EE 8 DB BEB

B EEEE B BB B S8

B E@EEEEGOEB @R

B 0 @ 8ea

P EEREEEDEDGREENEEEEEDE DS

8@ e

BEEmEEEBE®

SLIC: On-The-Fly Extraction
and Querying of Web Data

Robert McCann
Pedro DeRose

AnHai Doan
Raghu Ramakrishnan

Technical Report #1558

September 2006

UNIVERSITY O

SLIC: On-the-Fly Extraction and Querying of Web Data

Robert McCann!, Pedro DeRose!, AnHai Doan!, Raghu Ramakrishnan?

1 University of Illinois

Abstract

Increasingly, Web data is displayed in pages generated
according o a template (e.g., product listings at ama-
zon.com, faculty directories, class schedules). This trend
makes structured querying of such Web data a valuable ca-
pability for a growing number of applications, including
many ad hoc, exploratory, and short-lived tasks. Unfortu-
nately, current methods for answering such queries require
writing complex Perl scripts or creating customized wrap-
pers and storing the extracted data in a DBMS, which is of-
ten overkill for these types of on-the-fly tasks. In this paper
we propose SLIC, a solution to this problem. Given a set
of Web pages generated according to some templates, SLIC
allows the user to quickly pose SQL queries, obtain initial
results, and then iterate with the system to gel increasingly
better results. At each step, SLIC asks relatively simple
questions to solicit minimal structural information from the
user in order to extract data and refine the answers. Exten-
sive experiments on real-world domains show that for many
practical queries (1) SLIC is significantly faster than cur-
rent methods, and (2) the user needs to answer only a few
relatively simple questions before obtaining useful answers.
SLIC thus provides a promising first step toward a princi-
pled solution for on-the-fly extraction and querying of Web
data.

1. Introduction

Much of the data on the World-Wide Web is exposed
in HTML pages that conform to some structure template
[8, 20, 19, 4]. Figure 1 shows examples of pages that export
data on houses and high schools. Other examples include
product descriptions at amazon.com, publications at DBLP,
and and protein data at bioinformatic databases.

To process such data, the typical solution today is to
write customized programs called wrappers, which specify
how to extract structured data from the HTML pages (e.g.,
[19, 4]). The extracted data is then load into a database
(e.g., a RDBMS) or fed into additional programs (e.g., Perl
scripts), for further processing and querying.

This extract-then-query approach works well for long-
running information needs of a large user community,
where many queries will be asked over an extended period
of time by many people, thereby amortizing the effort in-
vested upfront on developing the wrappers. Examples of

2Yahoo! Research

S\(bestplaces.net

High School, L.ocation, & Rate
Basktall, Cherry Hills, 92%
Franklin, Robeson, 87%
Vanhise, 93%

Sources: News Gazette

S\q realtor.com (449 listings)

Amazing house in great location! $619000 I
$351000

Cozy house on quiet street

5146 Windsor Ave, Champaign
Beds: 4 Baths: 2.5 Sqft: 2750 g,
Schools: Vanhise i

Figure 1. Examples of HTML pages that export data ac-
cording to some structure template,

such information needs include warehousing of Web data
for mining purposes, comparison shopping systems, and in-
tegration systems over Deep Web sources that serve multi-
ple users over long periods of time [16, 21, 6, 17].

Increasingly, however, many information needs are ad
hoc and on-the-fly, involving just a few queries with short-
lived value, often for a single user [12]. For example, a re-
searcher may want to obtain the list of all SIGMOD papers
in the past ten years whose titles contain “XML” or “semi-
structured.” This list can be gleaned from the corresponding
SIGMOD conference pages at DBLP, and is clearly an ad-
hoc information need in that the user is unlikely to want
to issue the query repeatedly, and that there is not a large
community that is likely to be interested in it.

Other examples arise naturally in many settings. Do-
main scientists often want to execute complex queries that

join data from multiple Web pages on the fly, for ex-

ploratory analysis [11]. Many Web users increasingly want
lightweight tools to assist in querying Web data (e.g., to
compare statistics on product rating) [14, 13]. As yet
another example, corporate users at Thomson Legal Inc.
(tlrg.com) often want to extract and query data from com-
peting law firms’ websites on the fly, to quickly compile
statistics regarding these law firms (e.g., cases won, lost,
and areas covered), then leverage those statistics in presen-
tations to potential clients [2].

For such on-the-fly information needs, the extract-then-
query approach is not well suited. The fundamental reason
is that today it still takes too much time to write wrappers.
Writing them by hand is well known to be difficult and labor
intensive. Many wrapper construction solutions have been
proposed (e.g., [20, 19, 4]). However, they are still difficult
to set up, often taking days even for expert users (e.g., to
tune various system parameters). They are also notoriously
brittle, often requiring much manual intervention to achieve
high accuracy.

Tech Report

To address the above problem, we propose SLIC
(Structured Lazy Information ExtraCtion), a solution that
enables fast, on-the-fly extraction and querying of template-
based Web data. The key ideas underlying SLIC are as fol-
lows:

1. Extract only necessary attributes: To extract and
query Web data, current solutions typically extract values
for all or almost all attributes present in HTML pages, on
the ground that there may be many queries in the future that
can touch any of those attributes. In our on-the-fly settings,
however, the user is likely to ask only a few queries. Hence,
to minimize user efforts, we only extract values for the at-
tributes that are mentioned in the query at hand. For ex-
ample, given the set of HTML pages in Figure 1.a, each of
which describes a house for sale, suppose the user wants
to execute a query () that lists all houses whose price ex-
ceeds $500,000. Then we only extract values for price. We
therefore construct query-centric wrappers.

2. Ask users only relatively simple questions: Current
solutions typically ask users to manually write extraction
rules or to deploy a semi-automatic wrapper construction
system, Either choice is laborious, as we have argued ear-
lier. In contrast, we only ask users to answer relatively
simple questions regarding the appearance of the attributes,
such as “is price listed in bold font on these Web pages?”
and “is price hyperlinked?”. We then leverage user answers
to these questions to extract attribute values.

3. Extract approximate attribute values: Current solu-
tions extract exact attribute values. In contrast, we observe
that approximate values (which often are much easier to ex-
tract) are often sufficient for answering a user query satis-
factorily. To illustrate, suppose the user has answered “yes”
to the question “is price listed in bold font?”. Then we still
do not know the exact values of price, because a bold-font
number can still be, e.g., a discount rate. However, sup-
pose that the given HTML pages contain no bold-font num-
ber that exceeds 500,000. Then we know immediately that
the answer to query) above is empty: no house for sale
can have price above $500,000. As another example, sup-
pose that only five HTML, pages contain bold-font numbers
above 500,000. Then we can simply return all five pages
as an “approximate superset” result to (). Since the size of
the approximate superset result is small, the user can easily
shift through to obtain the true result set (i.e., houses with
price exceeding $500,000 in this case). Note that in both
examples, there was no need to construct complex rules
that extract exact values for price. Asking the user a simple
question was sufficient to extract approximate price values,
which in turn was sufficient to answer the user query to his
or her satisfactory.

