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Abstract

K-Anonymity has been proposed as a mechanism for pri-
vacy protection in microdata publishing, and numerous re-
coding “models” have been considered for achieving k-
anonymity. This paper proposes a new multidimensional
model, which provides an additional degree of flexibility
not seen in previous (single-dimensional) approaches. Of-
ten this flexibility leads to higher-quality anonymizations,
as measured both by general-purpose metrics, as well as
more specific notions of query answerability.

In this paper, we prove that optimal multidimensional
anonymization is NP-hard (like previous k-anonymity mod-
els). However, we introduce a simple, scalable, greedy al-
gorithm that produces anonymizations that are a constant-
factor approximation of optimal. Experimental results show
that this greedy algorithm frequently leads to more desir-
able anonymizations than two optimal exhaustive-search al-
gorithms for single-dimensional models.

1. Introduction
A number of organizations publish microdata for purposes
such as demographic and public health research. In order to
maintain individual privacy, the released data must be “de-
identified” by removing attributes known to uniquely iden-
tify individuals, such as Name and Social Security Num-
ber. In addition, this process must account for the possibil-
ity of combining certain other attributes with external data
to uniquely identify individuals [15]. For example, an indi-
vidual might be “re-identified” by joining the released data
with another (publicly available) database on Age, Sex, and
Zipcode. Figure 1 shows such an attack, where Ahmed’s
medical information is determined by joining a released ta-
ble of patient data with a public voter registration list.

K-anonymity has been proposed to reduce the risk of
this type of attack [12, 13, 15]. The primary goal of k-
anonymization is to protect the privacy of the individuals to
whom the data pertains. However, subject to this constraint,
it is important that the released data remain as “useful” as
possible. Numerous recoding models have been proposed in
the literature for k-anonymization [8, 9, 13, 17, 10]. Often

Voter Registration Data
Name Age Sex Zipcode
Ahmed 25 Male 53711
Brooke 28 Female 55410
Casey 31 Female 90210
Dave 19 Male 02174
Evelyn 40 Female 02237

Patient Data
Age Sex Zipcode Disease
25 Male 53711 Flu
25 Female 53712 Hepatitis
26 Male 53711 Brochitis
27 Male 53710 Broken Arm
27 Female 53712 AIDS
28 Male 53711 Hang Nail

Figure 1. Tables vulnerable to a joining attack

the “quality,” or utility, of the published data is dictated by
the model that is used. The main contributions of this paper
are a new multidimensional recoding model and a greedy
algorithm for k-anonymization, an approach with several
important advantages:

• The greedy algorithm is substantially more efficient
than optimal k-anonymization algorithms that have
been proposed for single-dimensional models [2, 9,
12]. The time complexity of the greedy algorithm is
O(nlogn), whereas the exhaustive-search algorithms
are exponential in the worst case.

• The greedy multidimensional algorithm often pro-
duces better quality results than optimal single-
dimensional algorithms, thus producing better results
than the many existing single-dimensional heuristic
[6, 14, 16] and stochastic search [8, 18] algorithms.

1.1. Basic Definitions

Quasi-Identifier Attribute Set A quasi-identifer is a min-
imal set of attributes X1, ..., Xd in table T that can be
joined with external information to re-identify individ-
ual records. We assume that the quasi-identifier is well-
understood based on knowledge of the domain.
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Equivalence Class A table T consists of a multiset of tu-
ples. An equivalence class for T with respect to attributes
X1, ..., Xd is the set of all tuples in T containing identical
values (x1, ..., xd) for X1, ..., Xd. In SQL, this is equiv-
alent to the results of a GROUP BY query on attributes
X1, ..., Xd.

K-Anonymity Property Table T is said to satisfy k-
anonymity (or to be k-anonymous) with respect to attributes
X1, ..., Xd if every unique tuple x1, ..., xd in the (multiset)
projection of T on X1, ..., Xd occurs at least k times. That
is, the size of each equivalence class in T with respect to
X1, ..., Xd is at least k.

K-Anonymization A view V of relation T is said to be a k-
anonymization of T if the view modifies or generalizes the
data of T according to some model such that V satisfies the
k-anonymity property with respect to the quasi-identifier.

1.2. General-Purpose Quality Metrics

There are a number of notions of k-anonymization quality
[2, 6, 8, 10, 12, 13, 14, 15, 16], but intuitively, anonymiza-
tion should generalize or perturb the data as little as is nec-
essary to satisfy the k-anonymity constraint. Here we con-
sider some simple general-purpose quality metrics, but a
more targeted approach to quality measurement based on
query workload is described in Section 5.

The simplest kind of quality measure for k-
anonymization V is based on the size of the equivalence
classes E in V . The discernability metric, described in [2],
defines the cost of an anonymization as follows:

CDM =
∑

EquivClasses E |E|2

Intuitively, this metric assigns to each tuple t in V a
penalty, which is determined by the size of the equivalence
class containing t.

As an alternative, we also propose the normalized aver-
age equivalence class size metric:

CAV G = ( total records
total equiv classes )/(k)

This metric has a slightly more intuitive meaning, but it
also measures the quality of an anonymization based on the
size of the equivalence classes contained therein.

1.3. Paper Overview and Contributions

The first contribution of this paper is a new multidimen-
sional partitioning model for k-anonymization, described
in Section 2. Like previous k-anonymity problems [1, 10],
optimal k-anonymization using this new model is NP-hard.
For this reason, we consider the worst-case maximum size
of equivalence classes, and we find that this upper bound
is O(k) in the multidimensional case, while in the single-
dimensional model, this bound can grow linearly with the

number of records. A simple variation of the multidimen-
sional model, described in Section 3 has a maximum upper-
bound of 2k.

Following these results, we introduce a simple greedy al-
gorithm for multidimensional anonymization in Section 4.
This algorithm is scalable to large data sets, and for the
general-purpose quality metrics described in Section 1.2,
the results are a constant-factor approximation of optimal.

