the same as the Kσ|v,t(m) in the SVPI case.

For ease of exposition, we use Kσ|t(ℓ) and Kσ|u(k) to denote the first
two dimensions in both the SVPI and the MVPI cases, even
though the actual expressions are different in the two cases. If we
want to distinguish the two cases, we will say so explicitly.

4.2 Privacy Criterion

In the rest of this paper, we use ℒ t,σ(ℓ , k, m) to denote both

ℒt,σ
SVPI(ℓ, k, m) and ℒt,σ

MVPI(ℓ, k, m). Also, if (ℓ, k, m) is not

important in our discussion, we just write ℒt,σ
SVPI and ℒt,σ

MVPI.

Given a release candidate D*, for a particular grounding of the
variables, Pr(σ ∈ t[S] | ℒ t,σ(ℓ , k, m), D*) is the adversary’s
confidence that individual t has sensitive value σ given external
knowledge. A privacy criterion should provide a worst-case
guarantee. That is, no matter how we substitute variables with the
actual individuals and sensitive values, the adversary’s confidence
should not exceed a given threshold value c. This leads to the
following definition.

Definition: Basic 3D privacy criterion. Given knowledge
threshold (ℓ, k, m) and confidence threshold c, release candidate
D* is safe for sensitive value σ iff

max {Pr(σ ∈t[S] | ℒt,σ(ℓ, k, m), D*)} < c.

We call max{Pr(σ ∈t[S] | ℒt,σ(ℓ, k, m), D*)} the breach probability.

For example, in the SVPI case, suppose that the data owner
specifies (ℓ, k, m) = (1, 5, 2) and c = 50% for sensitive value
AIDS. The privacy criterion guarantees that the adversary cannot
predict any individual t to have AIDS with confidence ≥ 50% if
the following conditions hold: (1) The adversary knows ℓ ≤ 1
sensitive values that target individual t does not have, (2) the
adversary knows the sensitive values of k ≤ 5 other individuals,
and (3) the adversary knows m ≤ 2 members in t’s same-value
family. It is easy to see that the breach probability increases with
increasing amounts of adversarial knowledge. Thus, if D* is safe
under (1, 5, 2), it is also safe under any (ℓ, k, m) such that ℓ ≤ 1, k ≤
5 and m ≤ 2, which is the shaded region of Figure 5 (a). For
simplicity, we only show a two-dimensional plot.

The basic privacy criterion is useful and intuitive, but it may not
be sufficient for expressing the data owner's desired level of
privacy. For example, the threshold (1,5,2) provides no protection
guarantee for (1,3,4) because (1,3,4) is not in the shaded region of
Figure 5 (a). To provide more precise and flexible control, we
extend the basic privacy criterion to allow the data owner to
specify a set of incomparable points called a skyline (e.g., as
shown in Figure 5 (b), the skyline is {(1,1,5), (1,3,4), (1,5,2)})
such that release candidate D* is safe if the breach probability is
less than the confidence threshold (e.g., 50%) given any
adversary’s knowledge with amount beneath the skyline (e.g., the
shaded area in Figure 5 (b)).

We can also include the confidence threshold c in the skyline. We
say (ℓ1, k1, m1, c1) dominates (ℓ2, k2, m2, c2) if ℓ1 ≥ ℓ2, k1 ≥ k2, m1 ≥
m2 and c1 ≤ c2. It can be easily seen that if D* is safe under (ℓ1, k1,
m1, c1), it is also safe under (ℓ2, k2, m2, c2). A set of points is a
skyline if no point dominates another.

Definition: Skyline privacy criterion. Given a skyline {(ℓ1, k1,
m1, c1), …, (ℓ r, kr, mr, cr)}, release candidate D* is safe for
sensitive value σ iff, for i = 1 to r,

max {Pr(σ ∈t[S] | ℒt,σ(ℓi, ki, mi), D
*)} < ci.

In practice, the data owner specifies a skyline for each sensitive
value. The skyline privacy criterion is attractive because it allows
the data owner to enforce privacy requirements for different
situations separately. Although a skyline involves many parameter
values, it is much more intuitive for the data owner to specify a
skyline (in a case-by-case manner) than to figure out a way to
combine many considerations into a single threshold value. Also,
the data owner can set default parameter values for common cases
and only fine-tune some special cases.

4.3 Skyline Exploratory Tool

In the skyline privacy criterion, the user specifies a skyline, and
the system checks whether a release candidate is safe under the
skyline. However, the skyline itself may be a useful exploratory
tool, providing valuable information to the data owner in
considering a particular release candidate.

In the following, we say (ℓ, k, m) > (ℓi, ki, mi) if ℓ ≥ ℓi, k ≥ ki, m ≥ mi
and at least one inequality holds.

Definition: Knowledge Skyline. The knowledge skyline of
release candidate D* at confidence threshold c for sensitive value

σ is the set {(ℓ1, k1, m1), …, (ℓr, kr, mr)} of all points such that D*
is safe for σ under (ℓi, ki, mi) at confidence threshold c, but not
safe for any (ℓ, k, m) > (ℓi, ki, mi), for all i.

For a given release candidate, the knowledge skyline separates the
multidimensional knowledge space into two regions. Intuitively,

Figure 5. Example of privacy skylines

m

k

ℓ ≤ 1

(5,2)

(a)

m

k

ℓ ≤ 1

(5,2)

(b)

(3,4)
(1,5)

 7

the release candidate is resilient to adversarial knowledge below
or on the skyline, but not to knowledge above the skyline.

Knowledge skylines are a useful exploratory tool. Regardless of
whether the released data is generated based on our privacy
criterion, before the data is actually released, it is always good for
the data owner to check the knowledge skyline of the release
candidate, and see whether the dataset is safe or not under various
amounts and types of adversarial external knowledge.

4.4 Comparisons

We first compare ℒt,σ
SVPI with ℒt,σ

MVPI, and then compare ℒt,σ
SVPI

with k-anonymity [16], ℓ-diversity [11] and ℒbasic [13].

As described in [13], in the SVPI case, (∧i∈[1,ℓ] (xi∈t[S]→ σ∈t[S]))
is actually equivalent to (∧i∈[1,ℓ] xi∉t[S]), because t can only have
one sensitive value. Thus, the Kσ|t(ℓ) in the SVPI case actually has
the same form as the Kσ|t(ℓ) in the MVPI case, although they have
different interpretations. Now, the only difference between the
two cases is in Kσ|u(k), which represents knowledge about
individuals other than the target. We think (∧i∈[1,k] yi∈ui[S]) is the
most natural knowledge about individuals. Thus, we use it in the
SVPI case. However, in the MVPI case, yi∈ui[S] is independent of
σ ∈ t[S] if yi ≠ σ. Even if yi = σ, the knowledge of σ ∈ui[S] cannot
help the adversary increase his confidence. Thus, in the MVPI
case, we choose (∧i∈[1,k] σ ∉ ui[S]) because it is still easily
interpretable and is also useful for the adversary.

We now compare ℒt,σ
SVPI with k-anonymity [16], ℓ-diversity [11]

and ℒbasic [13], which are all in the SVPI case. For proofs, see
Appendix A1.

Proposition 3. k-anonymity (in our framework, defined as each
QI-group having at least k individuals) is a special case of the
basic 3D privacy criterion when the sensitive values are the

identities of the individuals, the knowledge threshold is (0, k−2, 0)
and the confidence threshold is 1, for all sensitive values σ.

Proposition 4. (c,ℓ)-diversity is a special case of the basic 3D

privacy criterion when the knowledge threshold is (ℓ−2, 0, 0) and
the confidence threshold is c/(c+1), for all sensitive values σ.

Basically, k-anonymity considers knowledge of form Kσ|u(k) and
ℓ-diversity considers knowledge of form Kσ|t(ℓ) in the SVPI case.
For the comparison of ℒt,σ

SVPI and ℒbasic, no one is more general
than the other, because ℒt,σ

SVPI cannot express, say, (Flu∈Bob[S]
→ AIDS∈Tom[S]), and ℒ basic cannot practically express, say,
Flu∈Bob[S] (as discussed in Section 3). However, our ℒt,σ

SVPI is
more intuitive and quantifies knowledge more precisely than ℒ
basic. A formal comparison between ℒ t,σ

SVPI and ℒ basic is in
Appendix A8.

5. EFFICIENT, SCALABLE ALGORITHMS

In this section, we develop algorithms: SkylineCheck for
checking whether a release candidate is safe and
SkylineAnonymize for generating a safe and useful release
candidate. The algorithm for finding the knowledge skyline of a
release candidate is in Appendix A7.

Our algorithms rely critically upon a proposed congregation
property. Because we carefully design our knowledge
quantification to satisfy this property, our algorithms are very
efficient when the number of distinct sensitive values is a
constant. In contrast, the knowledge quantification of Martin et al.
[13] does not satisfy this property. Although both algorithms run
in polynomial time, there is a big difference in efficiency between
their algorithm and ours.

In this section, we describe a general computation framework that
works for the three cases (SVPI, MVPI-Set and MVPI-Multiset).
In Section 6, we provide the formulas for the probability
computation specific to each case.

5.1 SkylineCheck Algorithm

SkylineCheck algorithm checks whether a release candidate
satisfies a skyline criterion for every sensitive value. The main
ideas behind SkylineCheck are as follows:

1. Convert implication-based knowledge into literals (so that
we can use Propositions 1 and 2).

2. Show that the breach probability is maximized when all the
individuals (involved in adversarial knowledge) congregate
in no more than two QI-groups.

We first focus on checking whether release candidate D* is safe
for a single sensitive value σ, and then extend to all σ’s. Note that
we have abstracted the knowledge expressions in both the SVPI
and the MVPI cases in the same form: (Kσ|t(ℓ) ∧ Kσ|u(k) ∧
Kσ|v,t(m)). As described in Section 4.4, in the SVPI case, (∧i∈[1,ℓ]
(xi∈t[S] → σ ∈t[S])) is equivalent to Kσ|t(ℓ) = (∧i∈[1, ℓ] xi∉t[S])
because t can have only one sensitive value. Thus, we use Kσ|t(ℓ) =
(∧i∈[1, ℓ] xi∈t[S] → σ ∈t[S])), for both the SVPI and the MVPI
cases. Now, the only difference between the two cases is in
Kσ|u(k).

Given knowledge threshold (ℓ, k, m) and confidence threshold c,
D* = {(G1, X1), …, (GB, XB)} is safe for σ if the breach probability
is less than c, where the breach probability (BP) is

BPσ(ℓ, k, m) = max{Pr(σ ∈t[S] | Kσ|t(ℓ) ∧ Kσ|u(k) ∧ Kσ|v,t(m), D*)}.

The above maximization is over the following variables:

• Individuals: t (in Kσ|t(ℓ)), u1, …, uk (in Kσ|u(k)) and v1, …, vm
(in Kσ|v,t(m)).

• Sensitive values: x1, …, xℓ (in Kσ|t(ℓ)), y1, …, yk (in Kσ|u(k)).

Note that we sometimes directly call t, ui’s and vi’s individuals.

Now our goal is to compute BPσ(ℓ, k, m). Note that Kσ|t(ℓ) and
Kσ|v,t(m) involve implications. Probability computation under
implication-based knowledge is not easy. Thus, we use Lemma 1
(which is Lemma 12 in [13]) to convert implications into literals.

Lemma 1. Pr(σ ∈t[S] | Kσ|t(ℓ) ∧ Kσ|u(k) ∧ Kσ|v,t(m), D*) =
1 / (NR + 1), where

)),(|][Pr(

)),(|])[(])[(][Pr(

*
|

*
|],1[],1[

D

D

kKSt

kKSvStxSt
NR

u

uimiii

σ

σ

σ

σσ

∈

∉∧∧∉∧∧∉
=

∈∈ l

We call NR the negated ratio. (For the proof, see Appendix A2.)

Note that Lemma 1 is true for both the SVPI and the MVPI cases.
Also note that, because Kσ|u(k) is a conjunction of k literals, NR
only involves conjunctions of literals.

Based on Lemma 1, to maximize the breach probability is to
minimize the negated ratio. Thus, we define:

minNRσ(ℓ, k, m) = min t, vi, xi, Kσ|u(k) NR.

Since BPσ(ℓ, k, m) = 1 / (minNRσ(ℓ, k, m) + 1), our goal now is to
compute minNRσ(ℓ, k, m), which only involves literals.

In general, minimizing the negated ratio is not easy. In principle,
we need to try all possible groundings of the variables and find the
one that gives the minimum. In each grounding, we need to set
variables t, u1, …, uk and v1, …, vm to individuals in possibly
different QI-groups of D*. After fixing the QI-groups of the
individuals, the minimum negated ratio (over variables x1, …, xℓ,
y1, …, yk for sensitive values) can be computed using the formulas
in Section 6. In this section, we focus on how to distribute the

 8

individuals (t, ui’s and vi’s) into QI-groups in order to minimize
the negated ratio.

To find the minimum negated ratio, we may need to try all
possible ways of distributing those individuals into the QI-groups
in D*. A dynamic-programming technique [13] can find the
minimum in polynomial time, but computational efficiency is still
an issue. Thus, the following congregation property is extremely
useful. Intuitively, we say that Kσ|u(k) (or Kσ|v,t(m)) is 1-group
congregated iff the breach probability is maximized (i.e., the
negated ratio is minimized) when all the individuals except t
(which we do not care about) involved in Kσ|u(k) (or Kσ|v,t(m)) are
in one QI-group. If Kσ|u(k) and Kσ|v,t(m) are both 1-group-
congregated, then a much more simple and efficient algorithm is
possible.

Definition: Congregation. Let K = K1∧…∧Kn be an expression
with variables. Ki is 1-group congregated in K iff there exists a
grounding maximizing Pr(σ ∈ t[S] | K, D*) such that, in the

grounding, all the variables other than t (the target, which we do
not care about) that represent individuals involved in Ki are set to
individuals in one QI-group.

Theorem 1. Kσ|u(k) and Kσ|v,t(m) are both 1-group congregated, in
all the three cases (SVPI, MVPI-Set and MVPI-Multiset).

We defer the proof to Section 6, or see Appendix A5 for details.

We now discuss how to use Theorem 1 to develop an efficient
algorithm. First, recall that Kσ|t(ℓ) only involves individual t (the
target), Kσ|u(k) only involves individuals u1, …, uk, and Kσ|v,t(m)
only involves individuals v1, …, vm and t. By Theorem 1, the
negated ratio is minimized when all u1, …, uk are in one QI-group
and all v1, …, vm are in one QI-group.

Without loss of generality, we assume the negated ratio is
minimized when 1

t is in QI-group g and v1, …, vm are in QI-group f.

Proposition 5. The negated ratio is minimized when all the ui’s
(in Kσ|u(k)) are either in QI-group g or QI-group f.

Rationale: By Proposition 1, if ui is not in QI-group g or f, then
yi∈ui[S] (in Kσ|u(k) for the SVPI case) and σ ∉ui[S] (in Kσ|u(k) for
the MVPI case) are independent of the negated ratio; i.e., they will
not affect the value of the negated ratio. Thus, to minimize the
negated ratio, all the ui’s should be in QI-group g or f. For details,
see Appendix A1. �

By Proposition 5, the negated ratio is minimized when all the
individuals (in the adversary’s knowledge) are in QI-group g or f.
If g = f, we define the following.

Definition: minNRσσσσ(g, ℓℓℓℓ, k, m).

minNRσ(g, ℓ, k, m) = min t, vi, xi, Kσ|u(k) NR,

such that t, v1, …, vm and u1, …, uk (in Kσ|u(k)) are in QI-group g,
where NR is the negated ratio defined in Lemma 1.

Thus, if g=f, then minNRσ(g, ℓ, k, m) is the minimum negated
ratio.

Now consider g ≠ f. We define the following.

Definition: Tσσσσ(g, ℓℓℓℓ, k) and Vσσσσ(f, m, k).

)),(|][Pr(

)),(|])[(][Pr(
min),,(

*
|

*
|],1[

)(,, | D

D

kKSt

kKStxSt
kgT

u

uii

kKxt ui

σ

σ
σ

σ

σ
σ ∈

∉∧∧∉
=

∈ l
l ,

such that t and u1, …, uk are in QI-group g.

1
 We assume that t, u1, …, uk and v1, …, vm can fit in each QI-group of D*

that contains σ. Otherwise, the breach probability is simply one.