4. Interleaving extraction and execution: Finally, cur-
rent solutions execute user queries only after the data has
been extracted. We propose to interleave data extraction
and query execution. For example, if we have known only

that price is in bold font, we can already perform an ap-
proximate extraction, by extracting all bold-font numbers,
knowing that prices must be among those. Then we execute
query @ over the approximate extracted data, to produce an
approximate result (e.g., the five HTML pages that contain
bold-font numbers above 500,000, as mentioned above). If
the user wants “better” results, we then can ask more ques-
tions (e.g., “is price hyperlinked?”), then repeat the extrac-
tion and execution process. This way, we can stop the mo-
ment the user is satisfied with the results, thereby minimiz-
ing user efforts, an important requirement for on-the-fly sce-
narios.

Building on the above ideas, SLIC operates as follows.
Given a structured query) posed by a user U over a set
of HTML, pages P, SLIC analyzes () and P, and provides
an initial approximate result. It then iterates with user U to
provide increasingly better results. In each iteration SLIC
asks U 1-2 relatively simple questions, designed to solicit
additional information about the attributes mentioned in).
The key observation is that all pages in the set I are gener-
ated from the same template, and the user’s feedback about
a given example page allows us to refine the extraction of
information from pages in P. (In practice, P may include
subsets of pages, with a different template for each subset,
but the basic idea still applies.) SLIC then leverages the an-
swers to re-extract the data and re-execute query Q). SLIC
stops when the user is satisfied or when it determines that
the query result has converged to the correct one.

SLIC thus enables fast, user-friendly extraction and
querying of Web data on the fly, while minimizing user ef-
forts. Developing SLIC, however, raises significant chal-
lenges. An important contribution of this paper is to identify
the key challenges that must be resolved to develop an effec-
tive SLIC-like solution for on-the-fly extraction and query-
ing of Web data. A second contribution is a solution to a key
technical problem facing SLIC: how to efficiently execute
approximate string joins over approximately extracted data?
Approximate joins allow matching of syntactically different
data values, such as “David Smith” matching “D. Smith”
[10]. The need for such join is acute in processing Web
data, where a name often appear in myriad formats (e.g.,
“D. Smith”, “Smith, David”, “Mr. Smith”, etc.). Conse-
quently, approximate join has attracted significant attention
(e.g.,[10, 18]). The SLIC setting however raises novel chal-
lenges. Here, each extracted data value can be a large set of
string, due to the approximate nature of the extraction pro-
cess. Consequently, instead of matching string pairs (e.g.,
“David Smith” vs. “D. Smith”), as is currently the case
[10, 18], in our settings the approximate join must match
sets of strings, such as {“David Smith”, “Smith”, “Dave
S”} versus {“D. Smith”, “Prof. Smithson”}. In this pa-
per we show why current approximate join solutions (e.g.,
[10, 18]) do not work for this case, then develop an effective
solution. Overall, we make the following contributions:

e Introduce SLIC, a novel approach to extracting and

Tech Report

querying template-based Web data on the fly. SLIC
constructs query-directed, approximate wrappers by
asking the user only relatively simple questions. It
also interleaves the process of extraction and execu-
tion, to converge to a satisfactory query result quickly,
with minimal user efforts.

o Identify the main challenges in developing SLIC and
develop an effective solution to approximate string
join over approximately extracted data, a key techni-
cal challenge in SLIC setting.

e Describe extensive experiments with a SLIC’s proto-
type over several real-world Web data sets. The exper-
iments show that for many practical queries SLIC is
significantly faster than current methods, with minimal
user efforts, thus demonstrating the promise of SLIC.

In the rest of the paper we define the problem, describe our
SLIC solution, then experiments with SLIC in details.

2. Problem Definition

We now describe the on-the-fly extraction and querying
problem considered in this paper.

Data: Suppose the user has collected a set of HTML pages
W = {Py,...,P,} that describe real-world entities, such
as products, houses, proteins, etc. Figure 1 show exam-
ples of such pages, which describe houses and high schools,
and are collected from two real-estate Web sources. We as-
sume that the data in the pages conform to a set of structure
and format templates (the same assumption made by current
wrapper work [20, 19, 4]). House descriptions in Figure 1.a
for example always display an optional comment, followed
by price, then address, number of beds, and so on. The
comment, when displayed, is always in italics, the price is
always prefixed with “$”, etc. We consider the common sce-
narios where the description of each item occupies a whole
page (e.g., houses in Figure 1.a), or they are listed sequen-
tially on a page (e.g., schools in Figure 1.b). Considering
more complex scenarios (e.g., where item descriptions can
be interleaved) is a subject of future research.

Users and Queries: We assume that the user wants to
pose just one or a few queries over the data W. The user
starts with a query, then may make up subsequent queries
on the fly, in an exploratory fashion. We consider structured
queries that can be expressed in a SQL-like language. Ex-
amples of users who are capable and often want to write
such queries include domain scientists, intelligence ana-
lysts, data mining experts, and skilled users on the Web and
at enterprises. For lay users, it may be possible to provide a
GUI that translates user queries into structured queries (akin
to GUIs provided by amazon, bestbuy, etc.), but this is be-
yond the scope of the current paper.

Superset Semantics for Query Results: Recall from Sec-
tion 1 that we provide approximate query results (in each
iteration of SLIC). Since the user often wants to know all

correct result tuples (e.g., all houses whose price exceed
$500,000), currently we always return a superset of the true
query result. The user can then further clean the result to
obtain only the correct ones. Our goal is then to quickly
converge to the true result set or to the smallest possible
superset, so that the user can minimize the time spent post-
processing the result produced by SLIC. For future work we
will explore more general semantics based on combinations
of precision and recall.

We can now define our problem as follows: design SLIC
such that given a set of HTML pages W and a query Q,
described as above, interact with the user 1o produce the
smallest possible superset of the true query result, while
minimizing the amount of user interaction.

3. The SLIC Approach

In this section we first describe a usage scenario. We
then provide a high-level overview of the working of SLIC,
and highlight the main technical challenges. Section 4 then
develops a solution for one such challenge: effective execu-
tion of approximate string joins over extracted data.

3.1 Usage Scenario

Consider a user X who wants to find all houses for sale at
realtor.com of more than 4,000 square feet and price above
$500,000. For each house, X also wants to find all informa-
tion on the associated high school from bestplaces.net. X
proceeds as follows.

