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ABSTRACT
Several recent works have focused on OLAP over imprecise data,
where each fact can be a region, instead of a point, in a multi-
dimensional space. They have provided a multiple-world semantics
for such data, and developed efficient solutions to answer OLAP
aggregation queries over the imprecise facts. These solutions how-
ever assume that the imprecise facts can be interpreted indepen-
dently of one another, a key assumption that is often violated in
practice. Indeed, imprecise facts in real-world applications are of-
ten correlated, and such correlations can be captured as domain
integrity constraints (e.g., repairs with the same customer names
and models took place in the same city, or a text span can refer to a
person or a city, but not both).
In this paper we provide a solution to answer OLAP aggrega-

tion queries over imprecise data, in the presence of such domain
constraints. We first describe a relatively simple yet powerful con-
straint language, and define what it means to take into account such
constraints in query answering. Next, we prove that OLAP queries
can be answered efficiently given a database D∗ of fact marginals.
We then exploit the regularities in the constraint space (captured
in a constraint hypergraph) and the fact space to efficiently con-
struct D*. Extensive experiments over real-world and synthetic
data demonstrate the effectiveness of our approach.

1. INTRODUCTION
OLAP employs a multi-dimensional data model, where each fact

can be viewed as a point in the corresponding multi-dimensional
space. If we relax the assumption that all facts are points, and al-
low some facts to be regions in the above space, we must handle
the resulting imprecision when answering queries. For example,
we can denote that a particular auto repair took place in the state
of Wisconsin, without specifying a city. Answering queries over
such imprecise information is widely recognized as important and
has received increasing attention. In particular, we have recently
developed an efficient solution [10, 9], which provides a possible-
world interpretation for imprecise facts, then computes the result of
an aggregation query Q to be the expected value of evaluating Q
over all possible worlds.
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FactID Loc Auto Name Cost
p1 WI F150 John Smith 100
p2 WI F150 John Smith 250
p3 Madison Honda Dells 130
p4 Dells Honda Madison 130

Table 1: A sample automotive repair database.

A key assumption underlying the above solution is that the im-
precise facts are independent [10]. This assumption is often vio-
lated in practice, as the following example demonstrates:

EXAMPLE 1. Consider the automotive repair database in Ta-
ble 1, where each tuple describes a repair. Here, both facts p1 and
p2 are imprecise, because they do not specify the particular city
in Wisconsin (e.g., Madison or Dells) where the repair took place.
Now assume we know that all repairs with the same customer name
and the same auto model took place in the same city. Then facts p1

and p2 are not independent. For instance, if in a particular world
the repair of fact p1 took place in Madison, then so did the repair
of p2.
As another example, suppose the facts of Table 1 are extracted

from text documents that describe repairs. In particular, consider
the text snippet “Madison, Honda, broken ex. pipe, Dells & I-90,
towed 25 miles, $130”. A reasonable person-name extractor may
extract “Madison” and “Dells” as person names, and similarly a
reasonable location extractor may extract the same “Madison” and
“Dells” as location names. This results in the two facts p3 and p4

in Table 1, which reflect different interpretations of “Madison” and
“Dells”. However, we know that each text span can have only one
interpretation (e.g., either person name or location, but not both).
Consequently, facts p3 and p4 are not independent. In particular,
if we accept p3 then we must eliminate p4 from the fact database,
and vice versa.

The above examples show that in OLAP over imprecise data, we
often have extra information about which combinations of comple-
tions of facts are possible. This extra information either reflects
the application logics (e.g., repairs with the same customer names
and models took place in the same city), or the logics of the fact-
derivation process (e.g., if facts are extracted from text then a text
span encodes only a single interpretation). A natural way to in-
terpret this information is as constraints over the set of possible
worlds. Then, given a set of such constraints, our problem is to an-
swer OLAP queries over only the subset of the worlds that satisfy
the constraints.
This paper proposes an efficient solution to the above problem.

In what follows, we will first describe our prior framework on
OLAP over imprecise data [10, 9], then the challenges of pushing
constraints into this framework, and our solutions.
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Figure 1: (a) Querying imprecise data in prior work, (b)-(c) exploiting domain constraints for querying imprecise data in this work.

Figure 1.a illustrates our prior framework. LetD be a database of
imprecise facts. A popular semantics [25, 20] interprets D as a set
of possible worlds, such as w1 − w5 as shown in the figure, where
each world is created by selecting a possible completion for each
fact. Now consider an aggregation query Q overD. The answer to
Q, denoted as Q(D), is taken to be the expected answer of Q over
all possible worlds (w1 − w5 in this case).
Computing Q(D) by evaluating Q over all possible worlds is

practically infeasible. Hence, the work [10] proposes an efficient
solution to this problem. First, it shows how the set of possi-
ble worlds can be compactly encoded using an extended database
(EDB for short) D′, and how to create D′ from D using an allo-
cation policy (see Figure 1.a). Next, it shows that query Q can be
evaluated quickly in a single scan overD′, and the answer, denoted
Q(D′), is the same as Q(D). This work is followed up in [9] by
developing efficient allocation algorithms to compute D′ fromD.
In this paper, we significantly extend the above framework (see

Figures 1.b-c). We begin by defining a language to represent do-
main constraints. Next, we modify the query-answering semantics
to exploit such constraints. Consider again the five worlds w1−w5

that result from the database D of imprecise facts. Given a set of
constraints C, we retain only the valid worlds, i.e., those that sat-
isfy C (which are w1, w3, w4 in this case, see Figure 1.b). Then
we define the answer of Q over the imprecise database D and the
set of constraints C, denoted Q(D, C), to be the expected answer
of Q over the valid worlds (Figure 1.b).
We then develop an efficient way to compute Q(D, C), without

enumerating all valid worlds. This is the central technical challenge
we address in this paper. Clearly, we cannot answer Q over EDB
D′, as in prior work, because that would violate our semantics of
considering only valid worlds. Instead, we prove that if we can con-
struct a marginal database (or MDB for short) D∗, which assigns
to each fact completion its marginal probability in the valid worlds,
then we can answerQ(D, C) efficiently in a single scan over MDB
D∗ (Figure 1.b, the lower half). This result is surprising, because in
many problem settings with domain constraints [20], even the ex-
istence of a MDB D∗ does not help compute exact query answers
(and often approximate solutions are proposed instead [20]). We
show that for the algebraic aggregation operators [17] commonly
used in OLAP queries (e.g., Sum, Count, approximate Average), it
is possible to compute an exact answer using the MDB.
We then turn our attention to the problem of efficiently construct-

ingMDBD∗, given an EDBD′ and a set of constraintsC. To solve
this problem, first we create a hypergraph G that captures the reg-
ularities in the constraint space (see Figure 1.c). Next, we exploit
these regularities, and use G to decompose D′ into independent
connected components (e.g., CC1 −CC3, as shown in Figure 1.c).
To ensure efficient decomposition, we store both the EDB D′ and
the constraint hypergraph G in a RDBMS and execute the decom-
position using SQL queries. We next process each component in

isolation to generate a portion of the MDB databaseD∗, then com-
bine these portions to obtain the finalD∗.
Processing each component itself is a difficult challenge. Even

though each component CCi tends to be far smaller than the orig-
inal EDB D′, it is still often large enough to make exhaustive pro-
cessing impractical. To address this problem, we exploit regulari-
ties in both the constraints and fact space, to fully complete certain
imprecise facts, which are “bottleneck” variables in the component.
This breaks the component into smaller independent “chunks” that
now can be easily processed in isolation.
To summarize, this paper makes the following contributions:
• We describe a simple yet powerful language to model do-
main constraints, then define the semantics of query answer-
ing in OLAP over imprecise data in the presence of such con-
straints.

• In the above setting, we prove that a database of fact marginals
can be used to answer OLAP aggregation queries efficiently.

• We develop an algorithm to decompose an imprecise database
into independent components, exploiting regularities in the
constraint space, as well as relational technologies.

• We develop an algorithm that can process each components
efficiently, by exploiting regularities in both the constraints
and the fact space. Taken together, our algorithms enable us
to quickly compute the database of fact marginals.

• We present extensive experiments that demonstrate that our
algorithms scale up to large data sets and constraints of in-
creasing complexity.

The rest of the paper is as follows. Section 2 discusses related
work. Section 3 provides background and introduces our notation.
Sections 4-6 describe our solution. Section 7 presents experimental
results, and Section 8 concludes.

2. RELATED WORK
This is the first work we are aware of that addresses the issues of

performing OLAP aggregation over imprecise and uncertain data
with constraints. There are vast bodies of work addressing sepa-
rately issues for OLAP aggregation, querying imprecise data, and
answering queries with constraints which we will not attempt to
summarize here.
Overviews of several different topics in OLAP aggregation can

be found in [11, 28]. Although constraints have been considered in
the OLAP setting, these constraints either addressed data modeling
[22, 21, 27] or were constraints over query results over precise data
[29]. The work on constraints in OLAP has not considered impre-
cise data. Although there has been much work addressing uncer-
tain and imprecise data [23, 31, 34, 33, 6, 4, 18, 13, 30], this work
has not addressed answering OLAP aggregation queries over such
data. The very recent work by [4] presents an approach for effi-
ciently representing and querying arbitrary sets of possible worlds;
however, they do not consider aggregation queries.
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Figure 2: A multi-dimensional view of the facts inD (Table 2).

FactID Loc Auto Cost
p1 Madison F150 100
p2 Madison S10 150
p3 Dells F150 100
p4 WI F150 175
p5 WI F150 50
p6 Madison Truck 100

Table 2: A sample fact tableD.