General-purpose quality metrics are a good starting point
when the ultimate use of the published data is unknown.
However, in some cases, the data publisher might want to
“optimize” for a particular purpose (while maintaining the
k-anonymity constraint). Section 5 introduces a more so-
phisticated notion of quality measurement, based on a work-
load of aggregate queries.

In Section 6 we describe our experimental evaluation,
which compares the quality of anonymizations obtained by
our greedy algorithm with those obtained using exhaustive
optimal algorithms for two proposed single-dimensional
models. Our results indicate that the greedy algorithm of-
ten produces better quality results, as measured both by
general-purpose cost metrics and a simple query workload.

Finally, discussions of related and future work are pro-
vided in Sections 7 and 8.

2. Multidimensional Global Recoding
In a relational database, there is some domain of values as-
sociated with each attribute. We use the notation DX to de-
note the domain of attribute X . A global recoding seeks to
achieve k-anonymity by mapping the domains of the quasi-
identifier attributes to generalized or altered values [17].

Global recoding can be further broken down into two
sub-classes [9]. A single-dimensional global recoding is
defined by a function φi : DXi → D′ for each attribute Xi

of the quasi-identifier. An anonymization V is obtained by
applying each φi to the values of Xi in each tuple of T .

Alternatively, a multidimensional global recoding is de-
fined by a single function φ : DX1 × ... × DXn → D′,
which is used to recode the domain of value vectors asso-
ciated with the set of quasi-identifier attributes. Under this
model, an anonymization V is obtained by applying φ to the
vector of quasi-identifier values in each tuple of T .

Partitioning models have been considered in the liter-
ature for defining recoding functions for totally-ordered
domains [2, 8], such as numeric attributes. However,
these previous proposals have considered only single-
dimensional recoding. A single-dimensional interval is de-
fined by a pair of endpoints p, v ∈ DXi such that p ≤ v.
(The endpoints of such an interval may be open or closed,
in order to handle continuous domains.)

Single-dimensional Partitioning Assume there is a total
order associated with the domain of each quasi-identifier
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Age Sex Zipcode Disease
[25-28] Male [53710-53711] Flu
[25-28] Female 53712 Hepatitis
[25-28] Male [53710-53711] Brochitis
[25-28] Male [53710-53711] Broken Arm
[25-28] Female 53712 AIDS
[25-28] Male [53710-53711] Hang Nail

Figure 2. A single-dimensional anonymiza-
tion of Patients

attribute Xi. A single-dimensional partitioning defines, for
each Xi, a set of non-overlapping single-dimensional in-
tervals that cover DXi

. φi maps each q ∈ DXi
to some

summary statistic for the interval in which it is contained.
The released data will include simple statistics that sum-

marize the intervals they replace. For now, we assume that
these summary statistics are min-max ranges, but we dis-
cuss some other possibilities in Section 5.

One of the main contributions of this paper is to ex-
tend partitioning-based anonymization to multidimensional
recoding. Again, assume a total order for each DXi . A
multidimensional region is defined by a pair of d-tuples
(p1, ..., pd), (v1, ..., vd) ∈ DX1 × ... × DXd

such that
∀i, pi ≤ vi. Conceptually, each region is bounded by a
d-dimensional rectangular box, and each edge and vertex of
this box may be either open or closed to provide flexibility
for continuous domains.

Strict Multidimensional Partitioning A strict multidi-
mensional partitioning defines a set of non-overlapping
multidimensional regions that cover DX1 × ... × DXd

. φ
maps each tuple (x1, ..., xd) ∈ DX1 × ...×DXd

to a sum-
mary statistic for the region in which it is contained.

When φ is applied to table T (assuming each region is
mapped to a unique vector of summary statistics), each non-
empty region is an equivalence class in V . For simplicity,
we again assume that these summary statistics are ranges,
and further discussion is provided in Section 5.

Sample 2-anonymizations of Patients, using single-
dimensional and multidimensional partitioning are shown
in Figures 2 and 3, respectively. Notice that the anonymiza-
tion obtained using the multidimensional model is not per-
missible under the single-dimensional model because the
domains of Age and Zipcode are not recoded to a single
set of intervals (e.g., Age 25 is mapped to either [25-26]
or [25-27], depending on the values of Zipcode and Sex).
However, the single-dimensional generalization is also valid
under the multidimensional model.

Proposition 1 Every single-dimensional partitioning for
quasi-identifier attribute sets X1, ..., Xd can be expressed
as a strict multidimensional partitioning. However, when
d ≥ 2 and ∀i, |DXi | ≥ 2, there exists a strict multidi-
mensional partitioning that cannot be expressed as a single-
dimensional partitioning.

Age Sex Zipcode Disease
[25-26] Male 53711 Flu
[25-27] Female 53712 Hepatitis
[25-26] Male 53711 Brochitis
[27-28] Male [53710-53711] Broken Arm
[25-27] Female 53712 AIDS
[27-28] Male [53710-53711] Hang Nail

Figure 3. A multidimensional anonymization
of Patients

Proof Sketch The single-attribute intervals that define a
single-dimensional partitioning induce a set of multidimen-
sional regions, which in turn define a multidimensional par-
titioning. However, when there is more that one quasi-
identifier attribute, and each quasi-identifier attribute has a
domain of size at least 2, we can construct a multidimen-
sional partitioning that does not recode one of the attributes
to a single set of intervals, and is thus not a valid single-
dimensional partitioning. ¤

This indicates that the optimal strict multidimensional
partitioning must be at least as good as the optimal single-
dimensional partitioning. However, in Section 2.2 we prove
that the optimal k-anonymous multidimensional partition-
ing problem is NP-hard. For this reason, we also consider
the worst-case bounds on partition size, and we show that
the maximum size of a region resulting from a minimal
multidimensional partitioning is O(k), for a constant-sized
quasi-identifier. In Section 2.4, we show that for the single-
dimensional model this bound may be linear in the number
of tuples in T . These results provide some useful guide-
lines, though they do not indicate that either model would
necessarily lead to better results for any specific algorithm
or database.