Vσ(f, m, k) = min vi, Kσ|u(k) Pr(∧i∈[1,m] σ ∉vi[S] | Kσ|u(k), D*),

such that v1, …, vm and u1, …, uk (in Kσ|u(k)) are in QI-group f.

Consider the following situation: (0 ≤ h ≤ k)

• QI-group g contains t and u1, …, uh.

• QI-group f contains v1, …, vm and the rest (k−h) of the ui’s.

If g ≠ f, by Proposition 1, the literals in NR that involve t and u1,
…, uh are independent of the literals that involve v1, …, vm and the
rest (k−h) of the ui’s. Thus, the minimum negated ratio becomes

min t, vi, xi, Kσ|u(k) NR = Tσ(g, ℓ, h)⋅Vσ(f, m, k−h),

by applying Proposition 1 to both the numerator and denominator
of NR. (For detailed derivation, see Derivation 1 in Appendix A4.)

By Theorem 1, we know all the ui’s are in one QI-group; i.e., h is
either 0 or k. The computation of minNRσ(g, ℓ, k, m), Tσ(g, ℓ, k)
and Vσ(f, m, k) is case-specific and will be discussed in Section 6.

Theorem 2. The minimum negated ratio minNRσ(ℓ , k, m) on
release candidate D* is the minimum of the following three:

• min g∈D* minNRσ(g, ℓ, k, m),

• (min g∈D* Tσ(g, ℓ, 0)) ⋅ (min f∈D* Vσ(f, m, k)),

• (min g∈D* Tσ(g, ℓ, k)) ⋅ (min f∈D* Vσ(f, m, 0)),

where “g∈D*” means “for each QI-group g in D*.”

Proof: By Theorem 1, we only need to consider the situations in
which all the ui’s are in one QI-group and all the vi’s are in one
QI-group. If t, the ui’s and the vi’s are all in one QI-group, then the
first case above gives the minimum negated ratio. Otherwise, let t
be in group g and all the vi’s be in group f, where g ≠ f. By
Proposition 5, all the ui’s are either in g or f. If all the ui’s are in f,
then the minimum negated ratio is

 min g, f Tσ(g, ℓ, 0)⋅Vσ(f, m, k) =

(min g∈D* Tσ(g, ℓ, 0))⋅(min f∈D* Vσ(f, m, k)),

which gives the second case. Note that if the above is minimized
at g = f (i.e., all t, ui’s, vi’s are in one QI-group), then the first case
will be even smaller because, as can be seen from the computation
formulas in Section 6,

 minNRσ(g, ℓ, k, m) =

Tσ(g, ℓ, k)⋅Vσ(g, m, k+1) ≤ Tσ(g, ℓ, 0)⋅Vσ(g, m, k),

for all g. Thus, the first case will be the minimum and give the
correct answer.
Similarly, if all the ui’s are in g, we obtain the third case. �

Sufficient Statistics: Given release candidate D* and knowledge
threshold (ℓ , k, m) for sensitive value σ, the five minimum
quantities in Theorem 2 are sufficient for computing the minimum
negated ratio, thus the breach probability. We call them the
sufficient statistics for (ℓ , k, m) on D*, and use the following
notation:

SS1σ,(ℓ, k, m)(D
) = min g∈D minNRσ(g, ℓ, k, m).

SS2σ,(ℓ, k, m)(D
) = min g∈D Tσ(g, ℓ, 0).

SS3σ,(ℓ, k, m)(D
) = min g∈D Tσ(g, ℓ, k).

SS4σ,(ℓ, k, m)(D
) = min g∈D Vσ(g, m, 0).

SS5σ,(ℓ, k, m)(D
) = min g∈D Vσ(g, m, k).

Note that, to compute minNRσ(g, ℓ, k, m), Tσ(g, ℓ, ⋅) and Vσ(g, m,⋅),
we only need data in a single QI-group g.

SkylineCheck algorithm: Given release candidate D*, in which
the QI-groups are clustered (i.e., all the data in a QI-group is
stored on disk consecutively), and a skyline {(ℓ1, k1, m1, c1), …,
(ℓr, kr, mr, cr)}, our goal is to check whether D* is safe for sensitive
value σ; i.e., 1 / (minNRσ(ℓ i, ki, mi) + 1) < ci, for all i. The
algorithm is simple. We scan D* once, during which, for each QI-

 9

group, we maintain the sufficient statistics for each (ℓi, ki, mi).
Finally, we check whether 1 / (minNRσ(ℓi, ki, mi) + 1) < ci, for all i.

Theorem 3. The above algorithm correctly checks whether D* is
safe for sensitive value σ under a skyline of r points by a single
scan over D* using memory O(r) to keep the sufficient statistics.

It can be easily seen that the above algorithm also works for
checking safety for all the sensitive values. Now, r becomes the
total number of skyline points in all the skylines, each of which is
for a sensitive value.

5.2 SkylineAnonymize Algorithm

In this section, we describe a simple and efficient algorithm using
multidimensional generalization [7] to find a minimal safe release
candidate based on the congregation property, which allows us to
use just five global sufficient statistics to check safety for a
skyline point. It has been shown in [7, 8] that multidimensional
generalization techniques produce more useful data than single-
dimensional generalization techniques [6]. Thus, we only develop
an algorithm based on the former. An algorithm based on the
latter is straightforward. For ease of exposition, we describe the
algorithm for a single skyline point (ℓ, k, m, c), but the extension
to multiple skyline points for each sensitive value is
straightforward. The algorithm is based on an adaptation of a
partitioning scheme originally proposed for k-anonymity in [7].

Intuitively, a release candidate is minimal if it is safe and no QI-
group can be safely divided. Formally, we define a partial
ordering over all the release candidates of an original dataset D as
follows. Let D*

1 and D*
2 be release candidates of D, we say D*

1 ≼
D*

2 iff, for each QI-group (Gg, Xg) ∈ D*
1, there exists a QI-group

(Gf, Xf) ∈ D*
2 such that Gg ⊆ Gf. That is, each QI-group in D*

2 is
the union of one or more QI-groups in D*

1.

Definition: Minimal Release Candidate. Release candidate D*
is said to be minimal iff it is safe and there does not exist any
other safe release candidate D*

1 such that and D*
1 ≼ D*.

To find a minimal release candidate, we use the following
properties. We say that QI-groups g1, …, gn partition QI-group g
if they are disjoint and the union of them is g.

Theorem 4. If QI-groups g1, …, gn partition QI-group g, then in
the SVPI case, for any fixed (ℓ, k, m), the following hold:

• Tσ(g, ℓ, k) ≥ min 1≤i≤n Tσ(gi, ℓ, k),

• Vσ(g, m, k) ≥ min 1≤i≤n Vσ(gi, m, k),

• minNRσ(g, ℓ, k, m) ≥ the minimum of:

(a) min 1≤i≤n minNRσ(gi, ℓ, k, m),

(b) (min 1≤i≤n Tσ(gi, ℓ, k)) ⋅ (min 1≤i≤n Vσ(gi, m, 0)).

Definition: Monotonicity. Let D*
1 and D*

2 be release candidates

of D such that D*
1 ≼ D*

2. A privacy criterion is monotonic iff the
fact that D*

1 is safe under the criterion implies that D*
2 is also

safe.

Corollary. In the SVPI case, the basic 3D privacy criterion and
the skyline privacy criterion are monotonic.

The proofs of Theorem 4 and its corollary are in Appendix A5.
We note that Theorem 4 and its corollary do not apply to the
MVPI case. We discuss the implication later.

Our algorithm works as follows. Starting from a single QI-group,
which is the original dataset, we recursively partition (or split)
each QI-group in a “greedy” manner as long as it is still safe to do
so. In each step, if there are several ways to partition a QI-group,
we choose the one that is expected to generate the most useful
release candidate based on an application-specific split criterion
(e.g., [8]). The algorithm maintains the five global sufficient
statistics (across all the QI-groups in the current partitioning).
Using only these statistics, we are able to check whether or not
splitting a QI-group increases the breach probability beyond the
specified confidence threshold c. It is important to note that we do
not need to look at the entire dataset in order to determine whether
it is safe to split a particular group g. Instead, this determination
can be made using only the global statistics and the data in g. The
pseudo-code for the algorithm is given in Figure 6. In the safeSplit
subroutine, candidate splits for QI-group g can be selected and
prioritized using any application-specific criteria (e.g., [8]).

Theorem 5. The anonymization algorithm produces a safe release
candidate. In the SVPI case, the release candidate is minimal.

Proof sketch: The BP computed in the safeSplit subroutine is
always greater than or equal to the breach probability on the
current D* with QI-group g replaced by g1, …, gn. Thus, if BP < c,
the breach probability must be less than c; i.e., it is safe to split g
into g1, …, gn. In the SVPI case, by Theorem 4, BP is actually
equal to the breach probability, and by the corollary, the returned
release candidate is minimal. The detailed proof is in Appendix
A5. �

Scalability: The anonymization algorithm can be implemented in
a scalable way using the Rothko-Tree approach described in [9].
Specifically, candidate splits can be chosen and evaluated based
on the set of (unique attribute value, unique sensitive value,

count) triples, which is often much smaller than the size of the full
input dataset and usually fits in memory.

Discussion: Our algorithm is guaranteed to produce a minimal
release candidate in the SVPI case. In the MVPI case, it is
guaranteed to produce a safe release candidate, but the candidate

Input: Original dataset as QI-group g0, privacy parameters (ℓ, k, m) and c
Output: A minimal release candidate safe under (ℓ, k, m) and c
Global variables: Sufficient statistics SS1, SS2, SS3, SS4, SS5.

anonymize(g0, ℓ, k, m, c)
// Initialize the global sufficient statistics
SS1 = minNRσ(g0, ℓ, k, m); SS2 = Tσ(g0, ℓ, 0); SS3 = Tσ(g0, ℓ, k);
SS4 = Vσ(g0, m, 0); SS5 = Vσ(g0, m, k);

// Greedily partition (split) the data and maintain the statistics
D* = empty;
queue.pushBack(g0);
while(queue is not empty)

g = queue.popFront();
if ({g1, …, gn} = safeSplit(g, ℓ, k, m, c) is not empty)

for (i = 1 to n)
queue.pushBack(gi);
SS1 = min{ SS1, minNRσ(gi, ℓ, k, m) };
SS2 = min{ SS2, Tσ(gi, ℓ, 0) }; SS3 = min{ SS3, Tσ(gi, ℓ, k) };
SS4 = min{ SS4, Vσ(gi, m, 0) }; SS5 = min{ SS4, Vσ(gi, m, k)};

else D*.pushBack(g);
return D*;

subroutine safeSplit(g, ℓ, k, m, c)
sort candidate splits of g by priority; // application-specific ordering

// Check safety for each candidate split
for each candidate split that splits g into {g1, …, gn}

A1 = SS1; A2 = SS2; A3 = SS3; A4 = SS4; A5 = SS5;
for (i = 1 to n)

A1 = min{ A1, minNRσ(gi, ℓ, k, m) };
A2 = min{ A2, Tσ(gi, ℓ, 0) }; A3 = min{ A3, Tσ(gi, ℓ, k) };
A4 = min{ A4, Vσ(gi, m, 0) }; A5 = min{ A4, Vσ(gi, m, k)};

NR = min{ A1, A2*A5, A3*A4 };
BP = 1 / (NR + 1);
if (BP < c) return {g1, …, gn};

return empty;

Figure 6. SkylineAnonymize algorithm

 10

may not be minimal. We have done a simulation study, which
shows that the chances that Theorem 4 holds in the MVPI case are
very high (only 100 counterexamples in 7,778,625,148 randomly
generated partitionings). Thus, we think, in practice, our algorithm
will generate nearly minimal release candidates in the MVPI case.

Comparison: The efficiency and scalability of the anonymization
algorithm come from the congregation property. Because of this
property, we are able to use just five global variables (for each
skyline point) to check safety. We note that if we were to adapt
the same partitioning scheme to the privacy criterion of Martin et
al. [13], the resulting algorithm would be complex, less efficient
and not scalable because their knowledge expression does not
satisfy the congregation property. Intuitively, the resulting
algorithm may need to go through all QI-groups once for each
candidate split (in the safeSplit subroutine). When the dataset is
large, the QI-groups may not fit in memory.

6. CASE-SPECIFIC FORMULAS & PROOF

We will show the computation formulas for minNRσ(g, ℓ, k, m),
Tσ(g, ℓ, k) and Vσ(g, m, k) defined in Section 5.1, and discuss the
proof of Theorem 1. For detailed explanations, see Appendix A3.

We use the following notation:

• ng denotes the number of distinct individuals in QI-group g.

• #σg denotes the number of the occurrences of σ (the target
sensitive value) in QI-group g.

• sg(1), …, sg(ℓ) denote the ℓ most frequent sensitive values in
QI-group g with σ removed (i.e., σ ≠ sg(i), for all i).

• #sg(1.. ℓ) is shorthand for ∑i∈[1,ℓ] #sg(i).

• Pr(E | K, g) is shorthand for Pr(E | K, D*), such that all the
individuals in expressions E and K are in QI-group g.

6.1 Computation Formulas

In all three cases, minNRσ(g, ℓ, k, m) = Tσ(g, ℓ, k) ⋅ Vσ(g, m, k+1).

In the SVPI case:

• Tσ(g, ℓ, k) = (ng − #σg − #sg(1.. ℓ) − k) / #σg

• Vσ(g, m, k) = ∏i∈[0,m−1] ((ng − #σg − k − i) / (ng − k − i))

In the MVPI-Set case:

• Tσ(g, ℓ, k) = [(ng−#σg−k) / #σg]⋅[∏i∈[1,ℓ] ((ng−#sg(i)) / ng)]

• Vσ(g, m, k) = ∏i∈[0,m−1] ((ng − #σg − k − i) / (ng − k − i))

In the MVPI-Multiset case:

•)..1(#

#

#

]/)1[(
)]/()1[(1

)]/()1[(
),,(l

l
g

g

g

s

gg

gg

gg
nn

knkn

knkn
kgT −⋅

−−−−

−−−
=

σ

σ

σ

• gknmknkmgV gg

σ
σ

#
)]/()[(),,(−−−=

If the numerator of any of the above fractions becomes negative,
then the corresponding formula is set to be 0. For detailed
explanations, see Appendix A3.

6.2 Proof of Theorem 1

We will use the following four propositions (proven in Appendix
A1).

Proposition 6. Let α1 ≥ … ≥ αm ≥ 0 and β1 ≥ … ≥ βm ≥ 0 be two
non-increasing series of numbers. Then, (∏i∈[1,h] αi)⋅(∏i∈[1,m−h] βi),
for 0 ≤ h ≤ m, is minimized when h = 0 or m.

Proposition 7. Let a, b, c, d, m be positive numbers, such that m ≤
min{a, c}. Then, the following formula, for 0 ≤ h ≤ m, is
minimized when h = 0 or m.

db

c

hmc

a

ha







 −−







 −)((1)

Proposition 8. Let a, b, c, d, k and m be positive numbers such
that c < d and k ≤ min{a, c−(m−1)}. Then, the following formula,
for 0 ≤ p ≤ k, is minimized when p = 0 or k.

∏ −∈ −−−

−−−
⋅

−
]1,0[)(

)(

mi pkid

pkic

b

pa (2)

Proposition 9. Let a, b, c, d, e, k and n be positive numbers such

that c < d and k ≤ min{n−1, c}. Then, the following formula, for 0

≤ p ≤ k, is minimized when p = 0 or k.
e

a

a

pkd

pkc
b

pnpn

pnpn









−−

−−
⋅⋅

−−−−

−−−

)(

)(

)]/()1[(1

)]/()1[((3)

Theorem 1 states that the breach probability is maximized when
u1, …, uk (in Kσ|u(k)) are in a single QI-group and v1, …, vm (in
Kσ|v(m) are in a single QI-group. By Lemma 1, it is equivalent to
show that the negated ratio (NR) is minimized in this situation.
Basically, we consider how to distribute t, u1, …, uk and v1, …, vm
into QI-groups in order to minimize the negated ratio.

In the following proof, we assume the minimum negated ratio is
greater than 0. The proof for the boundary case is straightforward.

We prove Theorem 1 by induction on the number B of QI-groups.

Base case: When B = 1, our claim trivially holds. Thus, we
consider B = 2. The two QI-groups are QI-group g and QI-group f.
Without loss of generality, assume that when the negated ratio is
minimized, the following two hold:

• QI-group g contains t, u1, …, up and v1, …, vh.