1. Providing Web pages to SLIC: X first retrieves from
realtor.com a set H of Web pages that describe houses and
feeds them into SLIC, specifying that they conform to a
structure template that X will refer to as HOUSES. Simi-
larly, X retrieves from bestplaces.net a single Web page S
that describes high schools, feeds it to SLIC, and names the
structure template SCHOOLS,

2. Posing a Query (@ to SLIC: Next, X writes a SQL
query @) to express the desired information, as shown in
Figure 2.a. Observe that query @ refers to the templates
HOUSES and SCHOOLS, in effect behaving as if the data
on houses and schools has been extracted into two relational
tables with the same names. Observe also that X “makes
up” attribute names (e.g., price, area) and refer to them in
@ as if they have been extracted. (In reality, of course, these
tables do not exist physically.)

3. Interacting with SLIC to segment Web pages: Given
query (), SLIC then starts by segmenting Web pages
that belong to the templates touched by @ into individual
records, each of which describes an item referred to in @
(e.g., h and s, see Figure 2.a). For template HOUSES,
each individual Web page is already a record (for h), as in-
dicated by X, so no segmentation is necessary. For tem-
plate SCHOOLS, the retrieved Web page S must be seg-
mented into individual records, each of which describes a
school. To do so, SLIC interacts with X via a GUI interface

Tech Report

HOUSES

Warerfront on mwo sides $513000
t, | 6732 Spring Hills St. Champaign 3500 sqft
Beds: 4 Baths:3

Schools: Franklin (just two blocks away)

&y | Waserfront,. Spring Hills St...

Amazing house in great location! $619000
3112 Neil 51, Champaign 4700 sqft

t.
SELECT * 2 | Beds: 5 Baths: 4

FROM HOQUSES &, SCHOOLS 5
WHERE h price > 500000 &
harea> 4000 &

Schools: elem. Randall, feeds into Basktall

Vy | Basktall, Chermry Hilis, 92%
Cozy house on quict sireet $351000] b by | Warerfront...Schools: anklin.‘]
o

tz Amazing.. feeds into Basktatl...

h hschool = 5 sname. t, .;l“llﬂ l;’in;\'n‘;‘mf .SChampuign 2750 sqft
eds: aths: 2
Schools: Vanhise

SCHOOLS

———,
V3 | Franklln, Robeson, 87% Is harea bold?

¥ |Basktall, Cherry Hills, 92%

4| Amazing...fecds into Basktall...

Vi | Basktall, Chorry Hills, 92%
V| Franklin, Robeson, 87%
V3 | Vanhise, 93%

(a) Query Q0 (b) Segmented Regions

(c) 1* Iteration Results

V, | Basktall, Cherry Hills, 92%

(d) 2 Iteration Results

Figure 2. A usage scenario of SLIC.

and asks X to highlight several regions that contain record
boundaries (see Section 3.2). Within a few minutes (1-2
in our experiments) SLIC has segmented page S into indi-
vidual school records. The segmented records are shown
in Figure 2.b. To keep the scenario manageable, we as-
sume that the user has retrieved only three Web pages from
realtor.com; these pages are shown as records in “table”
HOUSES in Figure 2.b. Page S has been segmented by
SLIC and its three records are shown in table SCHOOLS.

4. Inspecting query results and answering questions:
SLIC then iterates. In the first iteration it executes query
@ and produces the result in Figure 2.c. This result shows
three pairs of records, each describing a house that SLIC
thinks may satisfy the user’s request (i.e., price above
$500,000 and area above 4000), together with the associ-
ated school information. Observe that this result is a super-
set of the true result (which is the record pair tg — v1).

X quickly scans the produced superset result and, see-
ing that houses in £; and t3 are admitted despite having
insufficient square footage, tells SLIC to narrow the su-
perset. SLIC responds with a question about the appear-
ance of data in HOUSES: “is h.area bold?”. X answers
“yes”. SLIC then enters the second iteration. It leverages
the new information regarding h.area to re-extract the data
and re-executes query (Q, then shows X the new result in
Figure 2.d. This time, the superset result contains only the
correct pair of records. X is satisfied, and indicates to SLIC
to terminate execution.

It is important to emphasize that Steps 1, 2, and 3 above
are relatively simple and are shared by virtually all current
solutions that extract and query Web data. After data collec-
tion in Step 1, segmenting Web pages into records (Step 3)
is typically executed (e.g., by a Perl script or a GUI-based
system, like what SLIC does here) before creating the wrap-
per, or becomes a part of the wrapper. Posing a structured
query () to the extracted data (Step 2) is carried out over an
RDBMS or as a part of yet another Perl script.

The above steps take negligible time compared to Step 4.
As discussed earlier, to execute this step, current solutions
build full-fledged wrappers that extract exact data values, a
time-consuming and tedious process during which the user

must either write wrappers or deploying and tuning a wrap-
per construction system. In contrast, as seen above, SLIC
“transparently” handles this entire process. It asks the user
only relatively simple questions, and only as many as nec-
essary to satisfactorily answer the query at hand. Our ex-
periments (Section 5) show that SLIC executes this step in
far less time than that incurred by current solutions.

3.2 The Working of SLIC

We now provide a high-level overview of SLIC’s ap-
proach, and discuss the key challenges facing SLIC,

User queries: As a first step, we currently consider select-
project-join SQL queries. Besides theta-join commonly
found in RDBMs, we counsider also approximate string

joins, because such joins are crucial for processing hetero-

geneous Web data, as argued in the Introduction. Section 4
formally defines approximate string joins and provide effec-
tive implementations for such joins in our contexts.

Segmenting Web pages into records: Given a user query
@, SLIC starts by segmenting certain Web pages into in-
dividual records (as discussed in Section 3.1). Since the
pages that we consider display the records sequentially
(Section 2), SLIC needs to find only an HTML string to
serve as the record separator. It finds this string via a short
interactive session in which the user highlights several Web
regions that contain record boundaries. SLIC then applies
the inferred HTML string to segment pages. This method is
simple but appears very effective (e.g., finding separators in
-2 minutes, and separating records correctly in all of our
experiments).