2.1. Spatial Representation

Throughout the rest of this paper, it is convenient to rep-
resent quasi-identifier attribute sets using a spatial frame-
work. Consider table T with quasi-identifier attributes,
X1, ..., Xd, and assume that there exists some total order-
ing for each domain DXi . The (multiset) projection of
X1, ..., Xd on T can be represented in d-dimensional space,
and each record in T is a point in this space. For exam-
ple, Figure 4(a) shows the two-dimensional representation
of Patients from Figure 1, for quasi-identifier attributes Age
and Zipcode.

Similar models have been considered for rectangular par-
titioning in 2 dimensions [11]. In this context, the single-
dimensional and multidimensional partitioning models are
analogous to the “p × p” and “arbitrary” classes of tilings,
respectively. However, to the best of our knowledge, none
of the previous optimal tiling problems have included con-
straints requiring minimal partition occupancy.
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Figure 4. Spatial representation of (a) Patients table, (b) a single-dimensional partitioning, and (c) a
strict multidimensional partitioning, for quasi-identifier attributes Zipcode and Age

2.2. Optimal Strict Multidimensional Par-
titioning is NP-Hard

There have been several previous hardness results for opti-
mal k-anonymization under other recoding models, includ-
ing minimum attribute- and cell-suppression [1, 10]. The
problem of optimal strict k-anonymous multidimensional
partitioning (finding the strict k-anonymous multidimen-
sional partitioning with the smallest CDM or CAV G) is also
NP-hard, but this result does not follow directly from the
previous results. We formulate the following decision prob-
lem for strict multidimensional partitioning using CAV G

1:

K-Anonymous Strict Multidimensional Partitioning
For multiset of points P in d-dimensional space, is there a
strict multidimensional partitioning such that every result-
ing multidimensional region Pi contains either |Pi| ≥ k or
|Pi| = 0 points and CAV G ≤ positive constant c?

Our proof is based on a straightforward reduction from
integer partitioning [7]:

Integer Partitioning Consider a set A of n positive inte-
gers {a1, ..., an}. Is there some A′ ⊆ A, such that

∑
ai∈A′ ai =

∑
aj∈A−A′ aj ?

Theorem 1 The k-anonymous strict multidimensional par-
titioning decision problem is NP-complete.

Proof The proof is by reduction from integer partitioning.
For each ai ∈ A, construct {pi} containing ai identical
copies of the point (0, ..., 0, 1i, 0, ..., 0) (the ith coordinate
is 1, and all other coordinates are 0). Let multiset P =⋃{pi}. P resides in an n-dimensional unit-hypercube.

We claim that the integer partitioning problem for A can
be reduced to the following: Let k =

P
ai

2 . Is there a k-
anonymous strict multidimensional partitioning for P such
that CAV G ≤ 1? To prove this claim, we show that there is

1Although the following results are stated and proven for CAV G, the
construction is similar for CDM .

a solution to the k-anonymous multidimensional partition-
ing problem for P if and only if there is a solution to the
integer partitioning problem for A.

Suppose there exists a k-anonymous multidimensional
partitioning for P . This partitioning must define two multi-
dimensional regions containing precisely k =

P
ai

2 points
each, and possibly some number of empty regions. By the
strictness property, these regions must not overlap. Thus,
the total number of points in each of the two non-empty
regions constitute the sum of integers in two disjoint com-
plementary subsets of A, and we have a partitioning of A.

In the other direction, suppose there is an integer parti-
tioning of A. For each binary partitioning of A into disjoint
complementary subsets A1 and A2, there is a multidimen-
sional partitioning of P into regions P1, ..., Pm such that
|P1| =

∑
ai∈A1

ai, |P2| =
∑

ai∈A2
ai, and all other Pi

are empty: P1 is defined by two points, the origin and the
point p having ith coordinate 1 when ai ∈ A1 and 0 oth-
erwise. The bounding box for P1 is closed at all edges and
vertices. P2 is defined by the origin and the point p having
ith coordinate = 1 when ai ∈ A2, and 0 otherwise. The
bounding box for P2 is open at the origin, but closed on
all other edges and vertices. CAV G is the average number
of points in the non-empty regions, divided by k. In this
construction, CAV G = 1, and P1, ..., Pm is a k-anonymous
multidimensional partitioning of P .

Finally, a given a solution to the k-anonymous multidi-
mensional partitioning problem can be verified in polyno-
mial time by simply scanning the input set of points P and
maintaining a count for each region.¤
2.3. Worst-Case Bound for Strict Multidi-

mensional Partitioning

We define a multidimensional cut for a multiset P of points
in d-dimensional space to be an axis-parallel binary cut pro-
ducing two disjoint multisets of points.

Allowable Multidimensional Cut Consider multiset P of
points in d-dimensional space. A cut perpendicular to di-
mension Xi at xi is allowable if and only if Count(P.Xi >
xi) ≥ k and Count(P.Xi ≤ xi) ≥ k.
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Figure 5. (a)A set of points in 2-dimensions
for which there is no allowable cut, (b) Adding
a single point produces an allowable cut.

Minimal Strict Multidimensional Partitioning Let
R1, ..., Rn denote a set of regions induced by a strict mul-
tidimensional partitioning, and let each region Ri contain
multiset Pi of points. This multidimensional partitioning
is minimal if and only if, ∀i, |Pi| ≥ k and there exists no
allowable multidimensional cut for Pi.

In this section, we prove that there is a worst-case upper-
bound on the number of points contained in a region defined
by a minimal multidimensional partitioning, independent of
the total number of tuples in T . We represent T as a multiset
of points P in d-dimensional space.