• QI-group f contains the rest (k−p) of ui’s and (m−h) of vi’s.

Our goal is to prove h = 0 or m (i.e., all the vi’s are in a single
group), and p = 0 or k (i.e., all the ui’s are in a single group).

By Proposition 1, the literals in NR (defined in Lemma 1) that
involve t, u1, …, up and v1, …, vh are independent of the literals
that involve the rest (k−p) of the ui’s and (m−h) of the vi’s. Thus,
the minimum negated ratio becomes

min t, vi, xi, Kσ|u(k) NR = minNRσ(g, ℓ, p, h) ⋅ Vσ(f, m−h, k−p)

= Tσ(g, ℓ, p) ⋅ Vσ(g, h, p+1) ⋅ Vσ(f, m−h, k−p).

(For detailed derivation, see Derivation 1 in Appendix A4.)

Congregation of the vi’s: We now show NR is minimized when
all the vi’s are in one QI-group; i.e., h = 0 or m. Since Tσ(g, ℓ, p)
does not involve any vi by definition, we only need to prove the
following formula (4) is minimized when h = 0 or m.

Vσ(g, h, p+1) ⋅ Vσ(f, m−h, k−p). (4)

In the following, the proof is case-specific.

• In the SVPI and MVPI-Set cases, if we let αi = (ng−#σg−p−i) /
(ng−p−i) and βi = (nf−#σf−(k−p)−i+1) / (nf−(k−p)−i+1), we can
rewrite formula (4) as (∏i∈[1,h] αi)⋅(∏i∈[1,m−h] βi). Note that
here i start from 1, not 0. Then, by Proposition 6, formula (4)
is minimized when h = 0 or m.

• In the MVPI-Multiset case, we can rewrite formula (4) as
formula (1) by setting a = ng−(p+1), b = #σg, c = nf−(k−p), and
d = #σf. Then, by Proposition 7, formula (4) is minimized
when h = 0 or m.

Since NR is minimized when all the vi’s are in one QI-group,
Kσ|v,t(m) is 1-group congregated.

Congregation of the ui’s: We now show NR is minimized when
all the ui’s are in one QI-group; i.e., p = 0 or k. If all the vi’s are in
QI-group g (i.e., h = m), the minimum negated ratio becomes

Tσ(g, ℓ, p) ⋅ Vσ(g, m, p+1),

 11

because Vσ(f, 0, k−p) = 1. It is easy to see that p = k maximizes the
above formula. Thus all the ui’s are in one QI-group.

Now, if all the vi’s are in QI-group f (i.e., h = 0), the minimum
negated ratio becomes the following formula (5).

Tσ(g, ℓ, p) ⋅ Vσ(f, m, k−p). (5)

We need to show formula (5) is minimized when p = 0 or k.

• In the SVPI and MVPI-Set cases, we can rewrite formula (5)
as formula (2) by appropriately setting a, b, c, d, k, m. Thus,
by Proposition 8, formula (5) is minimized at p = 0 or k.

• In the MVPI-Multiset case, we can rewrite formula (5) as
formula (3) by appropriately setting a, b, c, d, e, k, n. Thus, by
Proposition 9, formula (5) is minimized when p = 0 or k.

Since NR is minimized when all the ui’s are in one QI-group,
Kσ|u(k) is 1-group congregated.

Induction argument: Now assume Theorem 1 holds for (B−1)
QI-groups. We show that it also holds for B QI-groups. We first
consider the vi’s. Without loss of generality, assume the negated
ratio is minimized when v1, …, vh are in the first (B−1) QI-groups
and the rest (m−h) are in the Bth QI-group. By the induction
assumption, v1, …, vh are in one QI-group, say g. Now, the vi’s
can only be in two QI-groups. Similar to the argument in the base
case, h = 0 or m. Thus, all the vi’s are in one QI-group; i.e.,
Kσ|v,t(m) is 1-group congregated.

By a similar argument, it is easy to show that all the ui’s are in one
QI-group; i.e., Kσ|u(k) is 1-group congregated. �

7. EXPERIMENTS

In this section, we describe a set of experiments intended to
address the following three high-level questions. First, recall that
in Section 5.1 we developed an efficient algorithm for checking
the safety of a release candidate in the presence of three-
dimensional external knowledge, based on the congregation
property. In Section 7.1, we show that this algorithm improves
performance several orders of magnitude over the best existing
technique [13]. Second, we describe (in Section 7.2) an
experiment demonstrating the efficiency and scalability of the
anonymization algorithm described in Section 5.2. Finally, in
Section 7.3, we present an interesting case study, which
demonstrates how the skyline exploratory tool can be used in a
practical setting.

7.1 Efficiency Comparison

Our algorithms rely heavily on the congregation property. In this
experiment, we show the importance of this property. Recall that,
to check whether a release candidate is safe, we maximize the
breach probability. Without the congregation property, the best
known technique for maximizing the breach probability is the
dynamic-programming technique developed in [13]. Although the
technique was originally developed for computing the breach

probability under a knowledge expression different from ours, it
can be adapted to ours easily. In addition, we use a simple
technique to remove recursive calls to make the dynamic-
programming algorithm faster. For details, see Appendix A6.

We generate release candidates synthetically. There are 20 distinct
uniformly distributed values in the sensitive attribute. We fix the
size of each QI-group to be 100 individuals. By varying the
number of QI-groups in a release candidate, we generate release
candidates with sizes from one million records to five million
records. We define the improvement ratio to be the CPU time of
the dynamic-programming algorithm over the CPU time of the
SkylineCheck algorithm (described in Section 5.1) when they
applied to a same release candidate. Both algorithms have the
same IO time and always output the same answer. The experiment
was run on a Windows XP machine with a 2.0 GHz dual-core
processor and 2 GB memory. The breach probabilities were
computed for the SVPI case.

Figure 7 shows the experimental results. Each point in the plots is
an average improvement ratio over five runs. In Figure 7 (a), we
set the knowledge threshold to be (ℓ, k, m) = (10, 10, 10) and vary
the size of the release candidate. In this setting, our algorithm is
about 140 times faster than the dynamic programming algorithm.
In Figure 7 (b), we vary ℓ from 0 to 16. The improvement
decreases as ℓ increases, because both algorithms have roughly the
same computational dependency on the ℓ value. As the ℓ value
increases, it gradually dominates the running time. Thus, the
difference between the two algorithms becomes smaller. In Figure
7 (c), we vary k from 0 to 32 and observe that the improvement
increases as k increases. At k = 32, our algorithm is about 1,000
times faster than the dynamic-programming algorithm. Note that,
in practice, the k value may be even larger. Finally, in Figure 7
(d), we vary m from 0 to 16, and also observe that the
improvement increases as m increases.

Note that in this experiment, we compare the two algorithms for
checking whether a release candidate is safe. The algorithm for
generating a safe release candidate is more complex than that for
checking safety. Although we did not show experimental results
comparing our technique with the dynamic-programming
technique for generating a safe release candidate, it can be easily
seen that the improvement will be larger.

7.2 Scalability

We also conducted an experiment that demonstrates the scalability
of the SkylineAnonymize algorithm (in Section 5.2) using the
Rothko-Tree approach described in [9]. The scale-up experiment
was run on a single-processor 2.4 GHz Linux machine with 512
MB of memory. We used a synthetic data set similar to that
described in [1], and each data tuple was a fixed 44 bytes.
Hypothetically, we set Zipcode (9 distinct values) to be the
sensitive attribute. Figure 8 shows our results for two different
privacy settings. In each case, the scale-up performance is well-

(ℓ=10, k =10, m =10)

0

50

100

150

200

1M 2M 3M 4M 5M

Number of records

Im
p
ro

v
e
m

e
n
t
ra

tio

(ℓ: x -axis, k =10, m =10)

0

50

100

150

200

0 4 8 12 16
ℓ

Im
p
ro

v
e
m

e
n
t

ra
tio

(ℓ=10, k : x -axis, m =10)

0

200

400

600

800

1000

0 8 16 24 32
k

Im
p
ro

v
e
m

e
n
t
ra

tio

(ℓ=10, k =10, m : x -axis)

0

50

100

150

200

250

0 4 8 12 16
m

Im
p
ro

v
e
m

e
n
t
ra

tio

Figure 7. Improvement over the dynamic programming technique [13]
(a) (b) (c) (d)

 12

behaved for datasets substantially larger than main memory. The
case of (ℓ, k, m) = (0, 1000, 0) roughly corresponds to generating a
k-anonymous dataset with k = 1000. The case of (ℓ, k, m) = (3,
1000, 10), we think, is a more reasonable privacy setting. Because
the number of sensitive value is just 9, the ℓ value cannot be large.
Also, considering that the adversary knows m=10 members in the
target individual’s same-value family is usually sufficient. We set
k to be a much larger number, because k represents that the
adversary obtains a list of k individuals from other datasets, which
can be large.

7.3 Case Study: Adult Dataset

The adult dataset from the UCI Machine Learning Repository
(http://www.ics.uci.edu/~mlearn/MLRepository.html) has been
used in a number of privacy-related studies (e.g., [7, 11, 13]). In
this section, we describe a case study, using the skyline
exploratory tool to investigate the safety of release candidates. In
particular, we find that an ℓ-diverse [11] release candidate can be
unsafe in the presence of certain kinds of adversarial knowledge.
Based on the experiment in [13], ℓ-diversity has similar behavior
to (c, k)-safety [13]. Thus, our case study also suggests that a (c,
k)-safe release candidate may also be unsafe in the presence of
certain external knowledge.

The adult dataset has 45,222 records after removing records with
missing values. Following [11, 13], we treat Occupation (14
distinct values) as the sensitive attribute. Each individual has
exactly one sensitive value (i.e., the SVPI case). Suppose the data
owner wants to publish a safe version of the adult dataset using ℓ-
diversity. She first generates a (c=3, ℓ =6)-diverse release
candidate, where (c=3, ℓ=6) is a common setting in [11, 13]. Note
that (c=3, ℓ=6)-diversity is actually equivalent to our basic 3D
privacy criterion by setting (ℓ, k, m) = (4, 0, 0) and confidence
threshold to be 75%, for all sensitive values. Thus, we use our
anonymization algorithm to generate such a release candidate.

Before publishing the release candidate, the data owner
investigates how safe the release candidate is under various
amounts and types of external knowledge using the knowledge
skyline. The following are the resulting skyline points for
sensitive value “Exec-managerial” at confidence threshold 95%:

 ℓ k m ℓ k m ℓ k m ℓ k m

(0, 4, 0), (1, 3, 1), (2, 2, 2), (3, 1, 2),
(2, 1, 3), (4, 0, 3), (3, 0, 4).

When the number of points on the skyline is large, we can show
these points in a 3D visualization interface. The release candidate
is safe if and only if the adversary has knowledge with amount
below or on the skyline points. Thus, the first point (0, 4, 0) tells
us that, in the worst case, if the adversary knows the sensitive

values of only 5 individuals (and nothing else), then he would be
able to successfully predict a target individual to be an executive
manager with confidence at least 95%. This is a privacy breach.
One may say that it is unlikely to be the worst case. However, our
exploratory tool can also identify the five individuals that cause
the worst case (by looking at the grounding of the variables that
maximizes the breach probability). Thus, after the release
candidate is published, the adversary can also use our tool to
identify those five individuals and, by a small-scale investigation
of five people, he can achieve 95% confidence. This demonstrates
that an ℓ-diverse release candidate can be quite unsafe.

As another example, consider the skyline point (2, 1, 3). This
point tells us that the adversary cannot succeed if he knows ≤ 2
sensitive values that the target individual does not have, the
sensitive value of ≤ 1 other individual, and ≤ 3 other members of
the target individual’s same-value family. However, if the
adversary has any knowledge more than this amount, in the worst
case, he could succeed.

8. CONCLUSIONS & FUTURE WORK

In this paper, we first described a clean theoretical framework for

reasoning about attribute disclosure in the presence of external

knowledge. In general, the problem of measuring disclosure is

NP-hard when external knowledge is involved. For this reason,

the interesting research direction is to find special forms of

external knowledge that both arise naturally in practice and can be

efficiently handled. Previous work [13] identified a special form

that can be handled in polynomial time but is not very natural.

Thus, we defined a privacy criterion based on a combination of

three special forms of knowledge that arise naturally in practice,

and developed efficient and scalable algorithms for checking

safety and generating safe release candidates. We showed that our

checking algorithm improves efficiency several orders of

magnitude over the best known technique [13], and our

anonymization algorithm is well-behaved on datasets much larger

than main memory. Based on the three special forms, we also

proposed a three-dimensional skyline exploratory tool that is

useful for investigating the safety of a dataset to be released.

In the future, an important research direction is identifying other

classes of background knowledge that are both natural and can be

handled efficiently. In particular, there are several types of

external knowledge that we find especially compelling:

• Graphs: It is natural to express relationships among

individuals using graphs, in which nodes are properties of

individuals and edges represent relationships. What kinds of

graphs are both useful and efficiently solvable is an open

problem.

• Other release candidates: The adversary may have access to

other release candidates (e.g., an anonymized dataset from

another organization). How to express this kind of knowledge

and what special cases are efficiently solvable are wide open.

• Probabilistic external knowledge: In Section 2, we described

a theoretical framework based on deterministic external

knowledge. An interesting extension to this framework would

allow external knowledge to be probabilistic. In particular,

when we evaluate an expression E on a possible original

dataset R(D*), instead of returning either true or false, we

return Pr(E | R(D*)). In this extension, assuming that each

reconstruction R is equally likely in the absence of any

external knowledge, we obtain

0

2000

4000

6000

8000

10000

10 20 30 40 50 60 70 80 90 100

Dataset Size (Millions of Records)

E
la

p
s
e
d

 T
im

e
 (

S
e
c
)

(ℓ,k,m)=(0,1000,0)

(ℓ,k,m)=(3,1000,10)

 Figure 8. Scalability experimental result

Confidence threshold: 1

Knowledge threshold:

 13

Pr(E | K, D*) = ∑R Pr(E ∧ K | R(D*)) / ∑R Pr(K | R(D*)),

This extension is closely related to the language of (sometimes

uncertain) knowledge bases described in [2].

9. REFERENCES

[1] Agrawal, R., Ghosh, S., Imielinski, T., and Swami, A.
Database mining: A performance perspective. TKDE, 1993.

[2] Bacchus, F., Grove, A.J., Halpern, J., and Koller, D. From
statistical knowledge bases to degrees of belief. A.I., 87(1-2),
1996.

[3] Dalvi, N., Miklau, G., and Suciu, D. Asymptotic conditional
probabilities for conjunctive query. ICDT, 2005.

[4] Deutsch, A., Papakonstantinou, Y. Privacy in database
publishing. ICDT, 2005.

[5] Kifer, D., and Gehrke, J. Injecting utility into anonymized
datasets. SIGMOD, 2006.

[6] LeFevre, K., DeWitt, D., Ramakrishnan, R. Incognito:
Efficient full-domain k-anonymity. SIGMOD, 2005.

[7] LeFevre, K., DeWitt, D., Ramakrishnan, R. Mondrian:
Multidimensional k-anonymity. ICDE, 2006.

[8] LeFevre, K., DeWitt, D., Ramakrishnan, R. Workload-aware
anonymization. SIGKDD, 2006.

[9] LeFevre, K., DeWitt, D. Scalable anonymization algorithms
for large data sets. University of Wisconsin Technical Report

1590, 2007.

[10] Li, N, Li, T., Venkatasubramanian, S. t-Closeness: Privacy
beyond k-anonymity and l-diversity. ICDE, 2007.

[11] Machanavajjhala, A., Gehrke, J., Kifer, D.,
Venkitasubramaniam, M. ℓ-diversity: Privacy beyond k-
anonymity. ICDE, 2006.

[12] Machanavajjhala, A., and Gehrke, J. On the efficiency of
checking perfect privacy. PODS, 2006.

[13] Martin, D., Kifer, D., Machanavajjhala, A., Gehrke, J.,
Halpern J. Worst-case background knowledge in privacy.
ICDE, 2007. (For the extended version that includes the
appendix, see “Worst-case background knowledge in
privacy,” Technical Report, Cornell University, 2006.)

[14] Miklau, G., and Suciu, D. A formal analysis of information
disclosure in data exchange. SIGMOD, 2004.

[15] Papadimitriou, C.M. Computational Complexity. Addison-
Wesley, 1994.

[16] Sweeney, L. K-anonymity: A model for protecting privacy.
Int. J. on Uncertainty, Fuzziness and Knowledge-based
Systems, 2002.