[10] was the first work we are aware of to address semantic issues
specific to OLAP aggregation queries over imprecise and uncer-
tain data, namely maintaining consistency between sets of related
queries (e.g, roll-up and drill-down). The related work sections
in [10, 9] provides further details how that work (and this current
work as well) is distinct from prior related work involving aggrega-
tion queries over imprecise data. However, neither [10, 9] nor any
of the related work described in these consider OLAP aggregation
over imprecise data in the presence of constraints.
While there has been considerable work on querying inconsistent

databases [5, 3, 12, 4, 7, 8, 1, 16, 26], there has been relatively lit-
tle work addressing aggregation queries over such data. We make
two significant contributions relative to existing work. First, the
constraint language we consider is significantly more general than
ones considered in most prior work. Typically, these prior works
only address constraints in the form of functional dependencies. A
notable exception is [16], which considers a language including ag-
gregate constraints which does not address imprecise data. Second,
we consider OLAP aggregation queries, while prior work in [5, 26]
only addresses scalar aggregation queries and do not address the
additional consistency requirements present in the OLAP setting
[10].

3. PRELIMINARIES
We now review the framework in [10] for OLAP over imprecise

and uncertain data. Later we significantly extend this framework to
handle domain integrity constraints.

Data Representation: Standard OLAP considers two types of at-
tributes: dimensions (e.g., location) and measures (e.g., cost). In
prior work [10] we have extended this model to support impreci-
sion in dimension values. Specifically, each dimension in standard
OLAP takes value from a base domainB (e.g., location takes value
from B = {Madison,Dells}). In the extended model, each di-
mension takes value from an hierarchical domain H over B.
DEFINITION 1 (HIERARCHICAL DOMAINS). A hierarchical do-

main H over base domain B is a power set of B such that (a)
∅ /∈ H , (b) H contains every singleton set (i.e., corresponds to
some element of B), and (c) the values of H either subsumes one
another or are disjoint, i.e., ∀h1, h2 ∈ H , h1 ⊇ h2 or h1∩h2 = ∅.
Non-singleton elements of H are called imprecise values.

We then define a fact table schema to be of the form

FactID Loc Auto Cost pc,r

p1 Madison F150 100 1
p2 Madison S10 150 1
p3 Dells F150 100 1
p4 Madison F150 175 0.6
p4 Dells F150 175 0.4
p5 Madison F150 50 0.7
p5 Dells F150 50 0.3
p6 Madison F150 100 0.5
p6 Madison S10 100 0.5

Table 3: An EDBD′ for the database of facts D in Table 2.

〈A1, . . . , Ak, M1, . . . , Mn〉, where each dimension attribute Ai

has an associated domain dom(Ai) that is imprecise, and each
measure attribute Mj has an associated domain dom(Mj) that is
numeric. Next, we define

DEFINITION 2 (FACT AND FACT TABLE). A fact table D is
a collection of facts of the form 〈a1, . . . , ak,m1, . . . , mn〉 where
ai ∈ dom(Ai) and mj ∈ dom(Mj). In particular, if dom(Ai)
is hierarchical, ai can be any leaf or non-leaf node in dom(Ai).
We will use the terms “fact table” and “imprecise database” inter-
changeably, when there is no ambiguity.

Intuitively, such a fact r = 〈a1, . . . , ak, m1, . . . , mn〉 maps into a
region reg(r) in the k-dimensional space S formed by the dimen-
sion attributes A1, . . . , Ak. To formalize this notion, we defined a
cell in S to be a vector 〈c1, . . . , ck〉 such that every ci is an ele-
ment of the base domain of Ai. The region reg(r) is then the set
of cells {〈c1, . . . , ck〉 | ci ∈ ai, i ∈ 1 . . . k}. Each cell in reg(r)
represents a possible completion of a fact r, formed by replacing
all non-leaf node ai with a leaf node from the subtree rooted at ai.

EXAMPLE 2. Table 2 shows a fact table with two dimension
attributes: Loc and Auto, and one measure attribute: Cost. The
dimensions take values from their associated hierarchical domains.
Figure 2 shows the structure of these domains and the regions of the
facts.
Facts p1 − p3 are precise in that their dimension attributes take

leaf-node values. Therefore they map to individual cells in Fig-
ure 2. Facts p4 − p6 on the other hand are imprecise and map
to the appropriate two-dimensional regions. For example, fact r6
is imprecise because dimension Auto takes the non-leaf node value
Truck. The region of r6 consists of cells (Madison,F150) and
(Madison,S10), which represent possible claims of p6.

Possible-World Semantics for Querying: Next, we defined a
possible-world semantics for imprecise facts as follows. Let D be
a database of facts. As discussed earlier, completing an imprecise
fact r ∈ D means “assigning” r to a cell c ∈ reg(r), thereby elim-
inating the imprecision of r. By completing all imprecise facts in
D, we obtain a databaseW that contains only precise facts. We call
W a possible world forD, and the multiple choices for completion
(for each fact) clearly lead to a set of possible worlds forD.
To formalize the above process, in [10] we first defined the no-

tion of allocation: given a fact r, the allocation of r to a cell c ∈
reg(r) is a non-negative quantity pc,r, called allocation weight,
which denotes the weight of completing r to cell c, such thatP

c∈reg(r) pc,r = 1.
Next, we defined an allocation policy to be a procedure that in-

puts a fact table D and outputs a table D′ that consists of the allo-
cations of all facts inD. We now can define



DEFINITION 3 (CLAIM AND EXTENDED DATABASE EDB).
Let D be a fact table. For each fact r ∈ D, an allocation pol-
icy creates a set of tuples {〈id(r), c, pc,r〉|c ∈ reg(r), pc,r >
0,

P
pc,r = 1, where id(r) is the id of r. Observe that each precise

fact has a single allocation of 1 for the cell to which it maps. We
call each such tuple a claim, and the collections of all such claims
an extended database D′, or EDB for short.

Intuitively, each claim for an imprecise fact r corresponds to a
possible completion of r. In this work, we use the terms completion
and claim interchangeably. In [10, 9] we introduced several impor-
tant allocation policies, and showed how to efficiently execute them
over a fact tableD.
Now if we select from the EDB D′ a set of claims that corre-

spond to one claim per fact, then we obtain a possible worldW for
D. Furthermore, we compute the probability of the worldW to be
the product of the allocation weights of all selected claim tuples.
(See [10] for a motivation of this procedure.)

EXAMPLE 3. Table 3 shows a possible EDBD′ for the database
of factsD in Table 2. Here, attribute Loc=WI of fact p4 can com-
plete to either Mad or Dells, thus creating the two claims with id
p4 in the table. These completions have probabilities 0.6 and 0.4,
respectively (see column pc,r of the table). Suppose we select the
very first completion for each of the facts p1 − p6. Then we obtain
a world W with probability 1 · 1 · 0.8 · 0.6 · 0.7 · 0.5 = 0.168.

Thus, given any database of fact D and an allocation policy A, the
resulting EDBD′ conceptually defines a set of all possible worlds
W1, . . . , Wm, together with probabilities p1, . . . , pm, respectively.
We then defined the result of an OLAP query Q over D to be the
expected value ofQ over the worldsW1, . . . , Wm. For instance, if
Q is Sum and its answers forW1, . . . , Wm are v1, . . . , vm, respec-
tively, then its answer forD is

Pm
i=1 pi ∗ vi.

In [10] we then demonstrated that the answer computed using the
above possible-world semantics have several desirable properties
(e.g., consistency and faithfulness). Finally, we showed how to
compute such an answer efficiently, via a single scan of the EDB
D′ (thus avoiding the expensive process of enumerating all possible
worlds). See [10] for more details.

4. CONSTRAINT LANGUAGE
We now describe a relatively simple yet powerful language to

specify domain constraints over the imprecise data. Sections 5-6
show how to execute OLAP queries in the presence of such con-
straints.

4.1 Syntax
We begin by defining the notion of atom, which we then use later

to define constraints:

DEFINITION 4 (ATOMS). Let D be a fact table (see Defini-
tion 2), an atom is of the form [r.A θ c] or [r.A θ r′.A] or exist(r)
where:

• r, r′ are either variables that bind to factIDs inD or specific
factIDs themselves, and r.A is the value of (dimension or
measure) attribute A of fact r;

• θ ∈ {=,≤,≥, <, >} is a comparison operator over the ap-
propriate domain;

• c is a constant from dom(A); and
• exist(r) (¬exist(r)) is a predicate that holds if fact r exists
(cannot exist).

Note that in the above definition, constant c is from dom(A), and
hence can be either precise (e.g., Madison) or imprecise (e.g.,
WI). The operators in θ can be the domain-specific version of the
comparison operators listed. For example, for dimensions extracted
from text “=” may be the implemented as a string comparison rou-
tine. The only requirement placed on θ is that each atom must
evaluate to logical true or false. We now can define constraints as
follows:

DEFINITION 5 (CONSTRAINTS). A constraint is an implica-
tion of the formΦ1 ⇒ Φ2, where Φ1, Φ2 are conjunctions of atoms
(i.e., ∧i atomi).

EXAMPLE 4. As an example, using the above language, we can
write the first constraint introduced in Example 1, “repairs with the
same customer names and models took place in the same city”, as
follows:

(r.Name = r′.Name)∧ (r.Auto = r′.Auto)

=⇒ (r.Loc = r′.Loc).