Lemma 1 There exists a multiset P of points in d-
dimensional space such that |P | = 2d(k − 1) + m, where
m is the maximum number of copies of any distinct point in
P , and there is no allowable multidimensional cut for P .
Proof Construct a multiset of points P such that |P | =
2d(k − 1) + m, but there exists no allowable cut for P .
Let x̂i denote some value on axis Xi such that x̂i − 1 and
x̂i + 1 are also values on axis Xi, and let P initially con-
tain m copies of the point 〈x̂1, x̂2, ..., x̂d〉. Add to P k − 1
copies each of the following points:

(x̂1 − 1, x̂2, ..., x̂d), (x̂1 + 1, x̂2, ..., x̂d),
(x̂1, x̂2 − 1, ..., x̂d), (x̂1, x̂2 + 1, ..., x̂d),
...
(x̂1, x̂2, ..., x̂d − 1), (x̂1, x̂2, ..., x̂d + 1)

For example, Figure 5 shows P in 2 dimensions. By
addition, |P | = 2d(k − 1) + m, and by projecting P onto
any Xi we obtain the following point counts:

Count(Xi) =





k − 1, Xi = x̂i − 1
m + 2(d− 1)(k − 1), Xi = x̂i

k − 1, Xi = x̂i + 1
0, otherwise

Based on these counts, it is clear that any binary cut per-
pendicular to axis Xi would result in some partition con-
taining fewer than k points. ¤
Lemma 2 For any multiset of points P in d-dimensional
space such that |P | > 2d(k − 1) + m, where m is the
maximum number of copies of any distinct point in P , there
exists an allowable multidimensional cut for P .

Proof Consider an arbitrary P in d-dimensional space,
such that |P | = 2d(k − 1) + m + 1, and let x̂i denote
the median value of P projected on axis Xi. If there is no
allowable cut for P , we claim that there exist at least m + 1
copies of point (x̂1, x̂d, ..., x̂d) in P , contradicting the defi-
nition of m.

For every dimension i = 1, ..., d, if there is no allowable
cut perpendicular to axis Xi, then Count(Xi < x̂i) ≤ k−1
and Count(Xi > x̂i) ≤ k − 1. Then, Count(Xi = x̂i) ≥
2(d− 1)(k− 1)+m+1. Thus, over d dimensions, we find
Count(X1 = x̂1 ∧ ... ∧Xd = x̂d) ≥ m + 1. ¤

Theorem 2 If R1, ..., Rn denotes the set of regions in-
duced by a minimal strict multidimensional partitioning,
the number of points contained in any Ri is no more than
2d(k − 1) + m.

Proof The proof follows from Lemmas 1 and 2. ¤

Notice that recursive allowable d-dimensional cuts will
result in a k-anonymous multidimensional partitioning for
T . (Though not all possible multidimensional partition-
ings can be obtained in this way.) For example, Figure 4(c)
shows a multidimensional partitioning. The first cut in this
example occurs on the Zipcode dimension at 53711. Then,
the left-hand side is cut again on the Age dimension, at 26.
Both of these cuts are allowable because they do not pro-
duce any regions containing fewer than k points.

2.4. Single-dimensional Partitioning Bound

Single-dimensional partitioning can also be represented
spatially, and a single-dimensional cut is also axis-parallel.
However, we must consider all regions in the space when
determining whether a cut is allowable.

Allowable Single-Dimensional Cut Consider a multiset
P of points in d-dimensional space, and suppose we have
already made S single-dimensional cuts, thereby separat-
ing the space into disjoint regions R1, ..., Rm. A single-
dimensional cut perpendicular to Xi at xi is allowable,
given S, if and only if ∀Rj overlapping line Xi = xi,
Count(Rj .Xi ≤ xi) ≥ k and Count(Rj .Xi > xi) ≥ k.

Minimal Single-Dimensional Partitioning A set S of al-
lowable single-dimensional cuts is a minimal single-
dimensional partitioning for P if and only if there does not
exist an allowable single-dimensional cut for P given S.

In the previous section, we showed that the worst-case
upper bound on minimal partition size is independent of
the total number of tuples in T under the strict multi-
dimensional partitioning model. However, under single-
dimensional partitioning, this worst-case upper bound can
degrade linearly with the number of tuples in T .
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Theorem 3 The maximum size of a region R resulting from
a minimal single-dimensional partitioning of a multiset of
points P in d-dimensional space, for constant d ≥ 2, can
be O(|P |).
Proof We construct P and a minimal single-dimensional
partitioning for P such that the greatest number of points
in a resulting region is O(|P |). For some quasi-identifier
attribute Xi, consider finite set VXi ⊆ DXi such that
|VXi

| = m, and let x̂i ∈ VXi
. Initially, let P contain pre-

cisely 2k − 1 points where Xi = x̂i. Then add to P an
arbitrarily large number of points, each defined by some tu-
ple (p1, ..., pd), where pi ∈ VXi

, but pi 6= x̂i, and such that
there are at least k points in the resulting P having pi = xi

for each xi ∈ VXi .
By construction, there are m allowable single-

dimensional cuts for P perpendicular to Xi (at each point in
VXi

), and we denote this set of cuts S. However, there are
no allowable single-dimensional cuts for P given S. Thus,
S is a minimal single-dimensional partitioning, and the size
of the largest resulting region is O(|P |). ¤

By partitioning the space with allowable single-
dimensional cuts, we obtain a k-anonymous single-
dimensional partitioning for T . For example, Figure 4(b)
shows the spatial representation of a single-dimensional
partitioning. The first cut occurs on the Zipcode dimension
at 53711. Once this cut has been made, there are no other
allowable single-dimensional cuts. Notice that any cut per-
pendicular to the Age axis would result in a region on the
right containing fewer than k points.