Features, questions, and answers: In the next step, SLIC
can optionally ask the user a question regarding the appear-
ance of some attribute in (. To do so, SLIC makes use
of a set of appearance features: numeric, string, bold-
font, etc. SLIC can then ask questions of the form “what
is the value for feature f of attribute a?”. Possible an-
swers include “yes” and “no”. Each feature f is also as-
sociated with two procedures: Verify and Refine. The ap-
proximate wrapper employs these procedures to extract data
from Web pages. Roughly speaking, Verify(R, f,v) returns

Tech Report

1
1

-

L}

Yi
v
Vi

HOUSES

select
b price > 500000 &

T,
h.area > 4000

price = {@xacl(513000), ... , exac(3500)}
¢|area = {exac(513000), ... , exact(3500)}

e

SCHOOLS T,

hschool = {contains(“Warerfront..)")}
Waterfront. . | Ww price = {@xact(619000), ... , exact(4700)}
| Amazing. . [~ Xy\aren = {exacl§19000), .., exacl(4700)} | f Xy aren Voo
Cozy... hschool = {contains(“Amazing...”)} 4 hschool = {contalns{ “IWaterfront...”" }}

exact{(351000

., exact(2750)} price = {exacl{619000), ...}

ct(3510 (2750)) | Xy|urea = (exact(619000), ...}

hschool = {contains(“Cozy...)} hischool = {contains(“Amazing...”)}

(a) (€} ©

Basktall,.. | gy ¥i|sname = {contains(“Basktall...92%")} . =Y
- w join -
H ¥,sname = {contains(“Franklin...& I e b hschool = s sname - X =Y,
Ya|shame = {contains(“Vanhise...93%" }} X3~ Yy
b () U]

Figure 3. An example of SLIC’s executing a query over
Web data.

true if f = v holds for text region (i.e., a contiguous span
of text) R, and false otherwise, and Refine(R, f,v) returns
all subregions R’ of R for which Verify(R', f,v) is true.
The appearance features and the associated procedures are
provided in advanced by the SLIC designer, when SLIC is
built, not by the user. If SLIC does ask a question, then the
user answer is encoded an approximate wrapper, which we
describe next.

Constructing and applying approximate wrappers: We
define such a wrapper to consist of a set of domain con-
straints. Bach domain constraint (a, f,v) specifies that for
any text region that is a value for attribute a, its feature f
takes value v. An example constraint is (price, numeric,
yes). For the entire execution of a query @, SLIC employs
a single approximate wrapper W. Every time the user an-
swers a question, a domain constraint is constructed and
added to W. At the very start, when no question has been
asked, W includes only domain constraints that SLIC can
infer from the description of query). For example, from
query @ in Figure 2.a, SLIC creates constraints (price, nu-
meric, yes) and (area, numeric, yes) based on the selec-
tion condition (price geg 500000) & (area > 4000). For
any other attribute f in Q (e.g., hschool, sname), SLIC cre-
ates the default constraint (f, string, yes). It then initializes
wrapper W with these constraints. It then applies wrapper
W to extract approximate data from the Web pages. In what
follows we describe how the extracted approximate data is
represented in SLIC.

Representing approximate data: Consider again wrap-
per W mentioned above. Suppose we want to apply W to
record ¢; (the first one under HOUSES, see Figure 2.b) to
extract price. Then knowing only that price is numeric, we
will extract the set {513000, 6732, 4, 3,3500}. We can then
assign this set as the value of price in record ;. In general,
we can model the extracted approximate data as a set of
records, such that each attribute in each record are assigned
a set of values.

The above naive model however is not scalable, because
as query execution progresses, the number of values per at-

tribute often grows very quickly, posing both storage and
processing problems. Hence in SLIC we employ a more ef-
ficient though less expressive model, called compact table.
A compact table consists of multiple records, such that each
attribute A in each record is associated with a set of assign-
ments: A = {m;(R1),m2(Rz), ..., my(Ry)}, where each
™, 1s an exact or contain assignment, and each R; is a text
region (i.e., a continuous text span).

An exact assignment exact(R) means that A’s value is
exactly region R (modulo an optional cast from string to
numeric). For example, exact(“92”) means that A’s value
is 92. A contain assignment contain(R) means that A
maps exactly into a region inside region R. For exam-
ple, assignment contain(”Cherry Hills,<i>92”)
means that A’s value is a region inside ”Cherry
Hills,<i>92”, but we do not know exactly which re-
gion. Thus, a contain assignment conceptually specifies a
potentially large set of exact assignments.

To illustrate compact tables, suppose record vy
(under SCHOOLS in Figure 2.b) is the HTML frag-
ment “Basktall,Cherry Hills,
<i>92%</i>". Then applying the wrapper W men-
tioned earlier to extract sname will produce sname =
contain(“Basktall... <i>92%</i>"). This
states that sname is a string inside the above long HTML
string, but we do not know which. Now suppose the user
has replied “yes” to the question “is sname bold?”. Then
wrapper W can leverage this answer to “refine” the value
of sname to contain(*“Basktall,Cherry
Hills"). Figure 3.a-d shows how wrapper W extracts
data from HOUSES and SCHOOLS into two compact
tables 77 and T5.

Executing SQL queries over approximate data: We
have described how SLIC applies wrapper W to extract ap-
proximate data into compact tables. Once this is done, SLIC
executes user query ¢ over the tables, by (1) compiling Q
into an execution plan P, and (2) executing P over the ta-
bles. SLIC currently constructs a simple execution plan P,
which applies all applicable selections, then joins, then pro-
jections.

Executing P then reduces to executing its operators.
Consider selection. This operator traditionally operates
over relational tables. Now we must modify it to work over
compact ones. In particular, to preserve the superset se-
mantics (Section 2), this operator must be modified to re-
turn all tuples that may satisfy the selection condition. To
illustrate, consider an execution plan P for query () men-
tioned earlier. Suppose P starts by applying selection to
compact table T} with condition ¢ =(price > 500000) &
(area > 4000) (see Figure 3.c). The first tuple z; of table
Ty has price = {exact(513000), ..., exact(3500)} and area =
{exact(513000), ..., exact(3500)}. Since price contains at
least one value above 500000, and area contains at least one
value above 4000, operator selection concludes that z; may

Tech Report

satisfy c, and admits z;. Similarly it admits z5. The oper-
ator drops z3 because x5 does not contain any value above
500000 and hence cannot possibly satisfy ¢. Selection oper-
ator then produces as output compact table T3 that consists
of two tuples x; and =3 (see Figure 3.e. Operators projec-
tion and join can be modified in a similar fashion to work
over compact tables. In this case, the join operator produces
as output the three tuple pairs shown in Figure 3.f, which is
output as the result of executing plan P.

Interacting with the user and re-executing the query:
Once query @ has been executed, SLIC displays the re-
sults to the user (as discussed earlier in Section 3.1). If the
user is not yet satisfied, SLIC asks a new question to solicit
more information about the attributes in query Q. Next,
SLIC (a) adds the user answer to wrapper W in form of
a domain constraint, as discussed earlier, (b) applies W to
the Web pages again to extract new compact tables, and (c)
re-executes plan P on the new compact tables. SLIC also
detects and notifies the user when the result for a query ap-
pears to have “converged” to the correct result.