Here r and r′ are two variables that bind to FactIDs in the fact
table D. As another example, we can write the second constraint
in Section 1 “Madison can be either a person name or a city, but
not both, and so is the case with Dells” as follows:

(p3.Loc = Madison) ⇒ (¬exists(p4))

(p4.Loc = Dells) ⇒ (¬exists(p3)).

Note that here p3 and p4 are not variables, but refer to specific
FactIDs in the fact table D.
As yet another example, for the fact table in Table 2 we can write

the constraint from Example 1, “if repairs p4 and p5 take place in
Mad, then repair p6 refers to a car of model F150 and repair p3

does not exist”:

(p4.Loc = Mad) ∧ (p5.Loc = Mad) ⇒
(p6.T ruck = F150) ∧ (¬exists(p3))

As these examples demonstrate, this constraint language is rela-
tively simple, and yet already allows us to write expressive con-
straints. Our experience with fact extraction in two real-world do-
mains – Web data in the DBLife system of the Cimple project [15]
and emails in the Avatar project [24] – shows that we can use this
language to capture a majority of domain constraints in those do-
mains. In Section 8 we briefly discuss generalizing this language to
more expressive types of constraints (e.g., aggregations over a set
of facts).

4.2 Semantics
Let D be a fact table and C be a set of constraints as defined

earlier. We now describe what it means to answer OLAP queries
over D, given C. Recall from Section 3 that in the case of no
constraint, to answer an OLAP query Q, we

1. create an EDB table D′, whose tuples are claims, from D,
using an allocation policy,

2. select claims fromD′ (one for each fact) to generate multiple
possible worldsW1, . . . , Wm, then compute a probability pi

for each world Wi, and

3. compute the expected answer over all these worlds:
Pm

i=1 pi∗
ans(Q,Wi) and return it as the answer ans(Q) forQ.

To accommodate constraints C, we keep the above multiple-world
semantics, but discard those that do not satisfy C. To do so, we
start with the following notion:



DEFINITION 6 (VALID WORLD). Let W be a world created
by selecting claims, one for each fact, from an EDB table, as de-
scribed earlier, and let C be a set of constraints. Then each con-
straint ci ∈ C can be evaluated to TRUE or FALSE on W . In
particular, if ci contains variables, then it evaluates to TRUE iff all
possible bindings of the variables to factIDs in W make ci evalu-
ate to TRUE. We say W is valid (wrt C), or W satisfies C, iff all
constraints in C evaluates to TRUE on W .

EXAMPLE 5. Consider a simple example with two facts r1 =
(WI,F150) and r2 = (WI,F150), and the single constraint that “two
facts with the same model must have the same location”. There
are 4 possible worlds, since both r1 and r2 have two possible com-
pletion claims: {(Mad,F150),(Dells,F150)}. The only valid worlds
are where the same claim is selected for both r1 and r2. For exam-
ple, if (Mad,F150) is selected for r1 in world W , then (Mad,F150)
must be selected for r2 for W to be valid.

Suppose after discarding invalid worlds fromW1, . . . , Wm, we ob-
tain the valid worldsWi1, . . . , Wik. Recall that they have been as-
signed probabilities pi1, . . . , pik, which are now incorrect because
most likely these probabilities sum to less than 1. In the absence of
any additional information, a common solution for revising these
probabilities is to scale them proportionally, so that they sum to 1
[20].We adopt this solution for our context. We now can define our
query semantics as follows:

DEFINITION 7 (CONSTRAINT-BASED QUERY SEMANTICS).
Given a fact table D and a set of constraints C, let Wi1, . . . , Wik

be the valid worlds (wrt C) with revised probabilities pi1, . . . , pik,
as described earlier. Then for any OLAP query Q, we return the
expected answer over the valid worlds

Pk
j=1 pij ∗ans(Q, Wij) as

the answer for Q over D in the presence of C, denoted Q(D, C).

5. QUERY ANSWERINGWITHMDB
We now describe our solution for answering OLAP queries over

an imprecise database D, given a set of constraints C.
We begin by defining the types of queries we consider. While

the OLAP paradigm offers a rich array of query operators, the basic
query consists of selecting a value from dom(Ai) for each dimen-
sion i, and applying an aggregation operator to a particular measure
attribute.

DEFINITION 8 (BASIC QUERY AND QUERY REGION). [10]
For each dimension i, define a query domain, denoted qdom(Ai),
to be some non-empty subset of dom(Ai). A query Q over a fact
table D with schema 〈A1, . . . , Ak,M1, . . . , Mn〉 has the form
Q(a1, . . . , ak; Mj ,A), where (a) each ai ∈ qdom(Ai) and to-
gether a1, . . . , ak describe the k-dimensional region being queried,
denoted reg(Q), (b) Mj is a measure of interest, and (c) A is an
aggregation function.

In this paper, as in [10], we consider the common aggregation
functions Sum, Count, and Average. All general queries (e.g., roll-
up, slice, drill-down, pivot, etc.) can be described in terms of re-
peated applications of basic queries. Hence, we focus on answering
basic queries in the presence of constraints.
EXAMPLE 6. Figure 3.a shows a database D of four facts and

a query Q = “What is the Sum of Sales for Madison?” overD. For
query Q, A1 is Model, with value ALL (i.e., the one that contains
all singleton values in dom(A1)),A2 is Loc, with value Mad,Mj

is Sales, andA is Sum. Figure 3.b shows a multi-dimensional view
of D. reg(Q) is the dotted region in this view.

Recall from Definition 7 that answering a (basic) query Q reduces
to evaluating it over all valid worlds. This basic approach is clearly
impractical. Hence we seek a more efficient solution. In the rest of
this section we first define the notion of a marginal database MDB
D∗, then prove that we can answer Q efficiently using D∗. Later
in Section 6 we show how to efficiently construct D∗.

DEFINITION 9 (MARGINAL DATABASE). LetD be an impre-
cise database and D′ be an EDB obtained from D via some allo-
cation policy. Let C be a set of constraints, andW be the set of all
valid worlds (i.e., those that are derived fromD′ and satisfy C, see
Section 4).
Recall that each claim t inD′ consists of a precise fact ft and an

allocation weight wt. Let mt be the total probability of all words
in W where ft is true. That is, mt =

P
W∈W p(W ), where ft is

true in W and p(W ) is the probability of W . Then we refer to mt

as the marginal probability of ft, and refer to the pair (ft, mt) as
a marginal tuple. We refer to the set of all marginal tuples as the
marginal database (MDB for short) D∗.

EXAMPLE 7. Continuing with Example 6, Figure 3.c shows an
EDB D′, obtained via an allocation policy, and a set C of just
one constraint, “two facts with the same model must have the same
location”, over D. From D′ and C we can compute the MDB D∗
in Figure 3.d.

It is important to note that each tuple in D∗ has a corresponding
tuple in D′. Furthermore, D∗ depends only on D, a particular
allocation policy, and a set of constraints C. It does not depend on
Q. Hence, once constructed,D∗ can be used to answer all queries.
Specifically, if Q is Sum, then we can compute Q(D∗) to be

the weighted sum over all cells of reg(Q). Formally, Q(D∗) =P
ft∈reg(Q) Q(ft) · mt, where (ft, mt) ranges over all tuples in

D∗, andQ(ft) is the value ofMj , the measure of interest ofQ (see
Definition 8).

EXAMPLE 8. The answer for query Q in Figure 3.a is 1*0.78
+ 4*0.78 + 3*0.72 + 2*0.72 = 7.5

We can compute Q(D∗) for Count and Approximate Average (see
[10] for details) in an analogous fashion. Overall, Q(D∗) can be
computed via a single scan over D∗. However, we note that many
existing optimizations for evaluating OLAP queries over a fact ta-
ble (e.g., materialized views and indexes) could be used to speed
up query processing afterD∗ has been materialized.
We now prove that Q(D∗) is the same as Q(D, C) in Defini-

tion 7. This result is important because it suggests that we can fo-
cus our effort on constructing MDBD∗, which we do in Section 6.
For space reasons, we will state and prove the result for Sum only,
though the result and proof for Count and Approximate Average
are similar.

PROPOSITION 1. Let C be a set of constraints, and Q(D, C)
be the answer to Q over an imprecise database D (Definition 7).
Let D∗ be an MDB obtained from D and C. Suppose Q is a Sum
query. Then Q(D, C) = Q(D∗).