[17] Xiao, X., and Tao, Y. Anatomy: Simple and effective privacy
preservation. VLDB, 2006.

[18] Xiao, X., and Tao, Y. Personalized privacy preservation.
SIGMOD, 2006.

[19] Yao, C., Wang, X.S., Jajodia, S. Checking for k-anonymity
violation by views. VLDB, 2005.

 14

A. APPENDIX

In Sections A1 and A2, we first prove all the propositions and lemmas, and then explain the correctness of the computation formulas for

minNRσ(g, ℓ, k, m), Tσ(g, ℓ, k) and Vσ(g, m, k) in Section A3. In Section A4, we show a formula derivation. In Section A5, we prove the

theorems. In Section A6, we describe an algorithm for checking whether a release candidate is safe based on a dynamic-programming

technique (which is originally developed in [13]). In Section A7, we describe an algorithm for finding the knowledge skyline of a release

candidate. Finally, we formally discuss expressibility and compare our knowledge expressions with the language proposed in [13] in

Section A8.

A1. Proofs of the Propositions

In this section, we prove the propositions.

Let D* = {(G1, X1), …, (GB, XB)} be a release candidate with B QI-groups.

Proposition 1. Let E1, …, EB be B conjunctions of atoms such that Eg only involves individuals in QI-group g. Also, let K1, …, KB be

another B conjunctions of atoms such that Kg only involves individuals in QI-group g. Then,

Pr(∧g∈[1,B] Eg | ∧g∈[1,B] Kg, D
*) = ∏g∈[1,B] Pr(Eg | Kg, D

*).

Proof: Let ng(Eg) denote the number of reconstructions of QI-group g that satisfies expression Eg. The number of reconstructions of D* that

satisfies (∧g∈[1,B] Eg)∧(∧g∈[1,B] Kg) = ∧g∈[1,B] (Eg∧Kg) is ∏g∈[1,B] ng(Eg∧Kg). Similarly, the number of reconstructions of D* that satisfy ∧g∈[1,B]

Kg is ∏g∈[1,B] ng(Kg). Thus, by the assumption that every reconstruction has an equal probability,

Pr(∧g∈[1,B] Eg | ∧g∈[1,B] Kg, D
*)

= Pr((∧g∈[1,B] Eg)∧(∧g∈[1,B] Kg) | D
*) / Pr(∧g∈[1,B] Kg | D

*)

= (∏g∈[1,B] ng(Eg∧Kg)) / (∏g∈[1,B] ng(Kg))

= ∏g∈[1,B] (ng(Eg∧Kg) / ng(Kg))

= ∏g∈[1,B] Pr(Eg | Kg, D
*). �

Note that each Eg or Kg can be an empty expression.

Proposition 2. Let Eg,x and Kg,x denote two conjunctions of atoms that only involves individuals in Gg and sensitive value x ∈ Xg, for g = 1

to B. Then, in the MVPI (no matter Set or Multiset) case,

Pr(∧g∈[1,B], x∈Xg Eg,x | ∧g∈[1,B], x∈Xg Kg,x, D
*) = ∏g∈[1,B] ∏x∈Xg Pr(Eg,x | Kg,x, D

*).

Proof: Let ng,x(Eg,x) denote the number of possible assignments, each of which “assigns an individual in Gg to an occurrence of sensitive

value x ∈ Xg, for all the occurrences of x,” that satisfy expression Eg,x; i.e., ng,x(Eg,x) is the number of reconstructions of the group of

individuals having sensitive value x in QI-group g that satisfies expression Eg,x. The number of reconstructions of D* that satisfies

(∧g∈[1,B],x∈Xg Eg,x)∧(∧g∈[1,B],x∈Xg Kg,x) = ∧g∈[1,B],x∈Xg (Eg,x∧Kg,x) is ∏g∈[1,B],x∈Xg ng,x(Eg,x∧Kg,x). Similarly, the number of reconstructions of D*

that satisfy ∧g∈[1,B],x∈Xg Kg,x is ∏g∈[1,B],x∈Xg ng,x(Kg,x). Thus, by the assumption that every reconstruction has an equal probability,

Pr(∧g∈[1,B],x∈Xg Eg,x | ∧g∈[1,B],x∈Xg Kg,x, D
*)

= Pr((∧g∈[1,B],x∈Xg Eg,x)∧(∧g∈[1,B],x∈Xg Kg,x) | D
*) / Pr(∧g∈[1,B],x∈Xg Kg,x | D

*)

= (∏g∈[1,B],x∈Xg ng,x(Eg,x∧Kg,x)) / (∏g∈[1,B],x∈Xg ng,x(Kg,x))

= ∏g∈[1,B],x∈Xg (ng,x(Eg,x∧Kg,x) / ng,x(Kg,x))

= ∏g∈[1,B],x∈Xg Pr(Eg,x | Kg,x, D
*). �

Proposition 3. In the SVPI case, k-anonymity [16] is a special case of the basic 3D privacy criterion when the sensitive values are the

identities of the individuals, the knowledge threshold is (0, k−2, 0) and the confidence threshold is 1, for all sensitive values σ.

Proof: Note that here the use of sensitive value is special. Each user has a unique sensitive value, which is his/her identity. In this

instantiation, the privacy criterion states that D* is safe if for each user t,

Pr(t can be identified | the identities of at most k−2 other individuals) < 1.

 15

It can be easily seen, if t is in a QI-group has fewer than k individuals, then we can identify t exactly. Thus, each QI-group must have at

least k individuals. This is the protection provided by k-anonymity. �

Proposition 4. In the SVPI case, (c,ℓ)-diversity [11] is a special case of the basic 3D privacy criterion when the knowledge threshold is (ℓ−2,

0, 0) and the confidence threshold is c/(c+1), for all sensitive values σ.

Proof: In Appendix E of [13], Martin et al. proved that (c,ℓ)-diversity is equivalent to (c/(c+1), ℓ−2)-safety, which is the instantiation of the

generic basic privacy criterion using a conjunction of at most (ℓ−2) negated atoms with confidence threshold c/(c+1). It can be easily seen

that the breach probability is maximized when the conjunction of negated atoms has the following form: ∧i∈[1,ℓ−2] t[S]≠xi, which is Kσ|t(ℓ−2).

Thus, it is equivalent to ℒt,σ
SVPI(ℓ−2, 0, 0). �

Proposition 5. If the negated ratio is minimized when t is in QI-group g and v1, …, vm are in QI-group f, then, at the minimum, all the ui’s

(in Kσ|u(k)) are either in QI-group g or QI-group f.

Proof: Assume that kj of the ui’s are in QI-group j such that ∑j kj = k and kj ≥ 0. Our goal is to prove that, at the minimum negated ratio, kg

+ kf = k. Let there be B QI-groups. Now, the negated ratio is

),),(|][Pr(

)),(,),(|])[(])[(][Pr(

*
|],1[

*
|],1[],1[],1[

gtkKSt

fvgtkKSvStxSt

juBj

ijuBjimiii

∈∧∈

∈∈∧∉∧∧∉∧∧∉

∈

∈∈∈

D

D

σ

σ

σ

σσ
l

.

Note that Kσ|u(kj) only involves individuals in QI-group j.

If g = f, by Proposition 1, the minimum negated ratio becomes

min
)]),(|Pr([),),(|][Pr(

)]),(|Pr([)),(,),(|])[(])[(][Pr(

*
|

*
|

*
|

*
|],1[],1[

DD

DD

jugjgu

jugjiguimiii

kKgtkKSt

kKgvgtkKSvStxSt

σσ

σσ

εσ

εσσ

≠

≠∈∈

∏⋅∈∈

∏⋅∈∈∉∧∧∉∧∧∉
l

= min
),),(|][Pr(

)),(,),(|])[(])[(][Pr(

*
|

*
|],1[],1[

gtkKSt

gvgtkKSvStxSt

gu

iguimiii

∈∈

∈∈∉∧∧∉∧∧∉ ∈∈

D

D

σ

σ

σ

σσ
l

= minNRσ(g, ℓ, kg, m).

It can be easily seen that the above is minimized when kg = k, by using the formula in Section 6.1.

If g ≠ f, by Proposition 1, the negated ratio becomes

 min
)]),(|Pr([),),(|][Pr(

)]),(|Pr([),),(|][Pr(),),(|])[(][Pr(

*
|

*
|

*
|,

*
|],1[

*
|],1[

DD

DDD

jugjgu

jufjgjifuimiguii

kKgtkKSt

kKfvkKSvgtkKStxSt

σσ

σσσ

εσ

εσσ

≠

≠≠∈∈

∏⋅∈∈

∏⋅∈∉∧⋅∈∉∧∧∉
l

= min
),),(|][Pr(

),),(|][Pr(),),(|])[(][Pr(

*
|

*
|],1[

*
|],1[

gtkKSt

fvkKSvgtkKStxSt

gu

ifuimiguii

∈∈

∈∉∧⋅∈∉∧∧∉ ∈∈

D

DD

σ

σσ

σ

σσ
l

= (min
),),(|][Pr(

),),(|])[(][Pr(

*
|

*
|],1[

gtkKSt

gtkKStxSt

gu

guii

∈∈

∈∉∧∧∉ ∈

D

D

σ

σ

σ

σ
l) ⋅ (min),),(|][Pr(*

|],1[fvkKSv ifuimi ∈∉∧ ∈ Dσσ)

= Tσ(g, ℓ, kg) ⋅ Vσ(f, m, kf).

It can be easily seen that the above is minimized when kg+kf = k, by using the formulas in Section 6.1. �

Proposition 6. Let α1 ≥ α2 ≥ … ≥ αm ≥ 0 and β1 ≥ β2 ≥ … ≥ βm ≥ 0 be two non-increasing series of numbers. Then, (∏i∈[1,h] αi)⋅(∏i∈[1,m−h]

βi), for 0 ≤ h ≤ m, is minimized when h = 0 or m.

Proof: Without loss of generality, we assume ∏i∈[1,m] αi ≤ ∏i∈[1,m] βi. Our goal is to show that

∏i∈[1,m] αi ≤ (∏i∈[1,h] αi)⋅(∏i∈[1,m−h] βi), for any 0 ≤ h ≤ m.

We will prove this by contradiction. Assume ∏i∈[1,m] αi > (∏i∈[1,h] αi)⋅(∏i∈[1,m−h] βi), for a particular h such that 1 ≤ h ≤ m−1. Since ∏i∈[1,m]

αi = (∏i∈[1,h] αi)⋅(∏i∈[h+1,m] αi), we conclude that ∏i∈[h+1,m] αi > ∏i∈[1,m−h] βi. This implies that αh+1 > βm−h. Otherwise, β1 ≥ … ≥ βm−h ≥ αh+1 ≥

… ≥ αm, which implies that ∏i∈[1,m−h] βi ≥ ∏i∈[h+1,m] αi. Because αh+1 > βm−h, we obtain α1 ≥ … ≥ αh ≥ αh+1 > βm−h ≥ βm−h+1 ≥ … ≥ βm, which

implies that ∏i∈[1,h] αi > ∏i∈[m−h+1, m] βi. Finally, we obtain the following contradiction.

 16

 ∏i∈[1,m] αi > (∏i∈[1,h] αi)⋅(∏i∈[1,m−h] βi) > (∏i∈[m−h+1, m] βi)⋅(∏i∈[1,m−h] βi)⋅ = ∏i∈[1,m] βi. �

Proposition 7. Let a, b, c, d, m be positive numbers, such that m ≤ min{a, c}. Then, the following formula, for 0 ≤ h ≤ m, is minimized

when h = 0 or m.

db

c

hmc

a

ha







 −−







 −)(
.

Proof: If m = min{a, c}, then it is easy to see that the above formula is minimized (returning 0) when h = 0 or m. Now, we consider m <

min{a, c}. Now the above formula is always a positive number. Thus, the h value that minimizes the log of the above formula also

minimizes the formula itself. We then take log.

Let
c

hmc
d

a

ha
bhL

)(
loglog)(

−−
+

−
= .

Consider h to be a real number. If L(h) is minimized when h = 0 or m, then it is also true when h only takes integer values. Now, we claim

that L(h) is concave (i.e., L′′(h) < 0, which is the second derivative of L(h)). Then, L(h) is minimized at the boundary, which is either h = 0

or h = m.

We now show that L′′(h) < 0.

hmc

d

ha

b
hL

+−
+

−
−=′)(and 0

)()(
)(

22
<

+−
−

−
−=′′

hmc

d

ha

b
hL �

Proposition 8. Let a, b, c, d, k and m be positive numbers such that c < d, k ≤ min{a, c−(m−1)}. Then, the following formula, for 0 ≤ p ≤ k,

is minimized when p = 0 or k.

∏ −∈ −−−

−−−
⋅

−
]1,0[)(

)(

mi pkid

pkic

b

pa
.

Proof: If k = min{a, c−(m−1)}, then it can be easily seen that the above formula is minimized (returning 0) when p = 0 or p = k. Now, we

consider k < min{a, c−(m−1)}. Now, the above formula is always a positive number. Thus, the p value that minimizes the log of the above

formula also minimizes the formula itself. We then take log.

Let []∑ −∈
+−−−+−−+−−=

]1,0[
)log()log(log)log()(

mi
pkidpkicbpapL .

Consider p to be a real number. If L(p) is minimized when p = 0 or p = k, then it is also true when p only takes integer values. Now, we

claim that L(p) is concave (i.e., L′′(p) < 0, which is the second derivative of L(p)). Then, L(p) is minimized at the boundary, which is either

p = 0 or p = k.

We now show that L′′(p) < 0.

∑ −∈ 








+−−
−

+−−
+

−

−
=′

]1,0[

111
)(

mi pkidpkicpa
pL

0
)(

1

)(

1

)(

1
)(

]1,0[222
<









+−−
+

+−−

−
+

−

−
=′′ ∑ −∈ mi pkidpkicpa

pL

L′′(p) < 0 because c < d. �

Proposition 9. Let a, b, c, d, e, k and n be positive numbers such that c < d and k ≤ min{n−1, c}. Then, the following formula, for 0 ≤ p ≤ k,

is minimized when p = 0 or k.

e

a

a

pkd

pkc
b

pnpn

pnpn









−−

−−
⋅⋅

−−−−

−−−

)(

)(

)]/()1[(1

)]/()1[(
.

Proof: If k = min{n−1, c}, then it can be easily seen that the above formula is minimized (returning 0) when p = 0 or p = k. Now, we

consider k < min{n−1, c}. Now, the above formula is always a positive number. Thus, the p value that minimizes the log of the above

formula also minimizes the above formula. We first rewrite the above formula as

 17

e

a pkd

pkc
b

pnpn 








−−

−−
⋅⋅

−−−−)(

)(

1)]1/()[(

1
.

We then take log.

Let [])log()log(log)()(pkdpkcebpFpL +−−+−⋅++−= .

where F(p) = log([(n−p) / (n−p−1)]a − 1). Consider p to be a real number. If L(p) is minimized when p = 0 or p = k, then it is also true when

p only takes integer values. Now, we claim that L(p) is concave (i.e., L′′(p) < 0, which is the second derivative of L(p)). Then, L(p) is

minimized at the boundary, which is either p = 0 or p = k. We now show that L′′(p) < 0.










+−
−

+−
⋅+′−=′

pkdpkc
epFpL

11
)()(










+−
+

+−

−
⋅+′′−=′′

22
)(

1

)(

1
)()(

pkdpkc
epFpL

If F′′(p) ≥ 0, then L′′(p) < 0 because c < d and e is positive.

We now show F′′(p) ≥ 0. We first focus on G(p) = [(n−p) / (n−p−1)]a. Let H(p) = log G(p). Then, H(p) = a⋅[log(n−p) − log(n−p−1)].

)(

)(
)(log

))(1(

1

1

1
)(

pG

pG
pG

pnpn

a

pnpn
apH

dp
d

′
==

−−−
=









−
−

−−
⋅=′ > 0.

2

2

22
)]([

)]([

)(

)(
)(log

)(

1

)1(

1
)(2

pG

pG

pG

pG
pG

pnpn
apH

dp

d
′

−
′′

==








−
−

−−
⋅=′′ > 0.

Note that x2 − y2 = (x − y)⋅(x + y). Thus, we rewrite H′′(p) as follows.

a

pn

pG

pG

pnpn

pn

pG

pG

pnpnpnpn
apH

1)(2

)]([

)]([

))(1(

1)(2

)(

)(1

1

11

1

1
)(

2

2 −−
⋅

′
=









−−−

−−
⋅

′
=









−
+

−−
⋅








−
−

−−
⋅=′′ .