3. Multidimensional Local Recoding
In contrast to the global recoding models described in the
previous section, local recoding models seek to achieve k-
anonymity by mapping individual instances of data items to
generalized values [17]. Formally, a local recoding func-
tion, which we will denote φ∗ to distinguish it from global
recoding functions, maps each (non-distinct) tuple t ∈ T
to some recoded tuple t′. Anonymization V is obtained by
replacing each tuple t ∈ T with φ∗(t). Several local recod-
ing models have been considered in the literature, some of
which are outlined in [9]. In this section, we describe one
such model that relaxes the requirements of strict multidi-
mensional partitioning.

Relaxed Multidimensional Partitioning A relaxed multi-
dimensional partitioning for relation T defines a set of
(potentially overlapping) distinct multidimensional regions
that cover DX1 × ... × DXd

. Local recoding function φ∗

maps each tuple (x1, ..., xd) ∈ T to a summary statistic for
one of the regions in which it is contained.

This relaxation offers flexibility. For example, consider
generating a 3-anonymization of our Patients table, and sup-
pose Zipcode is the single quasi-identifier attribute. Using

Age Sex Zipcode Disease
25 Male [53710-53711] Flu
25 Female [53710-53711] Hepatitis
26 Male [53711-53712] Brochitis
27 Male [53710-53711] Broken Arm
27 Female [53711-53712] AIDS
28 Male [53711-53712] Hang Nail

Figure 6. Relaxed partitioning for single
quasi-identifier attribute Zipcode

the strict model, we would need to recode the Zipcode value
in each tuple to [53710-53712]. However, under the relaxed
model, this recoding can be performed on a tuple-by-tuple
basis, and Figure 6 shows a possible anonymization.

Proposition 2 Every strict multidimensional partitioning
can be expressed as a relaxed multidimensional partition-
ing. However, when there are at least two tuples in table T
having the same vector of quasi-identifier values, there ex-
ists a relaxed multidimensional partitioning that cannot be
expressed as a strict multidimensional partitioning.

Proof By definition, every strict partitioning is equivalent
to some relaxed partitioning.

When there are at least at least two tuples, a and b,
in T having the same vector of quasi-identifier values,
(x1, ..., xn), we can construct a relaxed multidimensional
partitioning that is not equivalent to any strict multidimen-
sional partitioning by constructing multidimensional re-
gions P1 and P2 that overlap at (x1, ..., xn) and φ∗ that
maps a to P1 and b to P2. ¤

This relaxed model can also be represented in d-
dimensional space. However, a partitioning is not neces-
sarily defined by binary cuts. Instead, a set of points is
partitioned by defining two (possibly overlapping) multidi-
mensional regions P1 and P2, and then mapping each point
to either P1 or P2 (but not both). In this model, the upper-
bound on partition size is 2k − 1.

Minimal Relaxed Multidimensional Partition We say
that a multiset of points P is minimal according the the
relaxed muldimensional partitioning model if and only if
|P | ≥ k and it is not possible to divide P into two disjoint
sets of points, P1 and P2, such that |P1| ≥ k and |P2| ≥ k.

Proposition 3 The maximum size of a minimal partition P ,
under the relaxed multidimensional partitioning model, is
2k − 1.

Proof This follows from the definition of minimality.¤

4. A Greedy Partitioning Algorithm
Using multidimensional partitioning, a k-anonymization is
generated in two steps. In the first step, multidimensional
regions are defined that cover the domain space, and in the
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Anonymize(partition)
if (no allowable multidimensional cut for partition)

return partition
else
dim ← choose dimension()
fs ← frequency set(partition, dim)
splitV al ← find median(fs)
lhs ← {t ∈ partition : t.dim ≤ splitV al}
rhs ← {t ∈ partition : t.dim > splitV al}
Anonymize(rhs)
Anonymize(lhs)

Figure 7. Top-down greedy algorithm for
strict multidimensional partitioning

second step, recoding functions are constructed using sum-
mary statistics from each region. In the previous sections,
we alluded to a recursive algorithm for the first step. In
this section we outline a simple scalable algorithm, rem-
iniscent of algorithms used to construct kd-trees [5], that
can be adapted to either strict or relaxed partitioning.

The strict partitioning algorithm is shown in Figure 7.
Each iteration must choose the dimension, as well as a value
on this dimension, about which to partition. In the litera-
ture about kd-trees, one strategy used for obtaining uniform
occupancy was median-partitioning [5]. In Figure 7, this
means choosing a split value that is the median of partition
projected on dim. Like kd-tree construction, the time com-
plexity is O(nlogn), where n is the number of tuples in
table T .

We have some flexibility in choosing the dimension on
which to partition. As long as we make an allowable cut
when one exists, this choice does not affect the partition-
size upper-bound. However, a simple heuristic chooses the
dimension with the widest (normalized) range of values [5],
and we use this heuristic in our implementation. Alterna-
tively, it may be possible to choose a dimension based on
knowledge of an ancticipated workload.

Theorem 4 The greedy median-partitioning algorithm for
strict multidimensional partitioning generates a set of mul-
tidimensional regions, each containing at least k points, but
no more than 2d(k − 1) + m, where m is the maximum
number of copies of any distinct point.

Proof Observe that the algorithm produces a strict multi-
dimensional partitioning of the space, and each of the re-
sulting regions contains at least k points. If there exists an
allowable multidimensional cut for a partition P , perpen-
dicular to Xi, then the cut perpendicular to Xi at the median
is allowable. Given these observations, the upper bound on
partition size follows from Theorem 2. ¤

The partitioning algorithm in Figure 7 is easily adapted
for relaxed partitioning. Specifically, the points falling at
the median (where t.dim = splitV al) are divided evenly

between lhs child and rhs child such that |lhs child| =
|rhs child| (+1 when |partition| is odd). In this case,
there is a 2k-1 worst-case upper-bound on partition size.

Theorem 5 The greedy median-partitioning algorithm for
relaxed multidimensional partitioning produces a set of
multidimensional regions, each containing at least k, but
no more than 2k − 1, points.