PROOF. From Definition 7, we have

Q(D, C) =
X

i:Wi valid

pi ∗ Q(Wi) (1)

Let theDj , j = 1, . . . , k be an arbitrary k-partitioning of the facts.
We refer to the contents of the partition for worldWi asDj,i. Then,



Q = Sum of Sales 
for Mad

FactID Model Loc Sales

r1 Cam WI 1
r2 Cam WI 4

r3 Civ WI 3

r4 Civ WI 2

(a)

Set of Constraints:         

IF (r.Model = r’.Model) THEN (r.Loc = r’.Loc)

r1
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r3
r4

Mad Dells
WI

C
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(b)

Loc

Model
W1

EDB D’

ID FactID Model Loc Sales pc,r
p1 r1 Cam Mad 1 0.7

p2 r1 Cam Dells 1 0.3

p3 r2 Cam Mad 4 0.6

p4 r2 Cam Dells 4 0.4

p5 r3 Civ Mad 3 0.5

p6 r3 Civ Dells 3 0.5

p7 r4 Civ Mad 2 0.1

P8 r4 Civ Dells 2 0.9

MDB D*

ID FactID Model Loc Sales mc,r

p1 r1 Cam Mad 1 .78

p2 r1 Cam Dells 1 .22

p3 r2 Cam Mad 4 .78

p4 r2 Cam Dells 4 .22

p5 r3 Civ Mad 3 .72

p6 r3 Civ Dells 3 .28

p7 r4 Civ Mad 2 .72

P8 r4 Civ Dells 2 .28

(c)

r1
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r3
r4

W2

W3 W4
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r4

r1
r2

r3
r4

r1
r2

r3
r4

(e)(d)

Figure 3: An example to illustrate query answering with MDBD∗.

from the distributivity of Sum, we obtain

Q(D, C) =
X

i:Wi valid

pi∗(
X

j

Q(Dj,i)) =
X

jk
1

X

i:Wi valid

(pi∗Q(Dj,i))

(2)
where Q(Dj,i) is the result for Q on the facts in partition Dj,i

for world Wi. Let Yi,r,Q be a variable that takes value 1 if fact
r completes to a cell c ∈ reg(Q) in the valid world Wi, and 0
otherwise. Let vr be the measure value for fact r. Then we have

Q(D, C) =
X

jk
1

X

i:Wi valid

pi ∗ (
X

r∈Dj,i

vr ∗ Yi,r,Q) (3)

By pulling vr out, we obtain

Q(D, C) =
X

jk
1

X

r∈Dj,i

vr ∗ (
X

i:Wi valid

pi ∗ Yi,r,Q) (4)

=
X

r∈D

vr ∗ (
X

c:c∈reg(Q)

mc,r) = Q(D∗). (5)

EXAMPLE 9. Continuing with Example 7, given the single con-
straint in Figure 3, only four out of 16 possible worlds satisfy the
constraints. Figure 3.e. shows these four worlds. Here each dotted
box denotes the query region reg(Q). Recall that the probabilities
of the valid worlds are computed by normalizing their “old” prob-
abilities. For example, the “old” probability p1 of worldW1 is (0.7
* 0.6 * .0.5 * 0.1) = 0.021 Similarly, p2 = 0.189, p3 = 0.006, and
p4 = 0.054.
So the revised p1, denoted pN

1 is
pN
1 = p1

p1+p2+p3+p4
= 0.021

0.021+0.189+0.006+0.054 = 0.021
0.27 = 0.08.

Similarly, pN
2 = 0.7, pN

3 = 0.02, pN
4 = 0.2.

W.l.o.g., assume we create two partitions D1 = {r1, r2} and
D2 = {r3, r4}. Thus, i = 4 worlds, and j = 2 partitions for the ex-
ample. To visualize the summations in the proof, consider Figure 4.
The summation in Line 2 of the proof can be thought of as evaluat-
ing the Sum query separately over each of these 8 “datasets”. In
Line 2, we process all partitions for each world together (i.e. pro-
cess these “datasets” column-wise). In Line 3, we now process the
same partition in each possible world together (i.e., process these
datasets row-wise). Now, we describe how each partition is pro-
cessed (Lines 4 and 5). The value for Q on partition Di can be
considered the Sum of the Sales measure for facts which complete
to a cell c ∈ reg(Q). For example, consider fact r1. The only cell
r1 completes to inside reg(Q) is (Cam, Mad). Thus, Yr1,i,Q = 1
for i= 1,2 (i.e., worlds W1andW2) with normalized weights 0.08
and 0.7 respectively; and Yr1,i,Q = 0 for i = 3, 4. Thus, fact r1

contributes to the answer forQ in 0.78 of the possible worlds, (i.e.,P
i pN

i ∗ Yr,i,Q = 0.08(1) + 0.7(1) + 0.02(0) + 0.2(0) = 0.78.

r1
r2

r1
r2

r3
r4

r3
r4

i=1 i=2

r1
r2

r1
r2

r3
r4

r3
r4

i=3 i=4

j=2

j=1

Figure 4: Visualization of Proof Example

This is the sum of the mc,r values for the claims in MDBD∗ for
fact r1 where r1 completes to a cell c ∈ reg(Q). This can also be
interpreted as the expected contribution of r1 to the answer to Q is
0.78∗sales(r1) = 0.78∗1 = 0.78, which is themc,r for r1 inD∗.

6. MARGINALIZATION ALGORITHM
We have shown that OLAP queries can be answered quickly,

given a MDB D∗. We now show how to construct MDB D∗ from
an EDB D′ and a set of constraints C. Definition 9 immediately
suggests a naive algorithm to compute D∗: enumerate all possi-
ble worlds wi (i.e., by selecting one claim per fact from D′), re-
tain only those that are valid (with respect to C), then compute the
marginal mc,r for each claim tuple c as the probability portion of
valid worlds where claim c is selected for r.
This algorithm is clearly infeasible in practice, due to the expo-

nential number of possible worlds (in the size ofD). Let |D| be the
size of D, and |c| be the maximal number of claims in D′ for any
fact. Then, the Naive Algorithm has complexity O(|c||D|).
To address this problem, our solution is to (a) exploit the regu-

larities in the constraint space to decompose D′ into independent
connected components, (b) exploit the regularities in the fact space
to process each component in isolation, yielding a portion of the
MDB D∗, then (c) combining these portions to obtain the entire
MDB D∗. To further speed up these steps, we employ a RDBMS
whenever possible. The rest of this section elaborates on the above
steps.
6.1 Decomposing D′ into Components
We first introduce the notion of constraint hypergraph, which we

use to capture the regularities in the constraint space. We then show
how to use this hypergraph to decompose D′ into connected com-
ponents.

6.1.1 Constraint Hypergraph
We begin by establishing several notions.
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Figure 5: Hypergraph for Example in Figure 3

DEFINITION 10 (CONFIGURATION). Let S = {r1, . . . , rj}
be a subset of j facts in D. Let claims(r) be the set of pos-
sible claims for r in D′. We refer to an element (c1, . . . , cj) ∈
claims(r1)×· · ·×claims(rj) as configurationCS for {r1, . . . , rj}.

DEFINITION 11 (VALID CONFIGURATION). Configuration
CS = (c1, . . . , cj) for fact set S = {r1, . . . , rj} violates a con-
straint c if there exists a subset of CS violating the conjunction of
atoms in c. Otherwise, configuration CS satisfies constraint c.

CS is a valid configuration if all constraints in constraint set C
are satisfied; otherwise, CS is invalid. The set of all valid configu-
rations for S is denoted CS . A configuration for all facts in D is a
possible world, and a valid configuration for D is a valid possible
world.

By this definition, configuration CS implicitly satisfies a con-
straint c which may not be directly applicable to CS (e.g., c has
more than j variables or c mentions factIDs for facts not in S).

DEFINITION 12 (CONSTRAINT HYPERGRAPH). We define the
constraint hypergraph G = (V, H) as follows: For each fact r ∈
D, create a corresponding node vr ∈ V . Let S = {r1, . . . , rk} ∈
D be a fact set such that there exists a configuration (c1, . . . , ck)
of S violating a constraint in C and there exists no subset of S
which does. For each such S, introduce an (undirected) hyperedge
(vr1 , . . . , vrk) ∈ H .

EXAMPLE 10. Consider the example fact tableD in Figure 3.a,
and a set C of just one constraint “two facts with the same model
must have the same location”. The resulting hypergraph G =
(V, H) for D, shown in Figure 5, has a node in V for each of
the 4 facts in D. H has two hyperedges {r1,r2}, {r3,r4}. For ex-
ample, the edge {r1,r2} is added toH because the possible config-
uration [(Cam,Mad),(Cam,Dells)] for r1 and r2 violates the con-
straint. Likewise, the edge {r3,r4} is present since configuration
[(Civ,Mad),(Civ,Dells)] for r3 and r4 violates the constraint.

We designate the node in V corresponding to fact r as vr . Ob-
serve that a node is added to the constraint graph for each fact in
D, not each claim tuple in the EDB D′. We now describe how to
use the constraint graph G to partition D′ into sets of claim tuples
which can be processed separately to assign the marginals.

DEFINITION 13 (INDEPENDENT, DEPENDENT FACTS). Consider
facts r, r′ ∈ D, with possible claims claims(r), claims(r′) re-
spectively. Let Wc′,r′ be the set of valid possible worlds where
claim c′ is selected for fact r′. We define frac(c, r) as the proba-
bility portion of all valid possible worlds where claim c is selected
for r, and frac(c, r|Wc′,r′) as the probability portion of Wc′,r′

where claim c is selected for fact r.
If frac(c, r) = frac(c, r|Wc′,r′) for each c′ ∈ claims(r′), we

refer to r and r′ as independent. Otherwise, r and r′ are depen-
dent.

EXAMPLE 11. Continuing with Example 10, for the given con-
straint in Figure 3 the four valid possible worlds are shown in Fig-
ure 3.e, with each valid world having the following “revised” prob-
abilities, respectively: pN

1 = 0.08, pN
2 = 0.7, pN

3 = 0.02, pN
4 = 0.2.