By equating the above two formulas of H′′(p), we obtain

a

pn

pG

pG

pG

pG

pG

pG 1)(2

)(

)(

)(

)(

)(

)(−−
⋅

′
=

′
−

′

′′
.

Note that F(p) = log(G(p) − 1). We obtain























−

′
−

′
+






 ′
−

′

′′
⋅

−

′
=









−

′
−

′

′′
⋅

−

′
=

−

′
−

−

′′
=′′

1)(

)(

)(

)(

)(

)(

)(

)(

]1)([

)(

1)(

)(

)(

)(

]1)([

)(

]1)([

)]([

1)(

)(
)(

2

2

pG

pG

pG

pG

pG

pG

pG

pG

pG

pG

pG

pG

pG

pG

pG

pG

pG

pG

pG

pG
pF

= ()apGpn
pGpGa

pG

pGpG

pG

a

pn

pG

pG

pG

pG
−−⋅−−⋅

⋅−⋅

′
=









−
⋅

′
−

−−
⋅

′
⋅

−

′
]1)([]1)(2[

)(]1)([

)]([

1)(

1

)(

)(1)(2

)(

)(

]1)([

)(
2

2

.

Note that [G′(p)]2 > 0, a > 0, [G(p)−1]2 > 0 and G(p) > 0. We claim ([2(n−p)−1]⋅[G(p)−1] − a) ≥ 0. Thus, F′′(p) ≥ 0.

Finally, we prove ([2(n−p)−1]⋅[G(p)−1] − a) ≥ 0. Let x = n − p. Note that x ≥ 2 because p ≤ k < n −1. We rewrite the formula in terms of x

and a:

axxxaxnGxaxE
a −−−⋅−=−−−⋅−=)1)]1/(([)12(]1)([)12(),(.

Then, the goal is to prove E(x, a) ≥ 0, for any x ≥ 2 and a ≥ 1. We first show that E(x, 1) ≥ 0.

E(x, 1) = (2x−1)⋅([x/(x−1)] − 1) − 1 = x/(x−1) ≥ 0, for any x ≥ 2.

We now show that E(x, a) is an increasing function in a, for a ≥ 1.

1)]1log()[log()22(1)]1log()[log()]1/([)12(),(−−−⋅−≥−−−⋅−⋅−= xxxxxxxxaxE
a

da
d .

Let D(y) = 2y⋅[log(y+1) − log(y)]. Note that 1)1(),(−−≥ xDaxE
da
d . Thus, to show E(x, a) is increasing, we show D(y) > 1, for y ≥ 1. Note

that D(1) = 2 log 2 > 1. We now focus on y ≥ 2.

)]1/(1)log()1[log(2)(+−−+⋅=′ yyyyD

 18

])1(/[2)(2+⋅⋅−=′′ yyyD < 0, for y ≥ 1; i.e., D′(y) is decreasing.

Because D′(2) ≅ −0.3145 < 0 and D′(y) is decreasing, we obtain D′(y) < 0, for y ≥ 2; i.e., D(y) is decreasing, for y ≥ 2. Thus, the minimum

value of D(y) is when y → ∞.

)/1(lim

)]log()1[log(lim
2)(lim

y

yy
yD

y

y

y

∞→

∞→
∞→

−+
⋅=

Note that both the numerator and denominator goes to 0 when y → ∞. Thus, we apply the L’Hospital rule to the above formula by replacing

both the numerator and denominator with their derivatives.

2)]1/(11[lim2
/1lim

)]1(/[1lim
2

/1lim

)]log()1[log(lim
2)(lim

2
=−+⋅=

−

−⋅−
⋅=

−+
⋅= ∞→

∞→

∞→

∞→

∞→
∞→ y

y

yy

y

yy
yD y

y

y

y

y

y .

Thus, D(y) ≥ 2, for any y ≥ 1 This implies 1)1(),(−−≥ xDaxE
da
d ≥ 1, for any x ≥ 2 and a ≥ 1.

Because, for any x ≥ 2, E(x, 1) ≥ 0 and E(x, a) is increasing in a, for a ≥ 1, we obtain E(x, a) ≥ 0. We now complete the proof. �

Proposition 10. Let a1, a2, b1, b2 be positive numbers. Then,

21

21

2

2

1

1 ,min
bb

aa

b

a

b

a

+

+
≤









.

Proof: Without loss of generality, assume a1/b1 ≤ a2/b2; i.e., a1b2 ≤ a2b1. Then, we obtain

0
)(211

2112

1

1

21

21 ≥
+

−
=−

+

+

bbb

baba

b

a

bb

aa
 �

Proposition 11. Let a, b, c, d be positive numbers such that a/b ≤ c/d < 1 and b ≤ d. Then,

1. (a−k)/b ≤ (c−k)/d, for 0 ≤ k ≤ min{a, c}, and

2. (a−k)/(b−k) ≤ (c−k)/(d−k), for 0 ≤ k < min{a, b, c, d}.

Proof: Case 1: (a−k)/b = a/b − k/b ≤ c/d − k/b ≤ c/d − k/d = (c−k)/d.

Case 2: First, note that, a/b ≤ c/d implies that (b−a)/b ≥ (d−c)/d. Then, we obtain

kd

kc

kdd

cdk

d

c

kbd

cdk

d

c

kbb

abk

d

c

kbb

abk

b

a

kb

ka

−

−
=

−

−
−≤

−

−
−≤

−

−
−≤

−

−
−=

−

−

)(

)(

)(

)(

)(

)(

)(

)(
 �

A2. Proofs of the Lemmas

Lemma 1. Pr(t[S]=σ | Kσ|t(ℓ) ∧ Kσ|u(k) ∧ Kσ|v,t(m), D*) = 1 / (NR + 1), where

)),(|][Pr(

)),(|])[(])[(][Pr(

*
|

*
|],1[],1[

D

D

kKSt

kKSvStxSt
NR

u

uimiii

σ

σ

σ

σσ

∈

∉∧∧∉∧∧∉
=

∈∈ l
.

Proof: Note that Kσ|t(ℓ) = (∧i∈[1,ℓ] (xi∈t[S] → σ∈t[S]) and Kσ|v,t(m) = (∧i∈[1,m] (σ∈vi[S] → σ∈t[S]). Let A denote σ∈t[S]; A1, …, Aℓ denote

x1∈t[S], …, xℓ∈t[S]; and Aℓ+1, …, Aℓ+m, denote σ∈v1[S], …, σ∈vm[S].

Pr(σ∈t[S] | Kσ|t(ℓ) ∧ Kσ|u(k) ∧ Kσ|v,t(m), D*)

= Pr(A | (∧i∈[1,ℓ+m] (Ai → A)) ∧ Kσ|u(k), D*)

=
)),(|)(Pr(

)),(|))((Pr(

*
|],1[

*
|],1[

D

D

kKAA

kKAAA

uimi

uimi

σ

σ

∨¬∧

∨¬∧∧

+∈

+∈

l

l
 (Ai → A is equivalent to ¬Ai ∨ A)

=
)),(|))(()Pr((

)),(|Pr(

*
|],1[

*
|

D

D

kKAAAA

kKA

uimi

u

σ

σ

∨¬∧∧∨¬ +∈ l

 19

=
)),(|)))(Pr((

)),(|Pr(

*
|],1[

*
|

D

D

kKAAA

kKA

uimi

u

σ

σ

∨¬∧∧¬ +∈ l

 (distributive law)

=
)),(|Pr()),(|)(Pr(

)),(|Pr(

*
|

*
|],1[

*
|

DD

D

kKAkKAA

kKA

uuimi

u

σσ

σ

+¬∧∧¬ +∈ l

 (A and (¬A ∧ B) do not overlap)

=

1
)),(|Pr(

)),(|)(Pr(

1

*
|

*
|],1[

+
¬∧∧¬ +∈

D

D

kKA

kKAA

u

uimi

σ

σl

Note that the derivation does not depend on whether we consider the SVPI case or the MVPI case. �

A3. Correctness of the Computation Formulas

In this section, we provide intuition on how the computation formulas are derived and also show the correctness of the formula. We use the

following convention and notation:

• σ is the target sensitive value (a specific value, not a variable).

• t is the target individual (a variable).

• ui, vi are variables ranging over individuals.

• xi, yi are variables ranging over sensitive values.

• f, g are (the indices of) QI-groups.

• ng denotes the number of distinct individuals in QI-group g.

• #σg denotes the number of the occurrences of σ (the target sensitive value) in QI-group g.

• sg(1), …, sg(ℓ) denote the ℓ most frequent sensitive values in QI-group g with σ removed (i.e., σ ≠ sg(i), for all i). #sg(i) denotes the

number of occurrences of sg(i) in QI-group g.

• #sg(1..ℓ) is shorthand for ∑i∈[1,ℓ] #sg(i).

• Pr(E | K, g) is shorthand for Pr(E | K, D*) such that all the individuals in expressions E and K are in QI-group g.

Consider release candidate D* = {(G1, X1), … (GB, XB)}. We assume each QI-group that contains σ is large enough to contain t, u1, …, uk

and v1, …, vm. Otherwise, the breach probability is simply 1, which is a straightforward boundary case.

A3.1 Case of Single Value per Individual

In the SVPI case, each individual has exactly one sensitive value in the original dataset.

Intuition: We now describe how QI-group g is reconstructed. As shown in the following figure, a reconstruction of QI-group g is a one-to-

one mapping between Gg and Xg. Intuitively, a reconstruction can be thought of as drawing balls from a bag of ng balls (or sensitive values),

in which #σg balls are labeled σ and #sg(i) balls are labeled sg(i). We now pick a ball for individual t. It can be easily seen that Pr(σ∈t[S] | g)

= #σg / ng, which is the probability that the chosen ball has label σ in one draw.

…
…

…
…

Tσσσσ(g, ℓℓℓℓ, k): Recall that

)],[|][Pr(

)],[|])[(][Pr(
min),,(

],1[

],1[],1[

,,,
gSuySt

gSuyStxSt
kgT

iiki

iikiii

yuxt iii ∈∧∈

∈∧∉∧∧∉
=

∈

∈∈

σ

σ
σ

l
l .

The minimization is about how to set x1, …, xℓ and y1, …, yk. The setting of t and u1, …, uk does not affect the above probabilities as long as

t, u1, …, uk are distinct individuals. To minimize Tσ(g, ℓ, k), we set t, u1, …, uk to be distinct individuals, set x1, …, xℓ to sg(1), …, sg(ℓ) (the ℓ

 20

most frequent sensitive values other than σ), and set y1, …, yk to any sensitive values other than σ, sg(1), …, sg(ℓ). We discuss why this gives

the minimum later. Under this setting, the denominator in the definition of Tσ(g, ℓ, k) is

Pr(σ∈t[S] | ∧i∈[1,k] yi∈ui[S], g) = #σg / (ng − k),

which is the probability of choosing a ball with label σ from a bag of (ng − k) balls, in which #σg are labeled σ. Because y1∈u1[S], …,

yk∈uk[S] are given and yi ≠ σ, we removed k balls not with label σ from the bag. The numerator of Tσ(g, ℓ, k) is

Pr(σ∉t[S] ∧ (∧i∈[1,ℓ] sg(i)∉t[S]) | ∧i∈[1,k] yi∈ui[S], g) = (ng−#σg−#sg(1..ℓ)−k) / (ng−k),

which is the probability of choosing a ball with a label ∉ {σ, sg(1), …, sg(ℓ)} (because of σ∉t[S] ∧ (∧i∈[1,ℓ] sg(i)∉t[S])) from a bag of (ng − k)

balls, in which (ng−#σg−#sg(1..ℓ)−k) have the acceptable labels. Note that k balls have been removed because of the knowledge about u1, …,

uk. Before removing the k balls, the number of acceptable balls is (ng−#σg−#sg(1..ℓ)). Since u1, …, uk all have sensitive values with the

acceptable labels, after removing the k balls (representing the sensitive values for u1, …, uk), the number of acceptable balls become

(ng−#σg−#sg(1..ℓ)−k).

It is easy to see that our setting minimizes the numerator and maximizes the denominator of Tσ(g, ℓ, k). If we change any xi to be a less

frequent sensitive value, then the numerator will increase. If we change any yi to be in {σ, sg(1), …, sg(ℓ)}, the numerator will increase. If u1,

…, uk are not distinct, the numerator will increase and the denominator will decrease. Thus, we obtain

Tσ(g, ℓ, k) =
g

ggg

#

k#s#n

σ

σ −−−)..1(l
.

Vσσσσ(g, m, k): Recall that

Vσ(g, m, k) = min vi, ui, yi,
Pr(∧i∈[1,m] σ∉vi[S] | ∧i∈[1,k] yi∈ui[S], g).

The minimization is about how to set y1, …, yk. The setting of v1, …, vm and u1, …, uk does not affect the above probability as long as v1,

…, vm, u1, …, uk are distinct individuals. Note that, by definition, vi ≠ uj for any i and j. To minimize Vσ(g, m, k), we set v1, …, vm, u1, …, uk

to be distinct individuals, and set y1, …, yk to have any sensitive values other than σ. We discuss why this gives the minimum later. Then,

by the definition of conditional probability, Pr(α ∧ β | γ) = Pr(α | γ)⋅Pr(β | α ∧ γ). Thus, Pr(∧i∈[1,m] αi | γ) = ∏i∈[1,m] Pr(αi | (∧j∈[1,i−1] αj) ∧ γ).

We apply this to Vσ(g, m, k), and obtain

Pr(∧i∈[1,m] σ∉vi[S] | ∧i∈[1,k] yi∈ui[S], g) = ∏i∈[1,m] Pr(σ∉vi[S] | (∧j∈[1,i−1] σ∉vj[S]) ∧ (∧i∈[1,k] yi∈ui[S]), g).

Thus, Vσ(g, m, k) = ∏ −∈ −−

−−−

]1,0[mi
g

gg

ikn

ik#n σ
,

which is the probability of choosing m balls with labels ≠ σ from a bag of (ng−k) balls, in which (ng−#σg−k) are not labeled σ. The bag has

(ng−k) balls with (ng−#σg−k) not labeled σ because of (∧i∈[1,k] ui[S]=yi), where yi≠σ. Thus, Pr(σ∉v1[S] | (∧i∈[1,k] yi∈ui[S]), g) =

(ng−#σg−k)/(ng−k), which is the probability that the first chosen ball is not labeled σ. Similarly, Pr(σ∉v2[S] | (σ∉v1[S]) ∧ (∧i∈[1,k] yi∈ui[S]),

g) = (ng−#σg−k−1)/(ng−k−1), which is the probability that the second chosen ball is not labeled σ given the fact that the first ball is not

labeled σ. If we keep doing so, we obtain the above formula for Vσ(g, m, k).

It can be easily seen that our setting gives the minimum. If we change any yi to σ, then Vσ(g, m, k) will increase.

minNRσσσσ(g, ℓℓℓℓ, k, m): Recall that minNRσ(g, ℓ, k, m) = min t, vi, xi, ui, yi
NR subject to that t, u1, …, uk and v1, …, vm are all in QI-group g, where

)],[|][Pr(

)],[|])[(])[(][Pr(

],1[

],1[],1[],1[

gSuySt

gSuySvStxSt
NR

iiki

iikiimiii

∈∧∈

∈∧∉∧∧∉∧∧∉
=

∈

∈∈∈

σ

σσ
l

By the definition of conditional probability, Pr(α ∧ β | γ) = Pr(α | γ)⋅Pr(β | α ∧ γ). By applying this to the numerator of NR, we obtain NR =

A⋅B, where

)],[|][Pr(

)],[|])[(][Pr(

],1[

],1[],1[

gSuySt

gSuyStxSt
A

iiki

iikiii

∈∧∈

∈∧∉∧∧∉
=

∈

∈∈

σ

σ
l

,

)]),[(])[(][|])[Pr(],1[],1[],1[gSuyStxStSvB iikiiiimi ∈∧∧∉∧∧∉∉∧= ∈∈∈ l
σσ .