Key challenges in developing SLIC: In the current SLIC
version, we have implemented relatively simple, “place-
holder” solutions to the following problems: (1) applying
approximate wrappers to extract data, (2) finding an opti-
mized execution plan P for user query @, (3) executing
P, and hence the modified SQL operators, over the ex-
tracted approximate data. (4) selecting a question to ask the
user, (5) re-extracting data, but incorporating the knowledge
gleaned from the user answer, and (6) re-executing plan P
over the newly extracted data. Instead, we have focused our
effort on developing an efficient solution for approximate
string join (see the next section), as we found that such a so-
lution is critical to making SLIC usable. We found that the
above SLIC version already works quite well with a broad
variety of practical Web data processing scenarios (see Sec-
tion 5).

4. Efficient Approximate Joins

Approximate string joins are critical in processing Web
data, as we have argued in the Introduction. We now de-
scribe such joins. We then show why current solutions (e.g.,
[10, 18]) do not work for our context: approximate joins
over approximately extracted data. Finally, we describe an
effective solution that we currently employ in SLIC.

Given relational tables with a single value per tuple at-
tribute, approximate joins are typically defined as follows
[10]:

Defi nition 1 (Single-value Approximate Join) Consider
Jjoining attributes a and b, which can take values uy, . .., Un
and vy, .. .,Vn, respectively. A single-value approximate
Jjoin matches u; and v;, joining the corresponding tuples, if
and only if sim(u;, vj) > 6, where sim returns a similarity
score between two values, and 0 is some threshold.

Figure 4.a shows a single-value approximate join on school
names. Given a reasonable sim, we would match uy =
“Basktall” to v; = “Basktall HS”. In SLIC’s context, at-
tributes a and b often have multiple possible values. For
example, in Figure 4.b, the value u, is the set of possible
values {“Franklin”, “two blocks™}. The join definition must
therefore be modified as follows:

Defi nition 2 (Multi-value Approximate Join) Consider
Jjoining attributes a and b, which can take values Uy, . . ., Uy,
and Vi, . .., Vm, respectively, where the U; and V; are sets
of possible values. A multi-value approximate join matches
U; and V;, joining the corresponding tuples, if and only if
there exist u € U; and v € V; such that sim(u,v) > 6,
where sim returns a similarity score between two values,
and 6 is some threshold.

This extension applies the intuition that when an attribute’s
value is one of set of possible values, to preserve superset
semantics, the attribute passes a condition if and only if any
of its possible values passes.

Two popular similarity functions are edit distance and
TF/IDF [18, 10]. Implementing edit-distance joins in the
SLIC context is relatively straightforward, so the rest of this
section focuses on TF/IDF joins. Such joins are especially
common [18], and implementing them in SLIC’s context
raises difficult challenges.

4.1. Challenges in Implementing TF/IDF Joins

The intuition used in the TF/IDF similarity function is
that similar strings share rare tokens. Of course, a token’s
rarity is relative to the corpus from which the strings are
drawn. When joining tables, the corpus is typically the
union of values of the joining attributes. For example, the
join in Figure 4.b has the corpus {ug .. . un}U{v1 ... vn}.
However, when attributes have multiple possible values, the
true corpus is uncertain. To illustrate, consider the multi-
value join in Figure 4.b. The first value for attribute a
is either “Franklin” or “two blocks”, the second is “Bask-
tall”, the third either “Vanhise” or “Vanhise Champaign”,
etc. The Cartesian product of all choices for a and b cre-
ates 8 possible single-value join scenarios. For instance,
Figure 4.a and Figure 4.c are both possible scenarios, each
with a different corpus.

Now consider joining U; = {”Franklin”, “two blocks”}
and V; = {”Basktall HS”, “Urbana”}. Since we do not
know the correct scenario, we must consider the corpora of
all eight. For each scenario, knowing the corpus, we can
compute similarity scores. To maintain the superset seman-
tics, if U; joins V7 in even one scenario, we must declare
Uj joins V; for our multi-value approximate join.

Considering all possible corpora is clearly impracti-
cal. Thus, we develop efficient approximate algorithms for
multi-value approximate join, which we elaborate below.

Tech Report

Yy
Uy
Us
Uy

attribute a attribute b atiribute a attribute b attribute a attribute b
“Franklin” vi|“Basktall HS” Uy | “Franklin”,“two blocks” vy | “Basktall HS",*“Urbana” Uy | “two blocks” vi|“Urbana™
“Basktall” v, | “Franklin” u,{ “Basktall” v, | “Franklin” . u,} “Basktall” vy | “Franklin”
“Vanhise” v “Vanhise Memorial” u| “Vanhise”,Vanhise Champaign” v, | “Vanhise Memorial” U] “Vanhise Champaign’] vs|“Vanhise Memorial’
“Franklin School” uy| “Franklin School” u,| “Franklin School”

(a)

(b)

©

Figure 4. Examples of single-value approximate joins (cases a and c¢), and multi-value approximate join (case b). The join in case
b conceptually consists of eight single-value joins, two of which are shown in cases a and c.

4.2. Effi cient TF/IDF Join Algorithms for SLIC

Rather than considering all possible corpora, our key
idea is to compute a bounding range for each token’s rarity,
then extend the TF/IDF join to operate over these ranges
and produce an upper bound on similarity values. This sec-
tion briefly describes the standard TF/IDF join algorithm
and our proposed extension.

The Single-Value TF/IDF Join Algorithm: Given two
values u and v, the single-value TF/IDF join computes
sim(u,v) = @ - 0, where ¥ and U are TF/IDF vectors
representing v and v.

To construct @ and ', we first construct the corpus C.
Recall that attribute a has values w1, ..., u,. We tokenize
each value wu;, then add the tokens to C as a document. We
do the same for values of attribute b. C is thus a set of
documents, each of which contains a set of tokens.

Let T be the set of tokens. Vector U has |T'| elements,
one for each token k € T. Let Wy be the element that
corresponds to token k. We compute

Wy = a-tf(k,w) - log(idf (k)),)
where « is a normalization constant computed as:
a=1/ [[tf(ku) loglidf (kD)2 @)

keT

The term frequency tf{k, u) is the number of times k ap-
pears in u. The inverse document frequency idf(k) is |C|
divided by the number of documents containing k. Intu-
itively, if k occurs often in u yet rarely across all tuples,
Uy is large, indicating that k is a distinguishing character-
istic of u.

Note that many TF/IDF variants exist. We adopt the
above variant because it has been shown to work well [18],
is relatively simple to understand, and was found empiri-
cally to work well for our context (see Section 3).
The BJoin Algorithm: Now consider joining U and V' in
the multi-value context. Recall that they join if there exists
uw € Uand v € V such that sim(u,v) > 6. Our key
idea is to compute an upper bound for sim(u,v), denoted
as sim(u, v), then join u and v if sim(u,v) > 6.