(see Example 9).
Consider facts r1 and r2. The weighted fraction of valid worlds

where claim c1 = (Cam,Mad) is selected for r1 is 0.78, (i.e. frac(r1,c1)
= 0.78), since claim (Cam,Mad) is selected for r1 in worlds w1

and w2, and pN
1 + pN

2 = 0.08 + 0.7 = 0.78. Fact r2 has 2 possible
claims, (Cam,Mad) and (Cam,Dells), with (Cam,Dells) selected for
r2 in worlds w3 and w4. However, in neither w3 nor w4 is claim
c1 selected for r1 (i.e., frac(c1, r1|W(Cam,Dells),r2) = 0). Since
frac(c1, r1|W(Cam,Dells),r2) /= frac(c1, r1), r1 and r2 are de-
pendent.
In contrast, consider facts r1 and r3, where r3 has two possible

claims, (Civ,Mad) and (Civ,Dells). It is easily verified from Fig-
ure 3.e that frac(c1, r1) = frac(c1, r1|W(Civ,Mad),r3 ) =
frac(c1, r1|W(Civ,Dells),r3)= 0.78, and that a similar result holds
for the other possible claims of fact r1. Thus, facts r1 and r3 are
independent.
Intuitively, claims in MDBD∗ for fact set S can have marginals

assigned separately of other facts inD−S if each fact in S is inde-
pendent of all facts inD−S. The next theorem gives the necessary
condition (in terms of G) for two facts r, r′ to be dependent.

THEOREM 1. Consider facts r, r′ ∈ D. The existence of a path
between r, r′ in constraint hypergraph G is a necessary condition
for r, r′ to be dependent.

PROOF. Assume r, r′ are dependent. Then, there exists a mini-
mal set of facts S ⊆ D such that 1) r, r′ ∈ S and 2) at least one
configuration CS of S is invalid. If no such S exists, every possible
world is valid and r, r′ would be independent (i.e., the case when
no constraints are present).
For S, let S1, S2, . . . , Sk be subsets of S such that 1) ∪k

i=1Si =
S with r ∈ S1 and r′ ∈ Sk and 2) for each Si, at least one config-
uration CSi of Si is invalid, but no proper subset of Si has such a
configuration. Then, by the construction of G (see Definition 12),
each Si corresponds to a hyperedge.
We will now show that r, r′ being dependent implies these edges

form a path between r, r′ inG. Proof by contradiction. Assume no
path exists between r, r′ using the edges corresponding toS1, . . . , Sk.
Then these edges can be partitioned into two sets S1, . . . , Sj and
Sj+1, . . . , Sk such that no edge in the first set overlaps an edge
in the second. This partitioning of edges corresponds to a parti-
tioning of the facts in S into two sets S′, S′′, s.t. r ∈ S′ and
r′ ∈ S′′. Then, from the construction of the hypergraph, the set of
valid configurations for S CS = CS′ × CS′′ . This implies that all
facts in S′ are independent of each fact in S′′, since the selection
of a configuration for S′ does not invalidate any configurations for
S′′. In other words, we can trivially show the condition for inde-
pendence in Definition 13 holds between any pair of facts r, r′ s.t.
r ∈ S′, r′ ∈ S′′.
Since r ∈ S′, r′ ∈ S′′, we have shown r, r′′ independent and our

assumption that r, r′ dependent is contradicted. Thus, S1, . . . , Sk

form a path between r, r′.

EXAMPLE 12. Consider the example fact table in Table 4 with
3 imprecise facts. The multidimensional view of the data is given
in Figure 6a, and the EDB created using allocation (see [10, 9])
is given in Table 5. Set C contains a single constraint “two facts
with the same model have must have the same location”. Thus of
the 2 * 4 * 2 = 16 total possible worlds for this dataset, only the
8 shown in Figure 7 are valid. Fact r1 has two possible claims,



c1 = (Cam,Mad) and c2 = (Civ,Dells). Consider facts r1 and r3,
where fact r3 has two possible claims, (Civ,Mad) and (Civ, Dells).
After enumerating all valid worlds, we obtain frac(c1, r1)= 0.749
, but frac(c1, r1|W(Civ,Mad),r3) = 0.766. Thus, r1 and r3 are
dependent. The hypergraph for G is given in Figure 6b. In the
example, S = {r1, r2, r3}. Notice there are two subsets of S,
S1 = {r1, r2} and S2 = {r2, r3} which are minimal sets of S
which violate the constraint, and each has a corresponding edge in
G. Observe these edges form a path between r1 and r3 in G.

We now modify the above example to obtain a counterexample
showing a path in G between r, r′ is not sufficient for r, r′ to be
dependent.

EXAMPLE 13 (SUFFICIENT COUNTER-EXAMPLE). Wemod-
ify Example 12 by assuming uniform allocation is used to assign
allocation weights (see [10, 9]). Now, all 16 possible worlds have
the same probability 0.0625 and all 8 valid worlds in Figure 7
have the same normalized weight of 0.125. It is easily verified that
frac(c1, r1) = frac(c1, r1|W(Civ,Mad),r3) =
frac(c2, r1)|W(Civ,Dells,r3) = 0.5. Thus, r1 and r3 are inde-
pendent (Definition 13) even though a path exists between them in
G.

FactID Loc Model Sales
p1 WI Cam 1
p2 WI Sedan 2
p3 WI Civ 3

Table 4: Example Dataset for Theorem Proof

FactID Loc Model Sales pc,r

p1 Mad Cam 1 0.8
p1 Dells Cam 1 0.2
p2 Mad Cam 2 0.1
p2 Dells Cam 2 0.2
p2 Mad Civ 2 0.3
p2 Dells Civ 2 0.4
p3 Mad Civ 3 0.3
p3 Dells Civ 3 0.7

Table 5: EDB for Theorem Proof Example

FactID Loc Model Sales pc,r

p1 Mad Cam 1 0.5
p1 Dells Cam 1 0.5
p2 Mad Cam 2 0.25
p2 Dells Cam 2 0.25
p2 Mad Civ 2 0.25
p2 Dells Civ 2 0.25
p3 Mad Civ 3 0.5
p3 Dells Civ 3 0.5

Table 6: EDB with Uniform Allocation for Sufficient Coun-
terexample (Example 13)

COROLLARY 1. Identifying strongly connected components in
constraint graph G is equivalent to partitioning EDB D′ into sets
of claim tuples such that marginals can be assigned to claims in
each set independently of the other sets. The partition D′

i of EDB
D′ corresponding to connected component Gi of G D′

i is trivially
obtained by assigning all claims t ∈ D′ corresponding to vr in Gi

to D′
i.
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Figure 6: Multidimensional view of the data in Table 4
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Figure 7: Valid possible worlds for data in Table 4

6.1.2 Generating Connected Components
Although identifying connected components in a given disk-resident

graph is a well-studied problem [2, 14, 32], there exists no straight-
forward application of these solutions to our problem setting, since
we consider hypergraphs and the constraint hypergraph is not pro-
vided as input (as in the setting existing algorithms consider).
The algorithm we propose, called GenerateComponent, takes

as input a given EDB D′ (as a RDBMS table with the schema
given in Definition 3) and constraints set C, and outputs the hy-
peredges in G. The algorithm generates the conflict hypergraph G
in a “component-wise” fashion, generating all edges for each con-
nected component Gi together. Thus, the connected components
are identified during the hypergraph generation process.
GenerateComponent starts by creating a relational database ta-

ble CompID with schema (factid, cid), which stores the component
identifier cid assigned to fact factid. Initially, all facts are given
a special “unassigned” value. The algorithm continually selects
a node with unassigned cid as a “seed node” vr , and performs a
breath-first enumeration of G from vr until the component con-
taining vr is completely enumerated. The edges in the component
are generated separately for each constraint ci ∈ C and stored in
a separate database table CiEdges (e.g., edges for constraint c1
are stored in table C1Edges, edges for c2 in C2Edges, etc.). The
schema for each CiEdge table is (fid1,. . . ,fidk) for k-constraint ci.
At each step, the algorithm identifies a set of border nodes which
require expansion, and these are stored in the relation activeSet.
Edges are generated only from nodes in activeSet by executing for
each constraint c of the form A ⇒ B a SQL query of the form:
SELECT D1.factid, D1.cid, D2.factid, D2.cid, . . . , Dk.factid, Dk.cid
FROM activeSet AS D1, EDB AS D2, . . . , EDB AS Dk
WHERE [logic for A] AND [¬ logic for B] AND [D2.fid< . . . < Dk.fid]

EXAMPLE 14. The constraint from Example 11 “all facts with
the same location must have the same model” generates the SQL
query:
SELECT D1.factid, D1.cid, D2.factid, D2.cid



FROM activeSet AS D1, EDB AS D2, EDB AS D3
WHERE D2.loc = D3.loc AND D2.model != D3.model AND D2.fid < D3.fid

After all queries are executed, activeSet is set to nodes with unas-
signed cid in the edges created by these queries, and the cid for
the corresponding tuples in CompID are updated to the current
component id. This query is executed until activeSet contains no
additional tuples. At this point, all edges in the component have
been generated. The algorithm repeats this process for a new “seed
node”; if none are available, the algorithm terminates. The com-
plete pseudocode for GenerateComponent is listed in Algorithm 1.

THEOREM 2 (CORRECTNESS). The GenerateComponent Al-
gorithm correctly identifies connected components in the constraint
hypergraph G.

PROOF. The GenerateComponents Algorithm performs a breath-
first generation of G from a given node. For the constraint lan-
guage we consider, every iteration of the breadth-first enumeration
will either 1) identify previously unvisited nodes, and add these to
activeTable or 2) activeTable will be empty. In Case 1, the algo-
rithm will continue processing, since activeSet will be updated to
activeTable, and the condition in the while loop in Step 11 is sat-
isfied. This is correct behavior, since additional nodes and edges
remain in the component. In Case 2, the current component has
been completely identified, and the algorithm continues processing
the next component. When the while condition in Step 6 is satis-
fied, all facts have been assigned to a component, and the algorithm
correctly terminates.