The minimization is about how to set x1, …, xℓ and y1, …, yk. The setting of t, u1, …, uk and v1, …, vm does not affect the probabilities as

long as t, the ui’s and the vi’s are distinct individuals. To minimize NR, we set t, u1, …, uk, and v1, …, vm to be distinct individuals, set x1,

…, xℓ to sg(1), …, sg(ℓ), and set y1, …, yk to any sensitive values other than σ, sg(1), …, sg(ℓ). Note that, in this setting, A is the same as Tσ(g, ℓ,
k). Thus, A is minimized. Now, consider B. Note that, in this setting, we can rewrite B as

)}),,...,,{][],...,[],[(|])[Pr()()1(1],1[gssSuSuStSvB ggkimi l
σσ ∉∉∧= ∈ .

 21

Thus, similar to the discussion of Vσ(g, m, k),

B = ∏ −∈ −−−

−−−−

]1,0[1

1

mi
g

gg

ikn

ik#n σ
= Vσ(g, m, k+1),

which is the probability of choosing m balls with labels ≠ σ from a bag of (ng−k−1) balls, in which (ng−#σg−k−1) are not labeled σ. Note

that because of the knowledge of k+1 individuals (t, u1, …, uk), k+1 balls have been removed from the bag. The removed balls are not

labeled σ in our setting. It can be easily seen that our setting minimizes B. Since our setting minimizes both A and B, we obtain

minNRσ(g, ℓ, k, m) = Tσ(g, ℓ, k) ⋅ Vσ(g, m, k+1).

A3.2 Case of Multiple Value per Individual − Set Semantics

In the MVPI-Set case, each individual has a set of sensitive values in the original dataset.

Intuition: We now describe how QI-group g is reconstructed. By Proposition 2, within each QI-group g, for each distinct sensitive value x

∈ Xg, we reconstruct the set of the individuals having sensitive value x independently. As shown in the following figure, #xg denote the

number of occurrences of x in Xg. We select #xg individuals from Gg without replacement; i.e., each individual can only be selected once.

We call the set of the individuals selected to have sensitive value x in QI-group g the “sensitive value subgroup” (or SV-subgroup) of x in

QI-group g. We can reconstruct each SV-subgroup independently because the fact that individual u has value x does not prevent u from

having other sensitive values (this is not true in the SVPI case). It can be easily seen that Pr(σ∈t[S] | g) = #σg / ng, which is the probability

that t is selected in the process of selecting #σg individuals from ng to have sensitive value σ.

…
…

..
.

..
.

..
.

Tσσσσ(g, ℓℓℓℓ, k): Recall that

)],[|][Pr(

)],[|])[(][Pr(
min),,(

],1[

],1[],1[

,,
gSuSt

gSuStxSt
kgT

iki

ikiii

uxt ii ∉∧∈

∉∧∉∧∧∉
=

∈

∈∈

σσ

σσ
σ

l
l .

The minimization is about how to set x1, …, xℓ. The setting of t and u1, …, uk does not affect the above probabilities as long as t, u1, …, uk

are distinct individuals. To minimize Tσ(g, ℓ, k), we set t, u1, …, uk to be distinct individuals, set x1, …, xℓ to sg(1), …, sg(ℓ) (the ℓ most

frequent sensitive values other than σ). We discuss why this gives the minimum later. Under this setting, the denominator above becomes

Pr(σ∈t[S] | ∧i∈[1,k] σ∉ui[S], g) = #σg / (ng − k),

which is the probability that t is selected in the process of selecting #σg individuals from (ng−k) individuals to have sensitive value σ.

Because u1, …, uk are known not to have σ, they have been removed. By Proposition 2, the numerator of Tσ(g, ℓ, k) is

Pr(σ∉t[S] ∧ (∧i∈[1,ℓ] sg(i)∉t[S]) | ∧i∈[1,k] σ∉ui[S], g) = Pr(σ∉t[S] | ∧i∈[1,k] σ∉ui[S], g) ⋅ ∏i∈[1,ℓ] Pr(sg(i)∉t[S] | g)

= [1 − #σg/(ng−k)] ⋅ ∏i∈[1,ℓ] (1 − #sg(i)/ng)

= [(ng−#σg−k)/(ng−k)] ⋅ ∏i∈[1,ℓ] (ng−#sg(i))/ng.

It is easy to see that our setting minimizes the numerator and maximizes the denominator of Tσ(g, ℓ, k). If we change any xi to be a less

frequent sensitive value, then the numerator will increase. If u1, …, uk are not distinct, the numerator will increase and the denominator will

decrease. Thus, we obtain

Tσ(g, ℓ, k) = ∏∈

−
⋅

−−

],1[

)(

li
g

igg

g

gg

n

#sn

#

k#n

σ

σ
.

Vσσσσ(g, m, k): Recall that

Vσ(g, m, k) = min vi, ui,
Pr(∧i∈[1,m] σ∉vi[S] | ∧i∈[1,k] σ∉ui[S], g).

 22

To minimize Vσ(g, m, k), we just set v1, …, vm, u1, …, uk to be distinct individuals. By the definition of conditional probability, Pr(α ∧ β | γ)

= Pr(α | γ)⋅Pr(β | α ∧ γ). Thus, Pr(∧i∈[1,m] αi | γ) = ∏i∈[1,m] Pr(αi | (∧j∈[1,i−1] αj) ∧ γ). We apply this to Vσ(g, m, k), and obtain

Pr(∧i∈[1,m] σ∉vi[S] | ∧i∈[1,k] σ∉ui[S], g) = ∏i∈[1,m] Pr(σ∉vi[S] | (∧i∈[1,j−1] σ∉vj[S]) ∧ (∧i∈[1,k] σ∉ui[S]), g).

Thus, Vσ(g, m, k) = ∏ −∈ −−

−−−

]1,0[mi
g

gg

ikn

ik#n σ
,

which is the probability that v1, …, vm are selected in the process of selecting (ng−#σg−k) individuals from (ng−k) individuals to not have

sensitive value σ. Because u1, …, uk are known not to have σ, they have been removed. It can be easily seen that our setting gives the

minimum.

minNRσσσσ(g, ℓℓℓℓ, k, m): Recall that minNRσ(g, ℓ, k, m) = min t, vi, xi, ui
NR subject to that t, u1, …, uk and v1, …, vm are all in QI-group g, where

)],[|][Pr(

)],[|])[(])[(][Pr(

],1[

],1[],1[],1[

gSuSt

gSuSvStxSt
NR

iki

ikiimiii

∉∧∈

∉∧∉∧∧∉∧∧∉
=

∈

∈∈∈

σσ

σσσ
l

By the definition of conditional probability, Pr(α ∧ β | γ) = Pr(α | γ)⋅Pr(β | α ∧ γ). By applying this to the numerator of NR, we obtain NR =

A⋅B, where

A =
)],[|][Pr(

)],[|])[(][Pr(

],1[

],1[],1[

gSuSt

gSuStxSt

iki

ikiii

∉∧∈

∉∧∉∧∧∉

∈

∈∈

σσ

σσ
l

,

B =)]),[(])[(][|])[Pr(],1[],1[],1[gSuStxStSv ikiiiimi ∉∧∧∉∧∧∉∉∧ ∈∈∈ σσσ
l

=)]),[(][|])[Pr(],1[],1[gSuStSv ikiimi ∉∧∧∉∉∧ ∈∈ σσσ , by Proposition 2.

The minimization is about how to set x1, …, xℓ. The setting of t, u1, …, uk and v1, …, vm does not affect the probabilities as long as t, the ui’s

and the vi’s are distinct individuals. To minimize NR, we set t, u1, …, uk, and v1, …, vm to be distinct individuals, and set x1, …, xℓ to sg(1),

…, sg(ℓ). Note that, in this setting, A is the same as Tσ(g, ℓ, k). Thus, A is minimized. Now, consider B. Note that, in this setting, we can

rewrite B as

)}),{][],...,[],[(|])[Pr(1],1[gSuSuStSvB kimi σσ ∉∉∧= ∈ .

Thus, similar to the discussion of Vσ(g, m, k),

B = ∏ −∈ −−−

−−−−

]1,0[1

1

mi
g

gg

ikn

ik#n σ
= Vσ(g, m, k+1),

which is the probability that v1, …, vm are selected in the process of selecting (ng−#σg−k−1) individuals from (ng−k−1) individuals to not

have sensitive value σ. Because t, u1, …, uk are known not to have σ, they have been removed. It can be easily seen that our setting

minimizes B. Since our setting minimizes both A and B, we obtain

minNRσ(g, ℓ, k, m) = Tσ(g, ℓ, k) ⋅ Vσ(g, m, k+1).

A3.3 Case of Multiple Value per Individual − Multiset Semantics

In the MVPI-Multiset case, each individual has a multiset of sensitive values in the original dataset.

Intuition: We now describe how QI-group g is reconstructed. By Proposition 2, within each QI-group g, for each distinct sensitive value x

∈ Xg, we reconstruct the multiset of the individuals having sensitive value x independently. As shown in the following figure, #xg denote

the number of occurrences of x in Xg. We select #xg individuals from Gg with replacement; i.e., each individual can be selected many times.

We call the multiset of the individuals selected to have sensitive value x in QI-group g the “sensitive value subgroup” (or SV-subgroup) of

x in QI-group g. We can reconstruct each SV-subgroup independently because the fact that individual u has value x does not prevent u from

having other sensitive values (this is not true in the SVPI case). It can be easily seen that Pr(σ∉t[S] | g) = g

gg nn
σ#

]/)1[(− , which is the

probability that t is not selected in the process of selecting an individual from ng individuals, for #σg times. Thus, Pr(σ∈t[S] | g) =
g

gg nn
σ#

]/)1[(1 −− .

 23

…
…

..
.

..
.

..
.

Tσσσσ(g, ℓℓℓℓ, k): Recall that

)],[|][Pr(

)],[|])[(][Pr(
min),,(

],1[

],1[],1[

,,
gSuSt

gSuStxSt
kgT

iki

ikiii

uxt ii ∉∧∈

∉∧∉∧∧∉
=

∈

∈∈

σσ

σσ
σ

l
l .

The minimization is about how to set x1, …, xℓ. The setting of t and u1, …, uk does not affect the above probabilities as long as t, u1, …, uk

are distinct individuals. To minimize Tσ(g, ℓ, k), we set t, u1, …, uk to be distinct individuals, set x1, …, xℓ to sg(1), …, sg(ℓ) (the ℓ most

frequent sensitive values other than σ). We discuss why this gives the minimum later. Under this setting, the denominator above becomes

Pr(σ∈t[S] | ∧i∈[1,k] σ∉ui[S], g) = gknkn gg

σ#
)]/()1[(1 −−−− ,

which is one minus the probability that t is not selected in the process of selecting an individual from (ng−k) individuals, for #σg times.

Because u1, …, uk are known not to have σ, they have been removed. By Proposition 2, the numerator of Tσ(g, ℓ, k) is

Pr(σ∉t[S] ∧ (∧i∈[1,ℓ] sg(i)∉t[S]) | ∧i∈[1,k] σ∉ui[S], g) = Pr(σ∉t[S] | ∧i∈[1,k] σ∉ui[S], g) ⋅ ∏i∈[1,ℓ] Pr(sg(i)∉t[S] | g)

= ∏∈
−⋅−−−

],1[

)(]/)1[()]/()1[(
li

s

gggg
igg nnknkn

σ

=)..1(##
]/)1[()]/()1[(lgg s

gggg nnknkn −⋅−−−
σ

It is easy to see that our setting minimizes the numerator and maximizes the denominator of Tσ(g, ℓ, k). If we change any xi to be a less

frequent sensitive value, then the numerator will increase. If u1, …, uk are not distinct, the numerator will increase and the denominator will

decrease. Thus, we obtain

T(g, ℓ, k) =)..1(#

#

#

]/)1[(
)]/()1[(1

)]/()1[(
lg

g

g

s

gg

gg

gg
nn

knkn

knkn
−⋅

−−−−

−−−
σ

σ

.

Vσσσσ(g, m, k): Recall that

Vσ(g, m, k) = min vi, ui,
Pr(∧i∈[1,m] σ∉vi[S] | ∧i∈[1,k] σ∉ui[S], g).

To minimize Vσ(g, m, k), we just set v1, …, vm, u1, …, uk to be distinct individuals. Thus, we obtain

Vσ(g, m, k) =

g

kn

mkn

g

g

σ#















−

−−
,

which is the probability that all v1, …, vm are not selected in the process of selecting an individual from (ng−k) individuals, for #σg times.

Because u1, …, uk are known not to have σ, they have been removed. It can be easily seen that our setting gives the minimum.

minNRσσσσ(g, ℓℓℓℓ, k, m): Recall that minNRσ(g, ℓ, k, m) = min t, vi, xi, ui
NR subject to that t, u1, …, uk, and v1, …, vm are all in QI-group g, where

)],[|][Pr(

)],[|])[(])[(][Pr(

],1[

],1[],1[],1[

gSuSt

gSuSvStxSt
NR

iki

ikiimiii

∉∧∈

∉∧∉∧∧∉∧∧∉
=

∈

∈∈∈

σσ

σσσ
l

By the definition of conditional probability, Pr(α ∧ β | γ) = Pr(α | γ)⋅Pr(β | α ∧ γ). By applying this to the numerator of NR, we obtain NR =

A⋅B, where

A =
)],[|][Pr(

)],[|])[(][Pr(

],1[

],1[],1[

gSuSt

gSuStxSt

iki

ikiii

∉∧∈

∉∧∉∧∧∉

∈

∈∈

σσ

σσ
l

,

B =)]),[(])[(][|])[Pr(],1[],1[],1[gSuStxStSv ikiiiimi ∉∧∧∉∧∧∉∉∧ ∈∈∈ σσσ
l

=)]),[(][|])[Pr(],1[],1[gSuStSv ikiimi ∉∧∧∉∉∧ ∈∈ σσσ , by Proposition 2.

 24

The minimization is about how to set x1, …, xℓ. The setting of t, u1, …, uk and v1, …, vm does not affect the probabilities as long as t, the ui’s

and the vi’s are distinct individuals. To minimize NR, we set t, u1, …, uk, and v1, …, vm to be distinct individuals, and set x1, …, xℓ to sg(1),

…, sg(ℓ). Note that, in this setting, A is the same as Tσ(g, ℓ, k). Thus, A is minimized. Now, consider B. Note that, in this setting, we can

rewrite B as

)}),{][],...,[],[(|])[Pr(1],1[gSuSuStSvB kimi σσ ∉∉∧= ∈ .

Thus, similar to the discussion of Vσ(g, m, k),

B =

g

kn

mkn

g

g

σ#

1

1















−−

−−−
= Vσ(g, m, k+1),

which the probability that all v1, …, vm are not selected in the process of selecting an individual from (ng−k−1) individuals, for #σg times.

Because t, u1, …, uk are known not to have σ, they have been removed. It can be easily seen that our setting minimizes B. Since our setting

minimizes both A and B, we obtain

minNRσ(g, ℓ, k, m) = Tσ(g, ℓ, k) ⋅ Vσ(g, m, k+1).

A4. Formula Derivation

Derivation 1. Consider the following condition:

• QI-group g contains t, u1, …, up and v1, …, vh, and

• QI-group f contains the rest (k−p) of the ui’s and the rest (m−h) of the vi’s, and

• g ≠ f.

The minimum negated ratio subject to this condition is Tσ(g, ℓ, p)⋅Vσ(g, h, p+1)⋅Vσ(f, m−h, k−p). As a special case, if h = 0, the minimum

negated ratio subject to this condition is Tσ(g, ℓ, p)⋅Vσ(f, m, k−p).

Proof: Under this condition, the negated ratio is

)),()(|][Pr(

)),()(|]][[])][(])[(][Pr([

*
||

*
||],1[],1[],1[

D

D

pkKpKSt

pkKpKSvSvStxSt

uu

uuihmiihiii

−∧∈

−∧∉∧∧∉∧∧∉∧∧∉ −∈∈∈

σσ

σσ

σ

σσσ
l

,

where])][(])[(][[],1[],1[SvStxSt ihiii ∉∧∧∉∧∧∉ ∈∈ σσ
l

, Kσ|u(p) are expressions only involving individuals in QI-group g, and (∧i∈[1,m−h] σ

∉vi[S]) and Kσ|u(k−p) are expressions only involving individuals in QI-group f.