Proof This follows from Proposition 3. ¤

Following partitioning, the second step of the algorithm
computes one or more summary statistics for the tuples con-
tained in each region. A recoding function is then con-
structed, mapping each of the original tuples contained in
a region to the summary statistics for that region. This
process is described in more detail in Section 5.

4.1. Bounds on Quality

It is easy to show that the greedy partitioning algorithm pro-
duces anonymizations that are a constant factor approxima-
tion of optimal, as measured by the general-purpose metrics
described in Section 1.2.

By definition, k-anonymity requires that every equiva-
lence class contain at least k records. For this reason, the
optimal achievable value of CDM ≥ k ∗ total records, and
the optimal value of CAV G ≥ 1.

Using our worst-case bounds on partition size, and as-
suming that the points in each distinct partition are mapped
to a unique vector of summary statistics, we compute
bounds for these cost metrics. Specifically, for strict mul-
tidimensional partitioning, the size of each partition P ≤
2d(k−1)+m. So, CDM ≤ (2d(k−1)+m)∗total records
and CAV G ≤ (2d(k−1)+m)/k, where m is the maximum
number of copies of any distinct point.

Similarly, for relaxed multidimensional partitioning the
size of each partition P ≤ 2k. So, CDM ≤ 2k ∗
total records, and CAV G ≤ 2.

These simple observations have important implications.
For constant d, it is guaranteed that the greedy algorithm
for the strict model will generate an O(k) approximation
of the optimal solution. Further, the algorithm for relaxed
partitioning results in a 2-approximation.

4.2. Scalability

When the table T to be anonymized is larger than the avail-
able memory, the main scalability issue to be addressed is
finding the median value within a given partition of a se-
lected attribute about which to make the next recursive cut.

We propose a solution to this problem based on the idea
of a frequency set. The frequency set of attribute A for par-
tition P is the set of unique values of A in P , each paired
with an integer indicating the number of times it appears in
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P . Given the frequency set of A for P , we can select the
median value using a standard median-finding algorithm.

Because individual frequency sets contain just one entry
per value in the domain of a particular attribute, and are
much smaller than the size of the data itself, it is reasonable
to assume that a single frequency set will fit in memory. For
this reason, in the worst case, we must sequentially scan
the database at most twice, and write once, per level of the
recursive partitioning “tree.” The data is first scanned once
to find the median, and then scanned and written once to
re-partition the data into two “runs” (lhs and rhs) on disk.

It is worth noting that in some cases the algorithm pre-
sented in Figure 7 could be further optimized to take ad-
vantage of available memory because, in practice, the fre-
quency sets for multiple attributes may fit in memory.

5. Workload-Driven Quality Measurement
The general-purpose quality metrics in Section 1.2 are a
good place to start when the ultimate use of the anonymized
data is unknown. However, in some cases, the publisher
may want to consider an anticipated workload, such as
building a data mining model [6, 8, 16], or answering a set
of aggregate queries. This section introduces the latter prob-
lem, including examples where the multidimensional model
provides flexibility.

Consider generating an anonymization that is useful
for answering a set of queries, drawn from the class of
queries with a selection predicate (equality or range) of
the form attribute <oper> constant and an ag-
gregate function. Here we consider the most common ag-
gregates (COUNT, SUM, AVG, MIN, and MAX). Our abil-
ity to answer these types of queries depends on two factors:
the type of summary statistic(s) released for each attribute,
and the degree to which the selection predicates in the work-
load match the range boundaries in the anonymous data.

The choice of summary statistics influences our ability
to compute various aggregate functions.2 In this paper, we
consider releasing two summary statistics for each attribute
A and equivalence class E:

• Range statistic (R) So far, all of our examples have
considered a single summary statistic defined by the
range of values for A appearing in E, which allows for
easy computation of MIN and MAX aggregates.

• Mean Statistic (M) Now, we also consider a summary
statistic defined by the mean value of A appearing in
E, which allows for the computation of AVG and SUM
aggregates.

When choosing which summary statistics to release, it
is important to consider potential avenues for inference.

2Certain types of aggregate functions (e.g., MEDIAN) are ill-suited to
this type of computation. We do not know of any way to compute such
functions from these summary statistics.

Age(R) Age(M) Sex(R) Zipcode(R) Disease
[25− 26] 25.5 Male 53711 Flu
[25− 27] 26 Female 53712 Hepatitis
[25− 26] 25.5 Male 53711 Brochitis
[27− 28] 27.5 Male [53710− 53711] Broken Arm
[25− 27] 26 Female 53712 AIDS
[27− 28] 27.5 Male [53710− 53711] Hang Nail

Figure 8. A 2-anonymization with multiple
summary statistics

Notice that in some cases simply releasing the minimum-
maximum range allows for some inferences about the dis-
tribution of values within an equivalence class. For exam-
ple, consider an attribute A, and let k = 2. Suppose that
an equivalence class of the released anonymization contains
two tuples, and A is summarized by the range [0 − 1]. It is
easy to infer that in one of the original tuples A = 0, and in
the other A = 1.

The presence of this type of inference is not likely to
represent a problem in preventing joining attacks because,
without background knowledge, it is still impossible for an
adversary to distinguish the tuples within an equivalence
class from one another, even if the adversary has informa-
tion about their distribution. This type of inference may also
arise in single-dimensional partitioning models. Nonethe-
less, it is an important issue to be aware of when designing
an anonymization scheme.

The second factor influencing our ability to answer ag-
gregate queries is the degree to which the selection predi-
cates in the given workload “match” the boundaries of the
range statistics in the released anonymization. In many
ways, this is analogous to matching indices and selection
predicates in traditional query processing.

Predicate-Range Matching If a query contains a selection
predicate P , P conceptually divides the original table T
into two sets of tuples, TT and TF (those that satisfy the
predicate and those that do not). When range statistics
are published, we say that an anonymization V matches a
boolean predicate P if every tuple t ∈ TT is mapped to an
equivalence class in V containing no tuples from TF .