Algorithm 1 GenerateComponent Algorithm
1: // initialize compID; compID stores the component assignment
2: CREATE TABLE compID(factid, cid) AS SELECT DISTINCT factid, -

1 FROM EDB
3: CREATE TABLE activeSet(fid);
4: initialize current component id ccid to 0;
5: // while facts are not assigned to connected components
6: while ( 0< SELECT COUNT (*) FROM CompID C WHERE C.cid == -1)

do
7: // increment the current connected component id
8: ccid← ccid + 1;
9: select fact r not yet assigned to a component (i.e., tuple in compID s.t. com-

pid.cid = -1)
10: initialize activeSet to r
11: while (activeSet has tuples) do
12: // generates table with edges for each constraint ci ∈ C
13: for (each constraint ci ∈ C of form A ⇒ B) do
14: // materialize conflict edges from activeset for ci

15: INSERT INTO TABLE CiEdges
(fid1,cid1,fid2,cid2,. . . ,fidk,cidk)

16: SELECT D1.factid, D1.cid, D2.factid, D2.cid, . . . , Dk.factid, Dk.cid
17: FROM activeSet AS D1, EDB AS D2, . . . , EDB AS Dk
18: WHERE [logic for A] AND [¬ logic for B] AND [D1.fid < D2.fid

< . . . < Dk.fid]
19: // find the set of active nodes
20: CREATE TABLE activeTable AS
21: SELECT fid1 FROM C1Edges WHERE (cid1 == -1) UNION . . .
22: SELECT fidk FROM CkEdges WHERE (cidk == -1)
23: // update the component ids for the activeSet
24: UPDATE CompID SET cid = -1
25: WHERE activeID.fid IN (SELECT * from activeTable)
26: update activeSet to activeTable

6.2 ProcessingComponents toCreatePortions
of MDB D∗

By Corollary 1, each connected component Gi of constraint hy-
pergraph G corresponds to a partition D′

i of EDB D′ such that
claims in D′

i can be assigned marginals by only processing other
claims inD′

i. This section describe the process to assign the marginal

t.mc,r to each claims in each identified component, thus generating
the claims in MDBD∗ corresponding toDi (see Figure 1.c).
The Naive Algorithm and the results in Section 6.1.1 suggest the

following Component-wise Naive Algorithm: For each connected
component Gi = (Vi, Hi) in G, enumerate every possible con-
figuration for facts in imprecise database D corresponding to Vi.
Then, for each claim t in MDB D∗ for a fact in Vi, assign t.mc,r

the weighted portion of valid configurations where claim c is se-
lected for r. The complete MDB D∗ is obtained by concatenating
the portion output for each component.
The complexity of this Component-wise Naive Algorithm isO(N∗

|c|m), where N is the number of components, |c| is the maximal
number of claims in D′ for any fact, and m the maximal num-
ber of imprecise facts in any component. Although this compares
favorably with the complexity for the Naive Algorithm, which was
O(|c||D|), we will present a more efficient algorithm than Component-
wise Naive in this section.

6.2.1 Reducing the Number of Enumerated Configu-
rations

We now present a more efficient algorithm for assigning marginals,
called ProcessComponent, which requires enumerating fewer con-
figurations that Component-wise Naive. Given the subgraph for
Gi = (Vi, Hi) and the corresponding partition of EDBD′

i as input,
ProcessComponent assigns a marginal t.mc,r to each correspond-
ing claim t in D∗. The final Marginal Database D∗ is obtained
by concatenating the outputs of ProcessComponent for eachGi to-
gether.
At the highest level, ProcessComponent proceeds as follows: For

every claim tc,r inD′
i, we maintain a running sum of configuration

weights for valid configurations CVi where claim c is selected for
fact r. The nodes in Vi are partitioned into two sets I, J . Since
the nodes in Vi correspond to facts in the imprecise databaseD, we
refer to Vi as nodes or facts interchangeably. We enumerate each
possible configuration CJ for facts in J , and compute configWeight
as the total weight of all valid configurations of Vi = I ∪ J for
which CJ is a sub-configuration for J (i.e., the claims selected for
facts in J ∈ Vi are given by CJ ).
For each CJ , configWeight is computed as follows: For each fact

rI ∈ I , we find the set of claims
c ∈ claims(rI)|CJ

for rI such that (c, CJ) is a valid configu-
ration for rI ∪ J . Let the sum of allocations for these claims be
sumV alid(rI)|CJ

. configWeight is then given by (
Q

rI∈J pc,rI )∗
(
Q

rI∈I sumV alid(rI)|CJ
), and is added to the running sum for

each claim tuple corresponding to a completion in CVi . The com-
plete pseudocode for ProcessComponent is listed in Algorithm 2.

PROPOSITION 2 (COMPLEXITY). LetN be the number of com-
ponents, |c| the maximal number of claims in D′ for any fact, and
let m be the maximal number of imprecise facts in any component.
Assume we partition these m imprecise facts into two sets I, J of
size mI , mJ s.t. mI is the size of set I , mJ is the size of set J ,
and m = mI + mJ . Then, the complexity of ProcessComponents
is O(N ∗ |c| ∗ mI ∗ |c|mJ )

We observe that the complexity for ProcessComponents is an
improvement over Component-Naive, since ProcessComponent is
guaranteed to have a smaller exponent than Component-Naive (i.e.,
mJ < m). For the practical-sized datasets (up to several million
facts) considered in our experiments (Section 7.1), the complexity
of ProcessComponent was not an issue; how far this extends to
other practical datasets is an intriguing issue for future work. The
reason for this was that the observed value for mJ tended to be
small (i.e., less than 20 for datasets we consider). We note the



Naive Algorithm with complexity O(|c||D|) is clearly intractable
for practical-sized datasets. We now provide intuition for selecting
the “best” set J of imprecise facts in the component.

Algorithm 2 ProcessComponent Algorithm
1: Input: EDB partitionD′

i , Constraint Hypergraph ComponentGi

2: Output: Marginals for MDBD∗i (corresponds toD′
i)

3: I ← BestNonAdjecentSet(Gi)
4: J ← Vi − I
5: create MDB entriesD∗i forD′

i

6: initialize array sumV alid[] // stores
P

I pc,rI where c, CJ valid
7: for (each valid configuration CJ of J) do
8: for (each fact rI ∈ I) do
9: sumV alid[rI ] ← 0
10: for (each c ∈ comp(r)) do
11: if (c ∪ CJ is valid configuration of {rI ∪ J}) then
12: sumV alid[rI ] ← sumV alid[rI ] + pc,r

13: // pc,rJ is allocation for completion used in CJ for rJ

14: configWeight ← (
Q

J pc,rJ ) * (
Q

rI∈I sumV alid[rI ])
15: totalWeight ← totalweight + configWeight
16: // update weights for each fact in J
17: for (each fact rJ ∈ J) do
18: t.mc,r ← t.mc,r + configWeight
19: // update weights for facts in I
20: for (each fact rI ∈ I) do
21: for (each c ∈ comp(r)) do
22: if (c ∪ CJ is valid configuration of {rI ∪ J}) then
23: t.mc,r ← pc,r ∗ configWeight
24: // normalize the weights in t.mc,r

25: for (each t ∈ Mi) do
26: t.mc,r ← t.mc,r

totalW eight

DEFINITION 14 (NON-ADJACENT SET). Consider a connected
component Gi = (Vi, Hi) in G. We refer to I ⊆ Vi as a non-
adjacent set if there does not exist a pair of nodes v, v′ ∈ I , such
that v, v′ share an edge in Hi.

A non-adjacent set is equivalent to the notion of strong indepen-
dent set in a hypergraph G = (V, H), which is defined as a set of
nodes I ⊆ V such that no pair v, v′ ∈ I share a hyperedge in H
[19].

THEOREM 3. Consider connected component Gi = (Vi, Hi)
with corresponding partition D′

i of EDB D′ (i.e., the claims in D′

for facts corresponding to nodes in Vi). Let Vi = I ∪ J . If I is a
non-adjacent set in Gi, then ProcessComponent correctly assigns
marginals to claim tuples in D′

i.

PROOF. First, we prove ProcessComponent finds the correct to-
tal weight for each configuration. Let Vi = I∪J , andCJ be a valid
configuration for facts in J . Let claims(r)|CJ

be the set of claims
for fact r in D′ such that for each c ∈ claims(r)|CJ

, (c, CJ ) is a
valid configuration for r ∪ J . For I = {rI1, rI2, . . . }, let
CI|CJ

∈ claims(rI1)|CJ
× claims(rI2)|CJ

× . . . be a valid con-
figuration for I given configuration CJ for J . Since we assume I
is a non-adjacent set in Gi, no pair of elements in I share a hyper-
edge in Hi. By construction of G, this implies that for each valid
CJ , every element of claims(rI1)CJ × claims(rI2)|CJ

× . . . is
a valid configuration for I given CJ . From the definition of CI|CJ

,
it follows that for each valid CJ , every possible CI|CJ

results in a
valid configuration for facts corresponding to Vi, CJ × CI|CJ

.
From this result and the distributivity of multiplication and ad-

dition, we obtain that ProcessComponent computes the correct to-
tal weight for all valid configurations of Di. That each marginal
t.mc,r is assigned the correct fraction of this total weight follows
from the enumeration order of ProcessComponent.