Thus, by Proposition 1, the minimum negated ratio is

min
)),(|][Pr(

)),(|][Pr()),(|])[(])[(][Pr(

|

|],1[|],1[],1[

gpKSt

fpkKSvgpKSvStxSt

u

uihmiuihiii

σ

σσ

σ

σσσ

∈

−∉∧⋅∉∧∧∉∧∧∉ −∈∈∈ l

= (min
)),(|][Pr(

)),(|])[(])[(][Pr(

|

|],1[],1[

gpKSt

gpKSvStxSt

u

uihiii

σ

σ

σ

σσ

∈

∉∧∧∉∧∧∉ ∈∈ l
) ⋅ (min)),(|][Pr(|],1[fpkKSv uihmi −∉∧ −∈ σσ)

= minNRσ(g, ℓ, p, h) ⋅Vσ(f, m−h, k−p)

= Tσ(g, ℓ, p)⋅Vσ(g, h, p+1)⋅Vσ(f, m−h, k−p). �

A5. Proofs of the Theorems

Theorem 1. Kσ|u(k) and Kσ|v,t(m) are both 1-group congregated, in all the three cases (SVPI, MVPI-Set and MVPI-Multiset).

Proof: Theorem 1 states that the negated ratio (the NR in Lemma 1) is minimized when all the individuals u1, …, uk (in Kσ|u(k)) are in one

QI-group and all the individuals v1, …, vm (in Kσ|v,t(m)) are in one QI-group.

We will prove Theorem 1 by induction on the number B of QI-groups. Basically, we consider how to distribute t, u1, …, uk and v1, …, vm

into QI-groups in order to minimize the negated ratio.

In the following proof, we only consider the case where the breach probability is less than 1 (i.e., the minimum negated ratio is greater than

0). That is to assume each QI-group that contains σ is large enough to contain t, u1, …, uk and v1, …, vm. The boundary case (i.e., the breach

probability is 1) is straightforward.

 25

Base case: When B = 1, our claim trivially holds. Thus, we consider B = 2 as the base case. Without loss of generality, assume that when

the negated ratio is minimized, the following two hold:

• QI-group g contains t, u1, …, up and v1, …, vh.

• QI-group f contains the rest (k−p) of ui’s and (m−h) of vi’s.

Our goal is to prove h = 0 or m, and p = 0 or k. By proposition 1, the negated ratio is

),),(|][Pr(

),),(|])[(])[(][Pr(

|

|],1[],1[

fgkKSt

fgkKSvStxSt

u

uimiii

σ

σ

σ

σσ

∈

∉∧∧∉∧∧∉ ∈∈ l

=)),(|][Pr(
)),(|][Pr(

)),(|])[(])[(][Pr(
|],1[

|

|],1[],1[
fpkKSv

gpKSt

gpKSvStxSt
uimhi

u

uihiii
−∉∧⋅

∈

∉∧∧∉∧∧∉
+∈

∈∈
σ

σ

σ
σ

σ

σσ
l

.

Note that QI-group f does not contain t. Thus, all the expression about t are removed from the second part of the above formula. Since the

two QI-groups are independent, we can minimize them separately. By the definition of minNRσ(g, ℓ, k, m) and Vσ(g, m, k) and the

discussion in Section A3, we obtain that the minimum negated ratio is

minNRσ(g, ℓ, p, h) ⋅ Vσ(f, m−h, k−p) = Tσ(g, ℓ, p) ⋅ Vσ(g, h, p+1) ⋅ Vσ(f, m−h, k−p).

Now, we consider the three cases separately.

Base case in the SVPI case: We first consider the vi’s. Note that Tσ(…) does not involve the vi’s by definition. Let αi = (ng−#σg−p−i) /

(ng−p−i) and βi = (nf−#σf−(k−p)−i+1) / (nf−(k−p)−i+1). Then, we obtain

Vσ(g, h, p+1) ⋅ Vσ(f, m−h, k−p) = (∏i∈[1,h] αi)⋅(∏i∈[1,m−h] βi).

Note that here i start from 1, not 0. By Proposition 6, the above formula is minimized when h = 0 or m. Thus, all the vi’s are in one QI-

group; i.e., Kσ|v,t(m) is 1-group congregated.

We now consider the ui’s. If all the vi’s are in QI-group g, the minimum negated ratio becomes

Tσ(g, ℓ, p)⋅Vσ(g, m, p+1),

which is minimized when p = k. If all the vi’s are in QI-group f, for an appropriate choice of a, b, c and d (i.e., a = ng−#σg−#sg(1..ℓ), b = #σg, c

= nf−#σf, and d = nf), the negated ratio becomes

∏ −∈ −−−

−−−
⋅

−
=−⋅

]1,0[)(

)(
),,(),,(

miss
pkid

pkic

b

pa
pkmfVpgT l

By Proposition 8, the above is minimized when p = 0 or k. Thus, all the ui’s are in one QI-group; i.e., Kσ|u(k) is 1-group congregated.

Base case in the MVPI-Set case: We first consider the vi’s. Note that Tσ(…) does not involve the vi’s by definition. The computation

formula for Vσ(g, m, k) in the MVPI-Set case is the same as that in the SVPI case. Thus, by the same argument, we conclude that the

negated ratio is minimized when all the vi’s are in one QI-group; i.e., Kσ|v,t(m) is 1-group congregated.

We now consider the ui’s. If all the vi’s are in QI-group g, the minimum negated ratio becomes

Tσ(g, ℓ, p)⋅Vσ(g, m, p+1),

which is minimized when p = k. If all the vi’s are in QI-group f, for an appropriate choice of a, b, c and d (i.e., a = ng−#σg, b = #σg⋅[∏i∈[1,ℓ]

ng/(ng−#sg(i))], c = nf−#σf, and d = nf), the negated ratio becomes

∏ −∈ −−−

−−−
⋅

−
=−⋅

]1,0[)(

)(
),,(),,(

miss
pkid

pkic

b

pa
pkmfVpgT l

By Proposition 8, the above is minimized when p = 0 or k. Thus, all the ui’s are in one QI-group; i.e., Kσ|u(k) is 1-group congregated.

Base case in the MVPI-Multiset case: We first consider the vi’s. Note that Tσ(…) does not involve the vi’s by definition. By an

appropriate choice of a, b, c and d (i.e., a = ng−(p+1), b = #σg, c = nf−(k−p), and d = #σf), we obtain

Vσ(g, h, p+1) ⋅ Vσ(f, m−h, k−p) =

db

c

hmc

a

ha







 −−







 −)(
.

By Proposition 7, the above formula is minimized when h = 0 or m. Thus, all the vi’s are in one QI-group; i.e., Kσ|v,t(m) is 1-group

congregated.

We now consider the ui’s. If all the vi’s are in QI-group g, the minimum negated ratio becomes

 26

Tσ(g, ℓ, p)⋅Vσ(g, m, p+1),

which is minimized when p = k. If all the vi’s are in QI-group f, for an appropriate choice of a, b, c, d, e and n (i.e., a = #σg, b =
)..1(#

]/)1[(lgs

gg nn − , c = nf−m, d = nf, e = #σf, and n = ng), the negated ratio becomes

Tσ(g, ℓ, p)⋅Vσ(f, m, k−p) =

e

a

a

pkd

pkc
b

pnpn

pnpn









−−

−−
⋅⋅

−−−−

−−−

)(

)(

)]/()1[(1

)]/()1[(
.

By Proposition 9, the above is minimized when p = 0 or k. Thus, all the ui’s are in one QI-group; i.e., Kσ|u(k) is 1-group congregated.

Induction argument: Now assume Theorem 1 holds for (B−1) QI-groups. We claim that it also holds for B QI-groups. We first consider

the vi’s. Without loss of generality, assume the negated ratio is minimized when v1, …, vh are in the first (B−1) QI-groups and the rest

(m−h) are in the Bth QI-group. By the induction assumption, v1, …, vh are in one QI-group, say g. Now, the vi’s can only be in two QI-

groups. Similar to the argument in the base case, it is easy to show that h = 0 or m. Thus, all the vi’s are in one QI-group; i.e., Kσ|v,t(m) is 1-

group congregated.

By a similar argument, it is easy to show that all the ui’s are in one QI-group; i.e., Kσ|u(k) is 1-group congregated. �

Theorem 2. This theorem has been proven in Section 5.1.

Theorem 3. This theorem is a straightforward application of Theorem 2.

Theorem 4. If QI-groups g1, …, gn partition QI-group q in release candidate D*, then in the SVPI case, for any fixed (ℓ, k, m), the

following hold:

• Tσ(q, ℓ, k) ≥ min 1≤i≤n Tσ(gi, ℓ, k),

• Vσ(q, m, k) ≥ min 1≤i≤n Vσ(gi, m, k),

• minNRσ(q, ℓ, k, m) ≥ the minimum of:

(c) min 1≤i≤n minNRσ(gi, ℓ, k, m),

(d) (min 1≤i≤n Tσ(gi, ℓ, k)) ⋅ (min 1≤i≤n Vσ(gi, m, 0)).

Proof: We prove this theorem by considering q is partitioned into two QI-groups g and f. By a simple induction argument, it is easy to see

that this theorem also holds when q is partitioned into n QI-groups.

Because group g and group f partition group q, we have: (the notation is defined in Section A3)

• nq = ng + nf and #σq = #σg + #σf.

• #sq(1..ℓ) ≤ #sg(1..ℓ) + #sf(1..ℓ). The see this, let ng(sq(i)) and nf(sq(i)) denote the numbers of occurrences of sensitive value sq(i) in group g and

group f, respectively. Thus, #sq(i) = ng(sq(i)) + nf(sq(i)). Then, #sq(1..ℓ) = ∑i∈[1, ℓ] #sq(i) = ∑i∈[1, ℓ] [ng(sq(i)) + nf(sq(i))] = ∑i∈[1, ℓ] ng(sq(i)) + ∑i∈[1, ℓ

] nf(sq(i)) ≤ ∑i∈[1, ℓ] #sg(i) + ∑i∈[1, ℓ] #sf(i) = #sg(1..ℓ) + #sf(1..ℓ), because with sensitive value σ removed, sg(1), …, sg(ℓ) (and sf(1), …, sf(ℓ)) are

the ℓ most frequent sensitive values in group g (and group f).

Consider part 1.

fg

ggfgfg

q

qqq

##

k#s#s##nn

#

k#s#n
kqT

σσ

σσ

σ

σ
σ

+

−+−+−+
≥

−−−
=

)()(
),,(

)..1()..1()..1(lll
l

Let ag = ng−#σg−#sg(1..ℓ) and af = ng−#σg−#sg(1..ℓ). Then, by Proposition 10, we obtain











 −−

≥
+

−












≥
+

−
+

+
=

+

−+
≥

f

f

g

g

fgf

f

g

g

fgfg

fg

fg

fg

#

ka

#

ka

##

k

#

a

#

a

##

k

##

aa

##

kaa
kqT

σσσσσσσσσσσσ
σ ,min,min),,(l

Note that (ag−k)/#σg = Tσ(g, ℓ, k) and (af−k)/#σf = Tσ(f, ℓ, k). Thus, we complete the proof of part 1.

Consider part 2. Let bg = ng−#σg and bf = nf − #σf.

∏∏∏ −∈−∈−∈ −−+

−−+
=

−−+

−−+−+
=

−−

−−−
=

]1,0[]1,0[]1,0[

)(
),,(

mi
fg

fg

mi
fg

fgfg

mi
q

qq

kinn

kibb

iknn

ik##nn

ikn

ik#n
kmqV

σσσ
σ .

By Proposition 10, we obtain

 27













≥
+

+

f

f

g

g

fg

fg

n

b

n

b

nn

bb
,min .

Without loss of generality, assume bg/ng ≤ bf /nf. Now, our goal is to prove Vσ(q, m, k) ≥ Vσ(g, m, k). By Proposition 11, we complete the

proof of part 2.

ikn

ikb

iknn

ikbb

g

g

fg

fg

−−

−−
≥

−−+

−−+
 and

),,(),,(
]1,0[]1,0[

kmgV
kin

kib

kinn

kibb
kmqV

mi
g

g

mi
fg

fg

σσ =
−−

−−
≥

−−+

−−+
= ∏∏ −∈−∈

.

Consider part 3. minNRσ(q, ℓ, k, m) = Tσ(q, ℓ, k)⋅Vσ(q, m, k+1). We use the previously defined ag, af, bg, bf.

minNRσ(q, ℓ, k, m) = ∏ −∈ −−−+

−−−+
⋅

]1,0[1

1
),,(

mi
fg

fg

kinn

kibb
kqT lσ

From part 1, we know Tσ(q, ℓ, k) ≥ min{Tσ(g, ℓ, k), Tσ(f, ℓ, k)}. Without loss of generality, we assume Tσ(g, ℓ, k) ≤ Tσ(f, ℓ, k). By Proposition

10, we obtain













−−

−−
≥

+−−

+−−

f

f

g

g

fg

fg

n

b

kn

kb

nkn

bkb
,

1

1
min

)1(

)1(
.

If (bg−k−1)/(ng−k−1) ≤ bf /nf, then, by Proposition 11, we obtain

minNRσ(q, ℓ, k, m) ≥ ∏∏ −∈−∈ −−−

−−−
⋅≥

−+−−

−+−−
⋅

]1,0[]1,0[)1(

)1(
),,(

)1(

)1(
),,(

mi
g

g

mi
fg

fg

ikn

ikb
kgT

inkn

ibkb
kgT ll σσ .

The last part of the above is actually Tσ(g, ℓ, k)⋅Vσ(g, m, k+1) = minNRσ(g, ℓ, k, m).

Now, if bf /nf ≤ (bg−k−1)/(ng−k−1), then by Proposition 11, we obtain

minNRσ(q, ℓ, k, m) ≥ ∏∏ −∈−∈ −

−
⋅≥

−+−−

−+−−
⋅

]1,0[]1,0[
),,(

)1(

)1(
),,(

mi
f

f

mi
fg

fg

in

ib
kgT

inkn

ibkb
kgT ll σσ = Tσ(g, ℓ, k)⋅Vσ(f, m, 0). �

Corollary. In the SVPI case, the basic 3D privacy criterion and the skyline privacy criterion are monotonic.

Proof: Let D*
1 and D*

2 be two release candidates such that D*
1 ≼ D*

2. Consider skyline point (ℓ, k, m, c). Assume D*
1 is safe under (ℓ, k, m,

c); i.e. max{Pr(σ ∈t[S] | ℒt,σ(ℓ, k, m), D*
1)} < c. Because each QI-group q in D*

2 is the union of a set g1, …, gn of QI-groups of D*
1 that

partition QI-group q, by Theorem 4 and Theorem 2, we conclude that the negated ratio on D*
1 is smaller than or equal to that on D*

2.

Thus,

c > max{Pr(σ ∈t[S] | ℒt,σ(ℓ, k, m), D*
1)} ≥ max{Pr(σ ∈t[S] | ℒt,σ(ℓ, k, m), D*

2)},

which means D*
2 is also safe. Similarly, for a set of skyline points, that fact that D*

1 is safe implies that D*
2 is also safe. �

Theorem 5. The SkylineAnonymize algorithm produces a safe release candidate. In the SVPI case, the release candidate is minimal.

Proof: First, we assume that initial release candidate that takes the entire dataset as a single QI-group is safe. Otherwise, there is nothing

that can be released.

Second, note that, in each iteration of the while loop in the anonymize function, we take a QI-group out from the queue and then either

“partition this QI-group and put the new partitions into the queue” or “put the QI-group into D* if the QI-group cannot be further

partitioned”. The union of D* and the queue in the SkylineAnonymize algorithm is, in fact, the current release candidate, where D*

contains the QI-groups that cannot be further partitioned, and the queue contains the QI-groups that will later be checked for whether it

can be further partitioned or not. We use D+ to denote the current release candidate (i.e., the union of D* and the queue). We will show

that D+ is safe at all time. Thus, when the algorithm returns D*, since the queue is empty, D* = D+ is safe.

Consider skyline point (ℓ, k, m, c) for sensitive value σ. Consider the end of each iteration of the while loop in the anonymize function.

Let Q be the set of QI-groups that has been seen in the algorithm so far. Note that D+ ⊆ Q. It is easy to see that

 28

SS1 = min g∈Q minNRσ(g, ℓ, k, m) ≤ min g∈D+ minNRσ(g, ℓ, k, m).

SS2 = min g∈Q Tσ(g, ℓ, 0) ≤ min g∈D+ Tσ(g, ℓ, 0).

SS3 = min g∈Q Tσ(g, ℓ, k) ≤ min g∈D+ Tσ(g, ℓ, k).

SS4 = min g∈Q Vσ(g, m, 0) ≤ min g∈D+ Vσ(g, m, 0).