To compute sim(u, v), we use Equation 1 to write

sim(u,v) = U -V

S o 4k,) log(idf(k)) - a2 (K,) log(idf(k))

keunv

aran Y iflk,w)yflk, v) log? (idf(k))

k€unu

i

3)

The terms tf(k,u) and tf(k,v) count the number of
times token k appears in u and v, and are trivial to com-
pute. Consequently, to compute sirn(u, v), we compute up-
per bounds for o, ag, and idf (k).

To compute an upper bound for idf (k), we make a sin-
gle pass over the union of values of attributes a and b to
compute two quantities: all(k) and some(k). all(k) is the
number of tuples where all possible values of a or b contain
k, and some(k) is the number of tuples where at least one
possible value of @ or b contains k. It is easy to show that

N N
idflk) € Lome(k)’ all(k)] ’
where N is the total number of values of @ and b. Thus
N/all(k) is an upper bound for idf (k).

To compute an upper bound for «;, the normalization
constant for %, observe from Equation 2 that minimiz-
ing 3 epltf (K, w) - log(idf (k))]? yields this upper bound.
For each term [tf(k,u) - log(idf (k))], again observe that
tf(k,u) is computed by trivial counting. So to minimize
the term, we minimize log(idf(k)). This is done by set-
ting idf (k) to N/some(k), as Formula 4 suggests. In effect,
this is equivalent to upper bounding o using the shortest
possible unnormalized TF/IDF vector for . We proceed
similarly to compute an upper bound for .

The CJoin Algorithm: BJoin treats U and V as sets of
possible values. For instance, in Figure 4.b, the first value
U, of attribute o is the set {"Franklin”, “two blocks”},
meaning the true value is an element in the set. In prac-
tice, however, SLIC operates over compact tables, where
each attribute value is a set of region assignments (see Sec-
tion 3.2). Recall that we have two types of assignments:
an exact assignment exact(R) means the true value is ex-
actly R; a contains assignment contains(R) means the true
value is a region inside R. If all assignments are exact, we
can simply use algorithm BJoin. However, since contains
assignments are common, we design the CJoin algorithm
to handle them.

As a simple solution, CJdoin can simply convert
each assignment contains(R) into a set of exact as-
signments by enumerating all regions of R. For
example, contains(“near Vanhise HS") would be-
come to {exact(“near”), exact(“Vanhise”), ,
exact(“nearVanhiseHS")}. Once contains assignments
have been converted, CJoin reduces to BJoin. However,
since the conversion often produces an explosion of exact
assignments, this is inefficient.

4

Tech Report

Domain Data Tables }za';; 115.\';;; T’\fx;;re‘s
3 pages, Roger Ebert's Greatest Movies List | 1/1 ! 242
Movies | 3 tables, IMDB Top 250 Movies 1/4 i 250
1009 tuples | Prasanna Top Movies 2/1] 1 517
85 pages Hector Garcia-Molina Pubs List 4/4 i 312
DBLP | 4 tables ’ SIGMOD Papers '75-'05 2/21 31 1787
6033 lul’)les ICDE Papers '84-'05 2/21 22 1798
VLDB Papers '75-'05 2/2] 31 2136
1078 pages, | Amazon query on ‘Database’ 6/5] 249 | 2490
Books |3 tables, AddAll query on 'Database’ 3/2] 3291 3286
10776 tuples| Barnes & Noble query on 'Database'| 6/4 | 500 | 5000

Table 1. Real-world domains for our experiments

We therefore design CJoin to operate directly on con-
tains assignments. The intuition is as follows. Suppose U is
a single assignment contains(R), which can be converted
to {exact(ry), ..., exact(r,)}. Suppose V is a single as-
signment exact(s). Then semantically, U and V match if
there exists an 7; such that simn(r;, s) > 6. Consequently, if
we compute an upper bound R over sim(r;, s),i € [1,7],
then U and V match if R > 6. This is clearly an approxi-
mation, but is also far more efficient than exhaustively con-
sidering each r;. We compute R similarly to our treatment
of BJoin, starting with Equation 3.

In general, consider two assignments mj(R;) and
mig(Ry). Similarly to our treatment of BJoin, we compute
an upper bound on their similarity value by first computing
the range of possible idf (k) values for each token k. Specif-
ically, we compute all(k) as the number of tuples where
both attributes a and b must contain k, and some(k) as the
number of tuples where at least one assignment contains k.
Note that if R strictly subsumes k, assignment contain(R)
does not have to contain k.

Given all(k) and some(k), we compute an upper bound
of sim(m1(Ry), mz2(Ry)) as follows. We again upper
bound idf(k) with N/all(k). We also upper bound «; and
ag using the shortest possible unnormalized TF/IDF vec-
tors for mq(Ry) and my(R;). However, for an assign-
ment contains(R), any substring of R may be the true
value. Considering this, we can show that if mq(R;) is
a contains assignment, the upper bound for «; normal-
izes a TF/IDF vector where every element is zero except
the one corresponding to the token k in Rj, such that
k = argmin, idf (t) where ¢ ranges over all tokens in R;.

Finally, we note that we have implemented various in-
verted indexes to speed up BJoin and CJoin but omit their
description for space reasons. Algorithm CJoin is what we
use in the current SLIC version for approximate string join.

5. Empirical Evaluation

We have evaluated SLIC on 27 query scenarios over 10
tables taken from 1166 HTML pages across 3 domains.
Our goals were compare SLIC with current methods, and
to evaluate its effectiveness for on-the-fly extraction and
querying of Web data.

Domains: Table 1 summarizes the three real-world do-
mains in our experiments. “Movies” contains 3 movie ta-

bles downloaded from 3 Web pages, “DBLP” 4 publication
tables from 85 pages, and “Books” 3 book tables from 1078
pages. For each table we first downloaded a set of 1-500
Web pages. We then defined a schema for each table, con-
sisting of 2-11 numeric and string attributes. For example,
Table 1 contains “1 / 4” for “Num Attrs” for the “IMDB
Top 250 Movies” table, indicating one string and four nu-
meric attributes. Finally, we segmented each page into tuple
regions, resulting in 242-5000 tuples per table.

Queries: Table 2 lists the nine queries used to evaluate
SLIC, ranging from single attribute selections to three-table
and multi-column joins. In these queries, operator “SIMI-
LAR” refers to the approximate string join (see Section 4).
We evaluate SLIC and alternative methods on 27 scenarios
involving these queries, as described below.

Methods: We consider three alternative methods that can
be used to answer SQL queries over Web data. First, we
can employ wrapper-based methods to uncover the struc-
tured data. However, current wrapper systems are difficult
to set up, and rather brittle. We experimented with several
publicly available systems on our data sets, and found that
they either failed to find any structure, or required signifi-
cant manual correcting efforts. In addition, setting system
parameters, such as which DOM subtrees should be ignored
during parsing, or whether to enable backtracking during
search, require a deep understanding of both the data and the
systems. Wrapper methods thus are rather “heavy weight”
for our on-the-fly query contexts.