6.2.2 Identifying Non-adjacent Sets
The result in Theorem 3 holds for any possible non-adjacent set

in Vi. We now propose a cost model for comparing the cost of
marginal assignment by using the various possible non-adjacent
sets in Gi.

DEFINITION 15 (COST MODEL). Let size(vr) be the num-
ber of completions for fact r. Let α be a constant capturing the cost
of enumerating a configuration. Likewise, β is a constant for pro-
cessing a single completion for a single fact. Assume Vi = I ∪ J ,
where I is a non-adjacent set. The cost of processing component
Gi using sets I and J is given by

cost(Gi, I, J) = α(
Y

vJ∈J

size(vJ ))∗max{1, (β(
X

vI∈I

size(vI))}

The second term is required to be at least 1, to handle the special
case when I = ∅.

In practice α > β, since enumerating a configuration involves more
work than processing facts separately. For this case, Component-
Wise Naive Algorithm has the highest possible cost. The low-
est possible cost would be obtained by making the product of the
size(vI ) for vI ∈ I as large as possible.

PROPOSITION 3 (OPTIMAL). 1) For α > β, cost(Gi, I, J)
in our model is optimized when I is assigned the non-adjacent set
with the largest product of sizes (i.e., I s.t.

Q
vI∈I size(vI) is max-

imized). 2) The problem BEST-NON-ADJACENT of finding the I
which minimizes cost(Gi,I,J) is an NP-complete problem.

We can trivially reduce the problem of finding the maximal weighted
strong independent set in an undirected hypergraph, which is NP-
complete [19], to BEST-NON-ADJACENT. The hypergraph given
as input to the weighted strong independent set problem is given as
input to BEST-NON-ADJACENT , along with α = |Vi|, β = 1,
where |Vi| is the size of Vi. The non-adjacent set returned for I
is the maximal weight strong independent set in G. Thus, a poly-
nomial time algorithm cannot exist for BEST-NON-ADJACENT.
[19] presents negative theoretical results on the existence of good
approximation algorithms for the weighted strong independent set
problem and the related problem of hypergraph coloring.
We now present an algorithm MaxNonAdjacent which find a

maximal non-adjacent set in a given hypergraph component Gi =
(Vi, Hi), which is an approximation of the maximal non-adjacent
set optimizing our cost model. Our algorithm is semi-external,
since we are only required to store in memory at all times a bit-
vector status with an entry status(v) for each node v ∈ Vi indi-
cating whether v is in the maximal non-adjacent set or not. Essen-
tially, the MaxNonAdjacent algorithm scans the set of hyperedges
H , and greedily maintains the “best” strong independent set of V
for the edges seen. The pseudocode is listed in Algorithm 3.

Algorithm 3MaxNonAdjacent Algorithm
1: Input: HypergraphGi = (Vi, Hi)
2: Output: Returns approximate maximal weighted non-adjacent set I ⊆ V
3: allocate bit-vector status with a bit for each v ∈ Vi

4: // define NON-ADJACENT = 0, ADJACENT = 1
5: for (each vi ∈ V ) do
6: Initialize status(v) to NON-ADJACENT
7: for (each edge h ∈ H) do
8: select node v ∈ h with highest weight s.t. status(v) = NON-ADJACENT.
9: update status(v’) = ADJACENT for all other nodes v′ ∈ h
10: I ← subset of nodes in V with status NON-ADJACENT
11: return I



6.3 Combining D∗ Portions to Obtain Com-
plete D∗

We use GenerateComponent to identify the portion ofG for each
connected component Gi=(Vi, Hi). After generating the compo-
nent edges, ProcessComponent is called to generate MDB D∗ tu-
ples for facts corresponding to nodes in Vi. After ProcessCompo-
nent completes, the edges Hi may be discarded. After process-
ing all components, all MDB D∗ claim tuples have been gener-
ated. When combining the portions of D∗ together, we handle an
inconsistent set of constraints by insuring all MDB claims have
marginals set to 0, which is correct behavior by Definition 9. Dur-
ing algorithm execution, if ProcessComponent finishes and each
MDB claim for a component is assigned a marginal of 0, then
the constraints are inconsistent. Processing stops immediately, and
marginals of 0 are assigned for all MDB entries.

7. EXPERIMENTAL RESULTS
To empirically evaluate the performance of the proposed algo-

rithms, we conducted experiments using both real and synthetic
data. The experiments were carried out on a machine running Cen-
tOS 4 with a dual Pentium 2.66 GHz processor, 2GB of RAM, and
a single IDE disk. All algorithms were implemented as Java appli-
cations that accessed a local instance of IBM DB2 UDB Version
8.1 using JDBC to interface with the database.
Since existing data warehouses cannot directly support multidi-

mensional imprecise data, obtaining ”real-world” datasets is diffi-
cult. However, we were able to obtain one such real-world dataset
from an anonymous automotive manufacturer. The fact table con-
tains 797,570 facts, of which 557,255 facts were precise and 240,315
were imprecise (i.e., 30% of the total facts are imprecise). There
were 4 dimensions, and the characteristics of each dimension are
listed in Table 7. Two of the dimensions (SR-AREA and BRAND)
have 3 level attributes (including ALL), while the other two (TIME
and LOCATION) have 4.
Each column of Table 7 lists the characteristics of each level at-

tribute for the particular dimension, and ordered from top to bottom
in decreasing granularity. Thus, the bottom attribute is the cell-
level attribute for the dimension. The two numbers next to each
attribute name are, respectively, the number of distinct values the
attribute can take and the percentage of facts that take a value from
that attribute for the particular dimension. For example, for the
SR-AREA dimension, 92% of the facts take a value from leaf-level
Sub-Area attribute, while 8% take a value from the Area attribute.

SR-AREA BRAND TIME LOCATION

ALL(1)(0%) ALL (1)(0%) ALL (1)(0%) ALL (1)(0%)
Area(30)(8%) Make(14)(16%) Quarter(5)(3%) Region(10)(4%)

Sub-Area(694)(92%) Model(203)(84%) Month(15)(9%) State(51)(21%)
Week(59)(88%) City(900)(75%)

Table 7: Dimensions of real dataset

Of the imprecise facts, approximately 67% were imprecise in a
single dimension (160,530 facts), 33% imprecise in 2 dimensions
(79,544 facts), 0.01% imprecise in 3 dimensions (241 facts), and
none were imprecise in all 4 dimensions. For this dataset, no im-
precise fact had the attribute value ALL for any dimension.
For several experiments synthetic data was generated using the

same dimension tables as the real-world data. The process for gen-
erating synthetic data was to create a fact table with a specific num-
ber of precise and imprecise facts by randomly selecting dimension

attribute values from these 4 dimensions. Each tuple was 40 bytes
in size.

7.1 Algorithm Performance
We first evaluate the scalability of the Marginalization Algorithm

along two dimensions. The first dimension is the “complexity” of
constraint set C and the second is the database size. While an
obvious metric exists for the latter, defining an appropriate met-
ric for comparing the “complexity” of different constraint sets on
the same dataset is more involved. For example, an obvious metric
like the number of constraints in C is potentially misleading since
the amount of work required to evaluate a constraint c depends on
how many facts c potentially applies to. For example, evaluating
a single constraint “All facts with the same Model have the same
cost” involves more work than the constraint “All facts in the city
Madison with the same Model have the same cost,” since the latter
only applies to facts with location Madison and only pairs of these
facts must be considered to evaluate the constraint.
Using this intuition, the metric we define to measure the com-

plexity of a constraint is the number of potential bindings the con-
straint has in the fact table. In other words, the number of potential
bindings for constraint c of the form A =⇒ B is the number of
times the conjunct of atoms in A could potentially hold in the fact
table. The potential bindings for a constraint set C is the sum of
potential bindings for each constraint c ∈ C.
For these experiments, we evaluated the scalability of theMarginal-

ization Algorithm with respect to constraint complexity on the fol-
lowing three datasets: 1) the real Automotive dataset, 2) a randomly
selected subset of 200,000 facts from Automotive (selected such
that the 60,000 facts (30%) were imprecise), and 3) a synthetically
generated dataset with 3.2 million total facts (of which 960,000
(30%) were imprecise). For each imprecise database D, we used
Count-based allocation [10] as an off-line process to create the
EDBD′, which was stored in a relational table in the database. For
these experiments, we randomly generated 35 constraint sets with
varying degrees of complexity. Each constraint set was generated
as follows: 1) First, we create a constraint “template” A =⇒ B
by: a) Randomly select 2 of the 4 dimensions,D1, D2 and creating
for A the following conjunct of atoms: “r.D1 = r’.D1 AND r.D2 =
r’.D2”, where r and r’ are variables, and b) randomly selecting one
of the remaining dimensionsD3 to create an atom forB with simi-
lar form. 2) We generate a set of constraints by repeatedly “instan-
tiating” this template k times (for various k between 20 and 100) as
follows: Randomly select values v1, v2 from dom(D1), dom(D2)
respectively, and add to the constraint the condition “where D1 =
v1 AND D2 = v2.” The result of each such “instantiation” is a
constraint, and there are k constraints in the final constraint set.
All reported running times are “wall-clock” times and are warm

numbers. Although the step to generate edges begins processing
a constraint collection cold, the buffer pool is not flushed between
the SQL queries over the EDB table used to generate hyperedges
in the constraint hypergraph (see Section 6.1.2 for details). Thus,
subsequent queries would be warm, since EDB D′ tuples would
still be in the buffer. The database was not tuned in any manner
and no indexes were created over any tables. The buffer pool was
set to 100 MB for all experiments.
The results for the three datasets are shown in Figures 8, with