As a simple example illustrating these two ideas, con-
sider a workload consisting of two queries:

SELECT AVG(Age)
FROM Patients
WHERE Sex = ‘Male’

SELECT COUNT(*)
FROM Patients
WHERE Sex = ‘Male’
AND Age ≤ 26

A strict multidimensional anonymization of Patients is
given in Figure 8, including two summary statistics (range
and median) for the Age attribute. Notice that the mean sta-
tistic allows us to answer the first query precisely and accu-
rately. The second query can also be answered precisely be-
cause the range referenced by the predicate matches a single
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Distribution (Discrete Uniform, Discrete Skewed)
Attributes Total quasi-identifier attributes
Cardinality Distinct values per attribute
Tuples Total tuples in table
Std. Dev. (σ) With respect to standard normal (Skewed only)
Mean (µ) (Skewed only)

Figure 9. Parameters of synthetic generator

equivalence class in the anonymization, which contains ex-
actly 2 tuples. Comparing this with the single-dimensional
recoding shown in Figure 2, notice that it would be impos-
sible to answer the second query precisely using the single-
dimensional recoding.

When a workload consists of many queries, even a mul-
tidimensional anonymization might not match every selec-
tion predicate. An exhaustive discussion of query process-
ing over imprecise data is beyond the scope of this paper.
However, one approach is to assume a uniform distribu-
tion of values for each attribute within each equivalence
class, and compute the aggregate function based on this as-
sumption. The effects of multidimensional versus single-
dimensional recoding, with respect to a specific query work-
load, are explored empirically in Section 6.3.

Our work on workload-driven anonymization is prelim-
inary, and there are a number of important future direc-
tions. One of the most important directions is directly in-
tegrating knowledge of an anticipated workload into the
anonymization algorithm. Formally, a query workload can
be expressed as a set of (multdimensional region, aggregate,
weight) triples, where the boundaries of each region are de-
termined by the selection predicates in the workload. Each
query is also assigned a weight indicating its importance
with respect to the rest of the workload. When a selection
predicate in the workload does not exactly match the bound-
aries of one or more equivalence classes, evaluating this
query over the anonymized data will incur some error. This
error can be defined as the normalized difference between
the result of evaluating the query on the anonymous data,
and the result on the original data. Intuitively, the task of a
workload-driven algorithm is to generate an anonymization
that minimizes the weighted sum of such errors.

6. Experimental Evaluation
The main goal of our experiments was to evaluate the qual-
ity of the anonymizations produced by our greedy algorithm
for multidimensional partitioning. In particular, we com-
pared these anonymizations with those produced by optimal
algorithms for two other models: full-domain generaliza-
tion [9, 12], and single-dimensional partitioning [2, 8]. The
specific algorithms used in the comparison were Incognito
[9] and K-Optimize [2], respectively. We chose these algo-
rithms for efficiency, but any exhaustive algorithm for these
models would yield the same result. From a performance
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Figure 10. Anonymization quality on 5-
attribute uniform distribution
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Figure 11. Anonymization quality on 5-
attribute discrete skewed distribution (σ = .2)

perspective, these experiments do not represent a fair com-
parison because the exhaustive algorithms are exponential
in the worst case, and they run many times slower than our
greedy algorithm. Nonetheless, the quality of the results
obtained by the latter is often superior.

For these experiments, we used both synthetic and real-
world data. We compared quality, using general-purpose
quality metrics described in Section 1.2, and also with re-
spect to a simple query workload, as outlined in Section 5.

6.1. Experimental Data

For some experiments, we used a synthetic data generator,
which produced two discrete joint distributions: discrete
uniform and discrete skewed. We limited the evaluation
to discrete distributions so that the exhaustive algorithms
would be tractable without pre-generalizing the data. To
generate the discrete skewed distribution, we first generated
the multivariate normal distribution, and then discretized
the values of each attribute into equal-width ranges. The
parameters are described in Figure 9.

In addition to synthetic data, we also used the Adults
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Figure 12. Anonymization quality on 5-
attribute skewed distribution (k = 10)

database from the UC Irvine Machine Learning Repository
[3], which contains data from the US Census and has be-
come a de facto benchmark for k-anonymity. We config-
ured this data set as it was configured for the experiments
reported in [2], using eight regular attributes, and removing
tuples with missing values. The resulting database consisted
of 30,162 records. For the (single- and multidimensional)
partitioning experiments, we imposed an intuitive ordering
on each attribute, but unlike [2], we eliminated all hierar-
chical constraints for both models. For the full-domain ex-
periments, we used the same generalization hierarchies that
were used in [9].

6.2. General-Purpose Metrics

In this section, we describe some simple experiments that
use general-purpose metrics to compare the quality of
anonymizations generated by greedy (strict) multidimen-
sional partitioning with those resulting from optimal algo-
rithms for single-dimensional partitioning and full-domain
generalization. Here we report results for the discernability
metric [2], but the comparisons are similar for the average
equivalence class size metric.

The first experiment compared the three models for var-
ied values of k. We fixed the number of tuples at 10,000, the
per-attribute cardinality at 8, and the number of attributes at
5. For the full-domain generalization model, we constructed
generalization hierarchies using binary trees. The results
for the Uniform distribution are shown in Figure 10. Re-
sults for the Discrete Skewed distribution (µ = 3.5, σ = .2)
are given in Figure 11. We found that greedy multidimen-
sional partitioning produced “better” generalizations than
the other algorithms in both cases. However, the magni-
tude of this difference was much more pronounced for the
skewed distribution.