SS5 = min g∈Q Vσ(g, m, k) ≤ min g∈D+ Vσ(g, m, k).

Note that SS1, …, SS5 are the five global variables in the algorithm.

Let NR+ and BP+ denote the minimum negated ratio and the breach probability on D+. Let NRQ and BPQ denote the minimum negated

ratio and the breach probability computed based on SS1, …, SS5.

NRQ = min{SS1, SS2*SS5, SS3*SS4} and BPQ = 1/(NRQ+1).

Note that the statement “BP < c” in the safeSplit subroutine guarantees that if QI-groups g1, …, gn are added into D+, then BPQ < c.

It is easy to see that NR+ ≥ NRQ, which means BP+ ≤ BPQ < c.

Thus, D+ is always safe anytime.

We now consider the SVPI case. By Theorem 4, the newly generated QI-groups always make the minimum negated ratio smaller; i.e.,

NRQ = min{SS1, SS2*SS5, SS3*SS4} = NR+.

Thus, BPQ = BP+.

By the Corollary of Theorem 4, it can be easily seen that the returned D* is minimal because no QI-group in D* can be safely partitioned.

�

Theorem 6. Given a release candidate D* = {(G1, X1)} that has only one QI-group, it is NP-complete to decide whether there exists a

reconstruction that satisfies a ground expression of form (∧i∈[1,k] (xi∈ti[S] ↔ xi∈ui[S])).

Proof: Given a reconstruction of D*, it is easily to check whether the reconstruction satisfies a ground expression of the above form.

Thus, the problem is in NP.

We now reduce a strongly NP-complete problem, BIN PACKING [15], to this problem. Given integers a1, …, aN, C and B, in BIN

PACKING, we are asked whether a1, …, aN can be partitioned into B subsets, each of which has total sum at most C. Let n denote the

length of the input to the BIN PACKING problem. Let pi(n), pC(n) and pB(n) denote length of ai, C and B, respectively. Because BIN

PACKING is strongly NP-complete, it is still NP-complete if pi(n), pC(n) and pB(n) are polynomial in n.

The reduction is easy. We consider the SVPI case.

• Let D* = {(G1, X1)}, where G1 is a set of C⋅B individuals, and X1 contains B distinct sensitive values s1, …, sB, each of which has

exactly C occurrences in X1.

• We construction a ground expression K as follows. Initially, K is empty. For each aj, we add B⋅(aj−1) expressions of form (xi∈ti[S]

↔ xi∈ui[S]) into K. Specifically,

K = empty;

for j = 1 to N do

Let tj,1, …, tj,aj
 be any aj individuals that do not appear in K, so far;

for h = 1 to B do

K = K ∧ [∧p∈[2, aj]
 (sh∈tj,1[S] ↔ sh∈tj,p[S])];

Note that K constrains tj,1, …, tj,aj
 to have the same sensitive value, for all j.

If there exists a reconstruction of D* that satisfies K, then there exists a way to partition a1, …, aN into B subsets, each of which has total

sum at most C. The B subsets are constructed as follows. For j = 1 to N, if individual tj,1, …, tj,aj
 has sensitive value sh in the

reconstruction, then, we put aj in the hth subset. Because we have exactly C occurrences of sh in X1, the hth subset will have total sum at

most C, for all h.

If there exists a way to partition a1, …, aN into B subsets, each of which has total sum at most C, then there exists a reconstruction of D*

that satisfies K. We reconstruct D* as follows. For j = 0 to N, if aj is in the hth subset, then we assign each of tj,1, …, tj,aj
 to have sensitive

value sh. It can be easily seen that this reconstruction will satisfy K.

Finally, we note that the length of K is O(B⋅(∑j aj)), which is polynomial in n (the input length of the BIN PACKING problem). Also, the

length of D* is O(B⋅C), which is also polynomial in n. Thus, we have successfully reduced the BIN PACKING problem to the problem of

whether there exists a reconstruction that satisfies a ground expression of form (∧i∈[1,k] (xi∈ti[S] ↔ xi∈ui[S])). �

 29

A6. Dynamic-Programming Algorithm for Checking Safety

We now describe an algorithm for checking whether a release candidate is safe based on a dynamic-programming algorithm (originally

developed in [13] for a knowledge expression different from ours) without using the congregation property proposed in the privacy skyline

paper. This is the best known algorithm that our algorithm (which uses the congregation property) is compared with in the experiment.

Given knowledge threshold (ℓ, k, m) and confidence threshold c, release candidate D* = {(G1, X1), …, (GB, XB)} is safe for σ if the breach

probability (BP) is less than c, where the breach probability is defined as

BPσ(ℓ, k, m) = max{Pr(σ∈t[S] | Kσ|t(ℓ) ∧ Kσ|u(k) ∧ Kσ|v,t(m), D*)}.

The above maximization is over the following variables:

• Individuals: t (in Kσ|t(ℓ)), u1, …, uk (in Kσ|u(k)), v1, …, vm (in Kσ|v,t(m)).

• Sensitive values: x1, …, xℓ (in Kσ|t(ℓ)), y1, …, yk (in Kσ|u(k)).

By Lemma 1, BPσ(ℓ, k, m) = 1 / (minNRσ(ℓ, k, m) + 1), where

minNRσ(ℓ, k, m) =












∈

∉∧∧∉∧∧∉ ∈∈

)),(|][Pr(

)),(|])[(])[(][Pr(
min

*
|

*
|],1[],1[

D

D

kKSt

kKSvStxSt

u

uimiii

σ

σ

σ

σσ
l

.

Now our goal is to find the minimum negated ratio minNRσ(ℓ, k, m) over all possible groundings of the variables. In particular, we consider

how to distribute the individuals t, u1, …, uk and v1, …, vm into QI-groups of D* in order to reach the minimum.

Assume that the negated ratio is minimized when the following hold:

• QI-group j contains kj of the ui’s and mj of the vi’s, for j = 1 to B, and

• t is in QI-group g,

where ∑j kj = k and ∑j mj = m.

In this setting, by Proposition 1, the minimum negated ratio can be expressed as

Vσ(1, m1, k1)⋅⋅⋅Vσ(g−1, mg−1, kg−1) ⋅ [Tσ(g, ℓ, kg)⋅Vσ(g, mg, kg+1)] ⋅ Vσ(g+1, mg+1, kg+1)⋅⋅⋅Vσ(B, mB, kB).

We can think of k1, …, kB, m1, …, mB and g as variables such that kj ≥ 0, mj ≥ 0, ∑j kj = k, ∑j mj = m and 1 ≤ g ≤ B. Thus, we obtain

minNRσ(ℓ, k, m) =

min{ Vσ(1, m1, k1)⋅⋅⋅Vσ(g−1, mg−1, kg−1) ⋅ [Tσ(g, ℓ, kg)⋅Vσ(g, mg, kg+1)] ⋅ Vσ(g+1, mg+1, kg+1)⋅⋅⋅Vσ(B, mB, kB) }.

A dynamic program can be used to find the above minimum in polynomial time.

We first define the following:

• NRσ
(with t)(f, ℓ, k, m) = minNRσ(ℓ, k, m) subject to that t, u1, …, uk, v1, …, vm are all in the first f QI-groups.

• NRσ
(without t)(f, ℓ, k, m) = minNRσ(ℓ, k, m) subject to that u1, …, uk, v1, …, vm are all in the first f QI-groups and t is not in the first f QI-

groups.

It can be easily seen that

• NRσ
(with t)(f, ℓ, k, m) is the minimum of the following two:

− min 0 ≤ i ≤ k, 0 ≤ j ≤ m NRσ
(with t)(f−1, ℓ, i, j)⋅Vσ(f, m−j, k−i).

− min 0 ≤ i ≤ k, 0 ≤ j ≤ m NRσ
(without t)(f−1, ℓ, i, j)⋅[Tσ(f, ℓ, k−i)⋅Vσ(f, m−j, k−i+1)].

• NRσ
(without t)(f, ℓ, k, m) = min 0 ≤ i ≤ k, 0 ≤ j ≤ m NRσ

(without t)(f−1, ℓ, i, j)⋅Vσ(f, m−j, k−i).

• minNRσ(ℓ, k, m) = NRσ
(with t)(B, ℓ, k, m), which gives the final answer.

The above formulas together give the dynamic-programming algorithm. To implement the algorithm, we use two three-dimensional arrays.

One is for NRσ
(with t)(f, ℓ, i, j), and the other is for NRσ

(without t)(f, ℓ, i, j), where ℓ is fixed, 1 ≤ f ≤ B, 0 ≤ i ≤ k and 0 ≤ j ≤ m. Then, for f = 1 to B,

we fill in the two arrays by using the above formulas. Note that, if the QI-groups in release candidate D* are clustered (i.e., all the data in a

QI-group is stored on disk consecutively), then this algorithm can output the answer by scanning the dataset once, assuming the main

memory size is at least O(k⋅m). Note that it is not necessary to fit the two entire three-dimensional arrays in memory. To compute NRσ
(with

t)(f, ℓ, i, j) and NRσ
(without t)(f, ℓ, i, j), we only need NRσ

(with t)(f−1, ℓ, i, j) and NRσ
(without t)(f−1, ℓ, i, j). Thus, the memory requirement is only

O(k⋅m).

 30

A7. Algorithm for Finding Knowledge Skylines

In this section, we describe a simple algorithm for finding the knowledge skyline of a release candidate. The algorithm is based a binary

search.

The inputs to the algorithm are as follows.

• Release candidate D*

• Confidence threshold c

• Target sensitive value σ

Let BPσ(ℓ, k, m) be a function that returns max{Pr(σ∈t[S] | ℒt,σ(ℓ, k, m), D*)}, computed using the algorithm described in Section 5.1. The

algorithm for finding the knowledge skyline of D* is as follows.

PointList = empty;

for ℓ = 0 to infinity

if BPσ(ℓ, 0, 0) > c then break; // go out of the loop for ℓ.
for m = 0 to infinity

if BPσ(ℓ, 0, m) > c then break; // go out of the loop for m.

Binary search for the k value such that BPσ(ℓ, k, m) < c and BPσ(ℓ, k+1, m) ≥ c;

Add (ℓ, k, m) into PointList;

Cleanup PointList by removing all the points that are dominated by other points in PointList;

A more efficient and scalable algorithm is future work.

A8. Expressibility

In this section, we formally compare our knowledge expression ℒt,σ
SVPI(ℓ, k, m) with the knowledge language ℒbasic(k) proposed in [13]

(where Martin et al. use ℒbasic
k to denote this language) and discuss the theory behind the comparison.

Let ℑℑℑℑ denote a set of individuals, and S denote a set of sensitive values. All expressions, datasets and release candidates discussed in this

section are defined with respect to ℑℑℑℑ and S. In particular, an original dataset is of the following form: {(u1, S1), …, (un, Sn)}, where {u1, …,

un} = ℑℑℑℑ and Si is a (possibly empty) subset of S. For any ground expression E, all the individuals and the sensitive values involved in E are

from ℑℑℑℑ and S, respectively. Because ℒt,σ
SVPI(ℓ, k, m) and ℒbasic(k) are defined for the SVPI case, in this section, we assume each individual

has exactly one sensitive value; i.e., |Si| = 1 for all i. However, the definitions also apply to the MVPI case.

Definition: Knowledge language. A (knowledge) language is a set of ground expressions.

Note that, we define ℒt,σ
SVPI(ℓ, k, m) as an expression with variables, rather than languages. However, it is easily to derive a language from

an expression K with variables, which is the set of all the ground expressions that can be derived from K. For ease of exposition, we slightly

abuse the notation by using ℒt,σ
SVPI(ℓ, k, m) to also denote the language derived from expression ℒt,σ

SVPI(ℓ, k, m).

Definition: Language ℒℒℒℒt,σσσσ
SVPI(ℓℓℓℓ, k, m). Language ℒt,σ

SVPI(ℓ, k, m) is the set of all the ground expressions that can be derived from

expression ℒt,σ
SVPI(ℓ, k, m).

In the rest of this section, ℒt,σ
SVPI(ℓ, k, m) is treated as a language.

Recall that ℒbasic(1) = {((∧i∈[1,m] xi∈ui[S]) → (∨j∈[1,n] yj∈vj[S])) : m > 0, n > 0, ui ∈ ℑℑℑℑ, vj ∈ ℑℑℑℑ, xi ∈ S, yj ∈ S},

ℒbasic(k) = {(∧i∈[1,k] Ei) : Ei ∈ ℒbasic(1)}.

Also recall that

ℒt,σ
SVPI(ℓ, k, m) = {((∧i∈[1,ℓ] xi∉t[S]) ∧ (∧i∈[1,k] yi∈ui[S]) ∧ (∧i∈[1,m] (σ ∈vi[S]→σ ∈t[S]))) :

ui ∈ ℑℑℑℑ, ui ≠ t, vi ∈ ℑℑℑℑ, vi ≠ t, vi ≠ uj, xi ∈ S, yi ∈ S},

where t is a particular individual in ℑℑℑℑ and σ is a particular sensitive value in S.

Definition: Expressibility. A ground expression E is expressible in language ℒ iff there exist an expression K ∈ ℒ such that, for any

possible original dataset W, E and K are either both true on W or both false on W.

Recall that an expression is defined as a constraint that can be evaluated on a possible original dataset and returns either true or false. The

syntax of an expression is application dependent. Thus, the above E and K may have different syntaxes. However, since both of them can

be evaluated on an original dataset, the above expressibility is well-defined. For example, E = {Ann, Bob}, which is true on W if and only

 31

if Ann and Bob are in a same-value family (i.e., Ann and Bob have the same set of sensitive values) in W, and K = (∧σ ∈S (σ ∈Ann[S] ↔ σ

∈Bob[S])), which is true on W if and only if the logic sentence is true on W. In this example, E is expressible in language {K}, which

contains only one expression.

Definition: Practical language. A language ℒ is impractical iff, for any release candidate D* of any original dataset D, for any u ∈ ℑℑℑℑ and

σ ∈ S, max K∈ℒ Pr(σ ∈ u[S] | K, D*) = b, where b is a constant.

An impractical language ℒ is useless in defining a privacy criterion, because the breach probability (i.e., max K∈ℒ Pr(σ ∈ u[S] | K, D*)) is

independent of release candidate D* under ℒ. In other words, if the data owner’s original dataset D (which is also a particular release

candidate) is unsafe under ℒ, then no release candidate of D can ever be safe under ℒ. Note that, in practice, almost no original dataset is

safe.

Definition: Practical expressibility. We say that a language ℒ can practically express a ground expression E iff ℒ is not impractical and

E is expressible in ℒ.

Proposition A8.1. For any integer k and any expression E of form σ ∈u[S], where σ ∈ S and u ∈ ℑℑℑℑ, ℒbasic(k) cannot practically express E.

Proof: We will prove this proposition by contradiction. First, observe that, by the definition of ℒbasic(k), if s∈t[S] is expressible in ℒbasic(k),

for a particular s ∈ S and a particular t ∈ ℑℑℑℑ, then for any σ ∈ S and u ∈ ℑℑℑℑ, σ ∈u[S] is expressible in ℒbasic(k).

Now, we assume s∈t[S] is expressible in ℒbasic(k), which is practical. Then, for any σ ∈ S and any u ∈ ℑℑℑℑ, σ ∈u[S] is expressible in ℒ
basic(k). Let Eσ ∈u[S] denote the expression in ℒbasic(k) equivalent to σ ∈u[S].

Thus, for any D*, any σ ∈ S and any u ∈ ℑℑℑℑ, max K∈ℒ Pr(σ ∈ u[S] | K, D*) = Pr(σ ∈ u[S] | Eσ ∈u[S], D
*) = 1.

We conclude that ℒbasic(k) is impractical, which results in a contradiction. �

If Bob ∈ ℑℑℑℑ and Flu ∈ S, then a special case of Proposition A8.1 is that ℒbasic(k) cannot practically express Flu ∈ Bob[S].

Comparison: For the comparison of ℒt,σ
SVPI(ℓ, k, m) and ℒbasic(k), no one is more expressive than the other. For example, ℒbasic(k) can

practically express (Flu∈Bob[S] → AIDS∈Tom[S]), but ℒt,σ
SVPI(ℓ, k, m) cannot. ℒt,σ

SVPI(ℓ, k, m) can practically express Flu∈Bob[S], but

ℒbasic(k) cannot, for any k. However, our ℒt,σ
SVPI(ℓ, k, m) is more intuitive and quantifies knowledge more precisely than ℒbasic(k).