the figures displaying total running time versus number of possi-
ble bindings for each of the 35 randomly generated constraint sets,
along with the most appropriate “best-fit” curve. A best-fit line
did not appear appropriate, indicating running time increases super-
linearly with respect to the number of bindings. This makes sense
since the ProcessComponent algorithm generates an exponential
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Figure 8: Scalability with respect to constraint complexity
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Figure 9: Decomposition of runtime for algorithm components

number of configurations. This intuition is confirmed by the results
in Figure 9, which shows the decomposition of the running times
for the two main algorithm components, GenerateComponent and
ProcessComponent (see Section 6), along with total running time.
Separate best-fit curves were determined for each algorithm com-
ponent, and indicate that while the running time of GenerateCom-
ponent grows linearly, the running time for ProcessComponent is
indeed exponential. The main take-away from these results is that
while the Marginalization algorithm is theoretically exponential,
the coefficient in the exponential is very small and Marginalization
is indeed practical for real-world databases with millions of facts.
Also, since Marginalization will be performed as an off-line pro-
cess in most settings, this performance is reasonable.
We conducted a second set of experiments to explore the scal-

ability of the Marginalization algorithm with respect to fact table
size. For these experiments, we used the process described above
to randomly generate a constraint set, and ran Marginalization on
the same three datasets. The results are shown in Figure 10, with
each figure showing the total running time for Marginalization for
each dataset on a particular constraint set. From the graphs, we
see the running time increases linearly as the dataset size increases.
This result is not surprising, since the distribution of the datasets are
similar. Thus, for a fixed set of constraints, the number of possible
bindings increased linearly as well.
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Figure 10: Scalability with respect to database size

7.2 Component Size
The next set of experiments examines the size and number of

connected components in the constraint hypergraph. For these ex-
periments, we used the same 3 datasets and 35 randomly generated
constraint sets used for experiments in Section 7.1. The results in
Table 8 give the most extreme value observed over the 35 constraint
sets, with each row corresponding to a dataset. The Dataset column
contains the number of facts in the dataset. Min # CC and Min #
CC contain respectively the minimum and maximum number of
components observed in the constraint hypergraph over the 35 con-
straint sets. Largest Comp and # Imp contain respectively the total
number of facts and the number of imprecise facts in the largest
observed component. We note that the largest observed component
also contained the most imprecise facts for all three datasets. Fi-
nally, # Confs gives the number of configurations enumerated to
process this largest component. For each dataset, the largest com-
ponent required enumerating the most configurations.
From Table 8 we see that for the datasets we consider no large

connected components emerge in the constraint graph. The com-
plexity analysis of the ProcessComponent step in Section 6.2 shows
the number of configurations enumerated by ProcessComponent
grows exponentially with respect to the number of imprecise facts
in a component. Since no large connected component emerges,
we see that the number of configurations enumerated for even the
largest component remains reasonable despite the negative com-
plexity results.
While these results demonstrate no large connected component

emerges in the constraint hypergraph, they do not provide insight
into the distribution of component sizes. We do not have enough
information to conclude whether most of the components are ex-
tremely small (i.e, contain 1 or 2 imprecise facts) or if a significant
number are “modestly” sized (i.e., contain 10 - 20 imprecise facts).
This difference is significant since the number of configurations
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Figure 11: Component size distributions for datasets (a) 200K, (b) 800K (real Automotive), (c) 3200K
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Figure 12: Partition size distributions for datasets (a) 200K, (b) 800K (real Automotive), (c) 3200K

Dataset Min # CC Max # CC Largest Comp # Imp # Confs

200K 174198 205455 25 facts 7 2304
800K 691689 821733 78 facts 15 110592
3200K 2829814 3199461 120 facts 20 5308416

Table 8: Results for component size experiment

ProcessComponent enumerates to process a component grows ex-
ponentially with the number of imprecise facts it contains.
The next set of results we present addresses this by reporting

the distribution for imprecise fact count over the components for
each dataset we consider. The results for each dataset over the
35 constraint sets used in the prior experiments are given in Fig-
ures 11.a-c. Each curve in a graph gives the number of components
with the indicated number of imprecise facts as the constraint set
size varies. E.g., the curve labelled “2 – 5” indicates the number of
components with between 2 and 5 imprecise facts. Constraint set
size k was defined in Section 7.1. We omit the curves for the range
0 to 1 imprecise facts since the number of configurations generated
by these components is negligible (i.e., less that 5% of the total
enumerated configurations) for the datasets we consider, and these
negatively impact the readability of the graph.
We draw the following two conclusions from these results. First,

as constraint set size increases, the number of modestly sized com-
ponents remains small. Only the number of extremely small com-
ponents (with between 2 - 5 imprecise facts each) increases no-
ticeably. Thus, the total number of configurations enumerated by
the ProcessComponents step for all connected components in the
hypergraph remain reasonable as constraint set size increases.

7.3 Regularity Experiments
One way the Marginalization algorithm achieves algorithmic ef-

ficiency is by exploiting constraint-space regularity, which the next

set of experiments explores.

7.3.1 Constraint Partitioning
The next set of experiments examines how constraint-space reg-

ularity affects the distribution of connected component sizes. For
the constraint language we propose in Section 4.1, we can think
of the “head” of a constraint A =⇒ B as partitioning the facts
into non-overlapping sets such that hyperedges only contain facts
in the same set. For example, consider a constraint “two facts with
the same location must have the same model”. We can think of
this constraint as first partitioning all facts by their Location value.
Then, hyperedges introduced for this constraint can only contain
facts in the same Location partition (e.g., facts which potentially
have different models for Auto). Thus, the size of a connected com-
ponent is limited to be at most the size of these partitions. Even if
every hyperedge within one of these partitions is present, the size
of the partition ultimately limits component size since a hyperedge
can only contain facts within the partition. Essentially, the distri-
bution of these partition sizes represents the worst-case distribution
of component sizes.
Our next set of experiments investigates the distribution of par-

tition sizes as constraint set size increases, and is similar to the
component size distribution experiments in Section 7.2. The same
35 constraint sets were used for these experiments and the results
are given in Figures 12.a-c. Each curve in a graph gives the num-
ber of partitions with the indicated number of imprecise facts as the
constraint set size varies. E.g., the curve labelled “2 – 5” indicates
the number of partitions with between 2 and 5 imprecise facts. The
partitions are created by grouping together facts which satisfy the
head of the constrant, and the reported sizes are the number of im-
precise facts in the partitions. Constraint set size k was defined in
Section 7.1. We omit the curves for the range 0 to 1 imprecise facts
for reasons similar to the ones given for the component size results
(Figure 11).
By directly comparing between these figures and the correspond-



ing results for component size distribution in Figures 11.a-c, we
see the observed component size distributions are pretty similar
to the partition size distributions. Thus, we conclude that for the
datasets and constraint sets we consider, the component distribu-
tion is pretty close to worst-case. Despite this worst-case behavior,
the total number of configurations ProcessComponents enumerates
reamins reasonable.

7.3.2 Graph Connectivity
The purpose of this experiment is to directly measure the impact

of the Non-Adjacent set optimization on running time. For this
experiment, we used the Automotive dataset and generated a col-
lection of related constraint sets so that we could control the con-
nectivity of the constraint graph, which we define as the percentage
of possible edges within a constraint hypergraph that are actually
present. Intuitively, if the non-adjacent set optimization was not
used, the number of configurations enumerated by ProcessCompo-
nent would be the same regardless of the hypergraph connectiv-
ity (i.e., all possible configuration for each component would have
to be enumerated), thus increasing the running time of Process-
Component. The results in Figure 13 indicate the Non-Adjacent
set optimization significant impacts running time if the hypergraph
connectivity is low. For the real-world Automotive dataset, the con-
straint sets we consider resulted in constraint hypergraphs with very
low connectivity (under 10% in many cases).
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Figure 13: Regularity Experiment

7.4 Summary of Experimental Results
Together, the results in Sections 7.2 and 7.3 explain the scalabil-

ity and efficiency of our approach observed shown in Section 7.3.1.
The favorable distribution of connected component sizes we ob-
served in Section 7.2 is a result of constraint-space regularity lead-
ing to many trivially small connected components. Second, the
non-adjacent set optimization significantly reduces the number of
configurations which ProcessComponents enumerates, and in prac-
tice significantly improves the performance of the Marginalization
Algorithm. We note that further experimentation on additional datasets
from other domains is required to determine the generality of these
results.

8. CONCLUSIONS AND FUTUREWORK
In this work, we significantly extend the framework for OLAP

over imprecise data presented in [10] to support domain constraints.
This extension removes the strong independence assumptions that
work required, which are often violated in practice.
There are several interesting directions for further exploration.

First, the constraint language we propose could be generalized to
support more expressive types of constraints, similar in spirit to
the ones proposed in [16]. For example, the language could be
extended to support constraints over aggregation query results in
each possible world (e.g., “The sum of all Sales in a world must
be $1000”). A second related direction would be to develop a less
expressive (but still useful) constraint language which would allow

for development of more efficient marginalization algorithms, with
the simpler language having additional regularity in the constraint-
space for the algorithm to exploit. Finally, it would be fruitful to de-
velop incremental maintenance algorithms for the MDB D∗, sim-
ilar in spirit to the EDB maintenance algorithms proposed in [9].
Incremental maintenance of the MDB is challenging since support
is required for both updates to the underlying fact table and the set
of constraints C.
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