Following this observation, the second experiment com-
pared quality using the same three models, but varied the
standard deviation (σ) of the synthetic data. (Small values
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Figure 13. Anonymization quality on discrete
skewed distribution (k = 10, σ = .2)
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Figure 14. Anonymization quality on Adults
database

of σ indicate a high degree of skew.) The number of at-
tributes was again fixed at 5, and k was fixed at 10. The
results (Figure 12) show that the difference in quality be-
tween multidimensional and the others is most pronounced
for highly-skewed distributions.

The next experiment measured quality for varied quasi-
identifier size, with σ = .2 and k = 10. As the number
of attributes increases, the observed discernability penalty
decreases for each of the three models (Figure 13). At first
glance, this result is counter-intuitive. However, this de-
crease is due to the sparsity of the original data, which con-
tains fewer duplicate tuples as the number of attributes in-
creases.

In addition to the synthetic data, we compared the three
algorithms using the Adults database (Figure 14). Again,
we found that greedy multidimensional partitioning pro-
duced the best results. This difference is most pronounced
for small k; as k increases, the results become comparable.

6.3. Workload-Based Quality

We also ran several experiments to compare the single- and
multidimensional partitioning models with respect to a sim-
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Figure 15. Optimal single-dimensional partitioning for two quasi-identifier attributes with a discrete
skewed distribution (µ = 25, σ = .2)
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Figure 16. Strict multidimensional partitioning for two quasi-identifier attributes with a discrete
skewed distribution (µ = 25, σ = .2).

Predicate on X
k Model Mean Error Std. Dev.
10 Single 7.73 5.94
10 Multi 4.66 3.26
25 Single 12.68 7.17
25 Multi 5.69 3.86
50 Single 7.73 5.94
50 Multi 7.94 5.87

Predicate on Y
k Model Mean Error Std. Dev.
10 Single 3.18 2.56
10 Multi 4.03 3.44
25 Single 5.06 4.17
25 Multi 5.67 3.80
50 Single 8.25 6.15
50 Multi 8.06 5.58

Figure 17. Error for count queries with single-
attribute selection predicates

ple query workload. We considered a synthetic data set con-
taining 1000 tuples, with two quasi-identifier attributes (dis-
crete skewed, each with cardinality 50, µ = 25, σ = .2),
and we generated k-anonymizations using the greedy mul-
tidimensional partitioning and optimal single-dimensional
partitioning algorithms. Visual representations of the re-
sulting partitionings are given in Figures 16 and 15.

The multidimensional partitioning does an excellent
job at capturing the underlying multivariate distribu-
tion. In contrast, we observed that for small k, single-
dimensional partitioning tends to reflect the distribution of

just one attribute. However, the optimal single-dimensional
anonymization is quite sensitive to the underlying data, and
a small change to the synthetic data set often changes the
resulting anonymization.

This potential “linearization” of attributes has an impact
on query processing over the anonymized data. We con-
sidered a simple workload for this two-attribute data set,
consisting of queries of the form “SELECT COUNT(*)
WHERE {X, Y } = value”, where X and Y are the two
quasi-identifier attributes, and value consists of integers be-
tween 0 and 49. (In Figures 15 and 16, X and Y are dis-
played on the horizontal and vertical axes.) We evaluated
these queries over each anonymization, as well as the origi-
nal data set. On the anonymized data, when a predicate did
not match any partition, we assumed a uniform distribution
within each partition.

For each anonymization, we computed the mean and
standard deviation of the absolute error over the set of
queries in the workload. These results are presented in
Figure 17. As is apparent from Figures 15 and 16, and
from the error measurements, queries with predicates on Y
are more accurately answered from the single-dimensional
anonymization than are queries with predicates on X. The
observed error is more consistent across queries using the
multidimensional anonymization.

7. Related Work
The bulk of previous work on k-anonymity has involved
user-defined value generalization hierarchies [6, 8, 9, 12,
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14, 16]. Recently, partitioning models have been proposed
to automatically generate generalization hierarchies[2, 8].
Such models are particularly well-suited for continu-
ous or numeric data, but all of the previously-proposed
anonymization techniques have been single-dimensional.

User-defined hierarchies impose additional constraints
over partitioning models. For numeric values, these con-
straints may be unnecessary and reduce flexibility. How-
ever, for other types of data (e.g., categorical), user-defined
hierarchies may lead to more intuitive anonymizations.

Another simpler model of anonymization has also been
considered in the literature, and this model considers sup-
pressing individual cells in a relation in order to achieve k-
anonymity. Approximation algorithms have also been pro-
posed for the problem of finding the k-anonymization sup-
pressing the fewest cells [1, 10].

In other related work, private histograms have also been
proposed for data publishing [4]. Chawla et al [4] present
an algorithm that also considers the domain of sensitive at-
tributes in a multidimensional space. However, it does not
view minimal partition-occupancy to be an absolute con-
straint, and for this reason, the resulting partitions may con-
tain fewer than k points.

8. Conclusion and Future Work

In this paper, we introduced a multidimensional recoding
model for k-anonymity. Although the problem of finding
the optimal anonymization is NP-hard, we provide a sim-
ple, scalable, and efficient greedy constant-factor approxi-
mation algorithm for several general-purpose quality met-
rics. An experimental evaluation indicates that often the
results of this algorithm are actually better than those pro-
duced by more expensive optimal algorithms using other
recoding models.

The second main contribution of this paper is a more tar-
geted notion of quality measurement, based on a workload
of aggregate queries. The second part of our experimental
evaluation showed that, for workloads involving predicates
on multiple attributes, the multidimensional recoding model
often leads to more desirable results.

There are a number of promising areas for future work.
In particular, we would like to extend the greedy algorithm
presented in this paper to multidimensional models involv-
ing user-defined hierarchies. Also, as mentioned in Sec-
tion 5, we are considering ways of integrating knowledge of
an anticipated query workload directly into the anonymiza-
tion algorithms. Finally, we suspect that multidimensional
recoding would lend itself to creating anonymizations that
are useful for building data mining modes, such as decision
trees [6, 8, 16].
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