We then opted to compare SLIC with two methods that
are commonly used today, by casual users as well as domain
scientists. The first is to manually collect the answers from
the data. The second method employs Perl scripts and also
RDBMSs if necessary. Here, we first wrote a script to ex-
tract the relevant attributes from each tuple, then computed
the answer either within the script or by loading the struc-
tured data into a RDBMS and posing the query, whichever
we deemed fastest.

Runtime and accuracy: Figure 5 shows the runtime
and accuracy achieved using SLIC vs. the “Manual”
and “Perl+DB” methods described above. Consider the
very first row which shows “Movies” domain, “IMDB few
votes” query, and 10 under “Num Tuples per Table”. This
row describes the following scenario. First, reduce the sizes
of the tables involved in the query to just 10 tuples each,
by random sampling. Next, execute the query using these
tables.

The rest of the row shows the run time of “Manual”,
“Perl+DB”, and SLIC methods, then the accuracy of SLIC.
Each time point was averaged over the times of 3 volunteers
(graduate students in our case), who employed the particu-
lar method. The row shows that “Manual” takes 1 minute
and “Perl+DB” takes 28 minutes. It also shows two time
amounts for SLIC, under “total time” (1 minute) and “inter-
active time” (1 minute). For all three methods, “total time”

Tech Report

Domain [Description FROM WHERE
IMDB top movies with few votes IMDB votes < 25,000
Movies | Ebert top movies from 50's and 60's Ebert 1950 $ year AND year < 1970
Unanimous top movies IMDB, Ebert, Prasanna IMDB.title SIMILAR Ebert.title AND Ebert.title SIMILAR Prasanna.title
Garcia-Molina journal pubs Garcia-Molina journal year # NULL
DBLP | VLDB short pubs VLDB last page < first page + 5
SIGMOD/ICDE pubs sharing authors SIGMOD, ICDE SIGMOD.authors SIMILAR ICDE.authors
B&N books over $100 Barnes b&n price > 100
Books | Amazon books to buy used Amazon list price = new price AND used price < new price
Cheaper at Amazon than B&N Amazon, Barnes Amazon.title SIMILAR Barnes.title AND Amazon new price < Barnes.b&n price
Table 2. SQL queries for our experiments
Nam SLIC
. Manual Total | Perl + DB Total N .
Domain Query Tu%lesk[:er Time (min) Time (min) Tol(::]lﬂ’ll;;me 'Il!::re‘:n(cnl:lvnv; Nur’?\lcl)(l)::eCt Superset Size
10 ! 28 1 1 0 100%
IMDB few votes 100 1 29 1 i 31 100%
250 3 29 I 1 128 100%
10 i 31 1 i 4 100%
Movies | Ebert top in 50's and 60's 100 I 3 i 1 31 100%
242 3 31 1 1 80 100%
10 i 58 1 i 0 100%
Unanimous top movies 100 14 58 2 2 13 170%
242-517 80 58 4 4 61 161%
i0) 34 1 1 3 100%
Garcia-Molina journal pubs 100 2 34 1 1 21 100%
312 5 34 1 i 95 100%
100 4 37 1 I 30 100%
DBLP | VLDB short pubs 500 19 37 i 1 119 100%
2136 — 37 3 3 318 100%
100 76 35 6 5 15 100%
SIGMOD/ICDE shared authors 500 — 56 8 5 318 100%
1787-1798 — 57 15 6 1756 114%
100 4 33 i 1 11 100%
B&N books over $100 500 20 33 1 1 52 100%
5000 — 33 8 7 397 100%
100 4 42 3 3 20 100%
Books Amazon buy used 500 19 43 4 3 155 100%
2490 — 43 5 4 537 100%
100 137 37 31 30 45 100%
Cheaper at Amazon than B&N 500 o 57 34 31 238 100%
2490-5000 — 97 95 35 906 102%

Figure 5. Accuracy and run time of Manual vs. Perl+DB vs. SLIC.

is computed from when the user is given the data and the
query, until when the results are obtained (or in SLIC case,
until the time SLIC reports convergence). For SLIC, “in-
teractive time” is the total number of minutes the user is
required to remain at the console (i.e., until SLIC notifies
the user that it will ask no further questions).

The last two columns of the first row show the number
of correct tuples in the result of the query (0 in this case)
and the superset size (100%). The value 2% means the su-
perset returned is at x% of the size of the set of correct tu-
ples. (This set is found using the “Perl+DB” method.) The
closer z is to 100, the better result for SLIC. “Manual” and
“Perl+DB” always obtained 100%.

Figure 5 shows that, as expected, “Manual” does not
scale to large data sets (we attempted “Manual” on some
of these, but stopped after it became clear that the method
was not scalable). It however outperformed “Perl+DB” on
small data sets. “Perl+DB” spent most of its time in writing
and debugging Perl scripts.

Compared to “Manual”, SLIC achieved comparable or
lower total time on small data sets (e.g., 1-4 minutes). It
clearly can also handle large data sets for which “Manual”

is not scalable. Compared to “Perl+DB”, in all cases SLIC
achieved an order-of-magnitude reduction, or comparable
in total time. For example, on “Unanimous top movies”
queries, “Perl+DB” incurred 58 minutes, whereas SLIC in-
curred only four minutes. The most comparable case was
“Cheaper at Amazon than B&N” in the last row of the fig-
ure. Here “Perl + DB” finished in 97 minutes and SLIC in
95. In this case SLIC spent most time in extraction (e.g.,
B&N has complex HTML). We believe SLIC’s time can
be significantly reduced by a reimplementation in C (the
current SLIC version is in Perl). Besides run time advan-
tages, it is important to note that SLIC only requires the
user to be able to answer intuitive questions (e.g., “Is price
in bold font?”). In contrast, “Perl + DB” requires that the
user is competent in a scripting language (e.g., Perl), build-
ing HTML wrappers, and interacting with RDBMSs.

Accuracy: Figure 5 shows that in 23 out of 27 scenarios
SL.IC returned the exact results (e.g., superset size 100%).
The largest superset sizes (170% and 161%) occurred when
the number of results returned was relatively small (22 and
98 tuples), which could be easily corrected with manual

Tech Report

postprocessing. The results thus suggest that SLIC can
achieve high accuracy in a relatively short amount of time.

User Interaction: We have also randomly selected nine
query scenarios, and examined them to evaluate the effec-
tiveness of SLIC in soliciting domain knowledge to quickly
converge on the correct result (not shown due to space lim-
itation). The results show that in all nine scenarios SLIC
converged in only a few iterations (2-10) to the exact result
sets, suggesting that SLIC is effective in soliciting domain
knowledge from the user to converge quickly to highly ac-
curate query results.

6. Related Work

Our work is most related to the dual problems of extract-
ing structured data and managing uncertain data, The prob-
lem of extracting structured data from text, HTML pages,
email, etc. has received significant attention in the database,
Al, Web, and KDD communities [1, 26, 27, 7]. Many
recent works (e.g., [26, 27]) develop powerful learning-
based extraction methods (e.g., HMM, CRF). For template-
based Web pages, numerous works have developed wrap-
per solutions (e.g., [3, 19, 4]), or data description languages
[7]. Other works address the issue by directly transforming
HTML pages into more structured models, such as XML
[25, 9]. The key commonality underlying these methods
is that they tend to require substantial start-up efforts (e.g.,
manual labeling of training data or rule construction), and
hence are not well suited for our ad hoc query contexts. Fur-
thermore, they are often geared toward extracting a broad
variety of structured data for long-term or repeated query-
ing. In contrast, SLIC is strictly query-centric: it extracts
only as much structure as necessary to answer a user query,
a principle that appears well suited for ad hoc, one-time
query contexts.

The extraction process often involves some uncertainty
(as SLIC can attest). Managing uncertain data has recently
received much attention [24, 28, 5, 15]. Our work here man-
ages uncertainty in the context of integrating Web data, a
specific and practical problem. Our work also examines
how domain knowledge can be interactively solicited and
exploited to reduce the uncertainty, thereby contributing a
potentially novel aspect to research on managing uncertain
data.

Finally, prior work such as [23] has also discussed set-
valued representations, but there the focus was more on effi-
cient storage solutions, which can potentially be valuable in
our contexts. The work [22] also discusses set-based joins,
but does not consider TF/IDF semantics, which raised chal-
lenging issues (e.g., unknown corpora) in our settings.

7. Conclusion and Future Work

We have introduced the problem of on-the-fly extraction
and querying of template-based Web data. We developed
the SLIC system, which to the best of our knowledge is the

first end-to-end solution proposed for this important prob-
lem. SLIC constructs query-directed, approximate wrap-
pers by asking the user only relatively simple questions. It
also interleaves the process of extraction and execution, to
converge to a satisfactory query result quickly, with min-
imal user efforts. We evaluated SLIC extensively on real-
world domains, demonstrating that for many interesting and
practical queries the user can obtain useful results after only
a few simple questions, and that SLIC is significantly faster
than current solutions. SLIC thus provides a promising first
step toward a principled solution for on-the-fly processing
of Web data, In the future we plan to improve upon several
technical components of SLIC, such as extending relational
query optimization techniques for our framework and inves-
tigating the challenges highlighted in Section 3.2.

References

[1] E. Agichtein and V. Ganti. Mining reference tables for automatic text segmen-
tation. In Proc. of KDD-04, 2004.

2] K. Al-Kofahi and J. Conrad. Large-scale legal and business information man-
agement: R&d at thomson legal & regulatory. In DAIS Seminar Series, UIUC,
2006.

3] A. Arasu and H. Garcia-Molina. Extracting structured data from Web pages.
In Proc. of SIGMQD-03, 2003.

[4] V. Crescenzi, G. Mccca, and P. Merialdo. Roadrunner: Towards automatic data
extraction from large web sites. In The VLDB Journal, pages 109-118, 2001,

{51 N. Dalvi and D. Suciu. Answering querics from statistics and probabilistic
views. In VLDB, 2005.

[6] A. Deutsch, Y. Katsis, and Y. Papakonstantinou. Determining source contribu-
tion in information integration systems. In PODS, 20035,

{71 K. Fisher, Y. Mandclbaom, and D. Walker. The next 700 data description lan-
guages. In POPL, 2006.

[8] D. Gibson, K. Punera, and A. Tomkins., The volume and cvolution of web page
templates. In WWW (Special interest tracks and posters), 2005.

9] J. Graupmann, R. Schenkel, and GG. Weikum. The spheresearch engine for
unifi cd ranked retrieval of heterogencous xml and web documents. In VLDB,
2005.

[10] L. Gravano, P. Ipeirotis, N. Koudas, and D. Srivastava. Text joins in an rdbms
for web data integration. In W, 2003,

[11] J. Gray, D. Liu, M. Nieto-Santistcban, A. Szalay, ID. DeWitt, and G. Heber,
Scientifi ¢ data management in the coming decade. In SIGMOD Record 34(4),
Dec. 2005.

[12] A. Halevy and C. Li http:/fwww2.cs.washington edw/nsf2003/fi nal-
reports/idm2003-report.pdf. 2004

[13] http://2dpancakes.typepad.com/ernic/2004/12/where_cs_facult html.

[14] http://randomratio.blagspot.com/2005.05.01 randomratio_archive.html.

[15] E.Hung, L. Getoor, and V. Subrahmanian. Pxml: A probabilistic semistruc-
tured data model and algebra. In JCDE, 2003,

{16] P Ipcirotis, A. Ntoulas, J. Cho, and L. Gravano. Modcling and managing con-
tent changes in text databases. In /CDE, 2005,

[17]1 A. Kadlag, A. V. Wanjari, J. Freire, and J. R. Haritsa. Supporting exploratory
queries in databases. In DASFAA, 2004.

[18] N. Koudas, A. Marathe, and D. Srivastava. Flexible string matching against
large databases in practice. In VLDB, 2004,

[19] N. Kushmerick,). Weld, and R. Doorenbos. Wrapper Induction for Informa-
tion Extraction. In Proc. of 1JCAI-97,1997.

[20] K.Lerman, L. Getoor, S. Minton, and C. Knoblock. Using the structure of web
sites for automatic segmentation of tables. In SIGMOD, 2004.

{21] E. Rahm, A. Thor, D. Aumucller, H. Do, N. Golovin, and T. Kirsten. ifuice -
information fusion utilizing instance correspondences and peer mappings. In
WebDB, 2005.

[22] K. Ramasamy, J. Patel, J. Naughton, and R. Kaushik Set containment joins:
The good, the bad and the ugly. In VLDB, 2000.

[23] S. Sarawagi and A. Kirpal. Effi cient sct joins on similarity predicates. In S/G-
MOD, 2004,

[24] A.D. Sarma, O. Benjelloun, A. Halevy, and J. Widom. Working models for
uncertain data. In JCDE, 2006.

{25] R. Torlone and P. Atzeni. Chameleon: an extensible and customizable tool for
web data translation, In VLDB, 2003

[26] V. Vydiswaran and S. Sarawagi. Learning to extract information from large
websites using sequential models. In COMAD, 2005,

[27] B. Wellner, A. McCallum, F. Peng, and M. Hay. An integrated, conditional
model of information extraction and coreference with application to citation
matching. In Proc. of UAI-04, 2004,

[28] J. Widom. Trio: A system for intcgrated management of data, accuracy, and
lincage. In CIDR, 2005

Tech Report

